Complex manifolds of dimension 1

lecture 3

Misha Verbitsky

IMPA, sala 232

January 10, 2020

Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

M. Verbitsky

Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A bilinear symmetric form (or any tensor) Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant bilinear symmetric form (or any tensor) on T_xM , where M = G/H is a homogeneous space. For any $y \in M$ obtained as y = g(x), consider the form Φ_y on T_yM obtained as $\Phi_y := g^*(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ is h-invariant, the tensor Φ_y is independent from the choice of g.

We proved

THEOREM: Let M = G/H be a homogeneous space and $x \in M$ a point. Then the *G*-invariant bilinear forms (or tensors) on M = G/H are in bijective correspondence with isotropy invariant bilinear forms (tensors) on the vector space T_xM .

Space forms

DEFINITION: Simply connected space form is a homogeneous Riemannian manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of affine isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

The Riemannian metric is defined in the next slide.

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique up to a constant multiplier *G*-invariant symmetric 2-form: the standard Euclidean metric.

Proof. Step 1: Let g, g' be two metrics. Clearly, it suffices to show that the functions $x \longrightarrow g(x)$ and $x \longrightarrow g'(x)$ are proportional. Fix a vector v on a unit sphere. Replacing g' by $\frac{g(v)}{g'(v)}g'$ if necessary, we can assume that g = g' on a sphere. Indeed, a sphere is an orbit of SO(n), and g, g' are SO(n)-invariant.

Step 2: Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx for appropriate $x \in S^{n-1}$, $\lambda \in \mathbb{R}$.

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

Hermitian and conformal structures (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: A Riemannian metric h on an almost complex manifold is called Hermitian if h(x,y) = h(Ix, Iy).

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on *M* is a class of conformal equivalence of Riemannian metrics.

CLAIM: Let *I* be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then *h* and *h'* are conformally equivalent. Conversely, any metric conformally equivalent to Hermitian is Hermitian.

Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let *M* be a 2-dimensional oriented manifold. Given a complex structure *I*, let ν be the conformal class of its Hermitian metric (it is unique as shown above). Then ν determines *I* uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal structure ν . Since M is oriented, the group SO(2) = U(1) acts in its tangent bundle in a natural way: $\rho : U(1) \longrightarrow GL(TM)$. Rescaling h does not change this action, hence it is determined by ν . Now, define I as $\rho(\sqrt{-1})$; then $I^2 = \rho(-1) = -\operatorname{Id}$. Since U(1) acts by isometries, this almost complex structure is compatible with h and with ν .

DEFINITION: A Riemann surface is a complex manifold of dimension 1, or (equivalently) an oriented 2-manifold equipped with a conformal structure.

Poincaré-Koebe uniformization theorem

DEFINITION: A **Riemannian manifold of constant curvature** is a Riemannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let *M* be a Riemann surface. Then *M* admits a complete metric of constant curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X by a discrete group of isometries $\Gamma \subset Iso(X)$.

COROLLARY: Any simply connected Riemann surface is conformally equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later lectures.

Matrix exponent and Lie groups

DEFINITION: Exponent of an endomorphism A is $e^A := \sum_{n=0}^{\infty} \frac{A^n}{n!}$. Logarithm of an endomorphism 1 + A is $\log(1 + A) := \sum_{n=1}^{\infty} -(-1)^n \frac{A^n}{n!}$.

EXERCISE: Prove that exponent is inverse to logarithm in a neighbourhood of 0.

EXERCISE: Prove that if $A, B \in End(V)$ commute, one has $e^{A+B} = e^A e^B$.

EXERCISE: Find an example when $A, B \in \text{End}(V)$ do not commute, and $e^{A+B} \neq e^A e^B$.

EXERCISE: Prove that **exponent is invertible in a sufficiently small neighbourhood of 0** (use the inverse map theorem).

DEFINITION: Let $W \subset End(V)$ be a subspace obtained by logarithms of all elements in a neighbourhood of zero of a subgroup $G \subset GL(V)$. A group $G \subset GL(V)$ is called a Lie subgroup of GL(V), or a matrix Lie group, if it is closed and equal to e^W in a neighbourhood of unity. In this case W is called its Lie algebra.

REMARK: It is possible to show that any closed subgroup of GL(V) is a matrix group. However, for many practical purposes this can be assumed.

Lie groups: first examples

EXAMPLE: From (local) invertibility of exponent it follows that in a neighbourhood of Id_V we have $GL(V) = e^W$, for W = End(V) (prove it).

EXERCISE: Prove that det $e^A = e^{\operatorname{Tr} A}$, where $\operatorname{Tr} A$ is a trace of A.

EXAMPLE: Let SL(V) be the group of all matrices with determinant 1, and $End_0(V)$ the space of all matrices with trace 0. Then $e^{End_0(V)} = SL(V)$ (prove it). This implies that SL(V) is also a Lie group.

Lie groups as submanifolds

DEFINITION: A subset $M \subset \mathbb{R}^n$ is an *m*-dimensional smooth submanifold if for each $x \in M$ there exists an open in \mathbb{R}^n neighbourhood $U \ni x$ and a diffeomorphism from U to an open ball $B \subset \mathbb{R}^n$ which maps $U \cap M$ to an intersection $B \cap \mathbb{R}^m$ of B and an *m*-dimensional linear subspace.

PROPOSITION: Let $G \subset End(V)$ be a matrix subgroup in GL(V). Then *G* is a submanifold.

Proof. Step 1: From inverse function theorem, it follows that $A \longrightarrow e^A$ is a diffeomorphism on a neighbourhood of 0 mapping the Lie algebra W of G to G.

Step 2: For any $g \in G$, consider the map $x \longrightarrow ge^x$. This map defines a diffeomorphism between a neighbourhood of 0 in End(V) and a neighbourhood gU of g, mapping W to $gU \subset G$.

Orthogonal group as a Lie group

DEFINITION: Let V be a vector space equipped with a non-degenerate bilinear symmetric form h. Then the group of all endomorphisms of V preserving h and orientation is called **(special) orthogonal group**, denoted by SO(V,h).

DEFINITION: Consider the space of all $A \in End(V)$ which satisfy h(Ax, y) = -h(x, Ay). This space is called **the space of antisymmetric matrices** and denoted $\mathfrak{so}(V, h)$.

REMARK: Clearly, $\mathfrak{so}(V,h) = \{A \in \text{End}(V) \mid A^t = -A\}.$

THEOREM: SO(V,h) is a Lie group, and $\mathfrak{so}(V,h)$ its Lie algebra.

Proof. Step 1:

$$0 = \frac{d}{dt}h(e^{tA}v, e^{tA}w) = h(Ae^{tA}v, e^{tA}w) + h(e^{tA}v, Ae^{tA}w).$$

If h is e^{tA} -invariant, this gives 0 = h(Av, w) + h(v, Aw), hence A is antisymmetric.

Orthogonal group as a Lie group (2)

THEOREM: SO(V,h) is a Lie group, and $\mathfrak{so}(V,h)$ its Lie algebra.

Proof. Step 1:

$$0 = \frac{d}{dt}h(e^{tA}v, e^{tA}w) = h(e^{tA}A(v), e^{tA}w) + h(e^{tA}v, e^{tA}A(w)).$$

If h is e^{tA} -invariant, this gives 0 = h(Av, w) + h(v, Aw), hence A is antisymmetric.

Step 2: Conversely, suppose that *A* is antisymmetric. Then

$$\frac{d}{dt}h(e^{tA}v, e^{tA}w) = h(Ae^{tA}v, e^{tA}w) + h(e^{tA}v, Ae^{tA}Aw) = 0,$$

hence $h(e^{tA}v, e^{tA}w)$ is independent from t and equal to h(v, w).

Classical Lie groups

EXERCISE: Prove that the following groups are Lie groups.

U(n) ("unitary group"): the group of complex linear automorphisms of \mathbb{C}^n preserving a Hermitian form.

SU(n): ("special unitary group"): the group of complex linear automorphisms of \mathbb{C}^n of determinant 1 preserving a Hermitian form.

 $Sp(2n,\mathbb{R})$ ("symplectic group"): the group of linear automorphisms of \mathbb{R}^{2n} preserving a non-degenerate, antisymmetric 2-form.

Properties of matrix groups

LEMMA: Let $G \subset GL(V)$ be a matrix Lie group, equal to e^W in a neighbourhood of 1. Then $W = T_eG \subset End(V) = T_eGL(V)$.

Proof: The exponent map $W \longrightarrow e^W \subset G$ is an isomorphism in a neighbourhood of 0, but **the differential of this map is identity.**

LEMMA: Let G be a connected Lie group. Then G is generated by any neighbourhood of unity.

Proof: A subgroup $H \subset G$ generated by a given neighbourhood of unity $U \ni e$ is open. The map $U \longrightarrow G$ mapping (u, x) to ux is a diffeomorphism from U to a neighbourhood of x hence it is open. Since any orbit Hx of H acting on G is open, it is also closed, and (unless G is disconnected) there is only one such orbit.

Surjective homomorphisms of matrix groups

COROLLARY 1: Let ψ : $G \longrightarrow G'$ be a Lie group homomorphism. Suppose that its differential is surjective. Then Ψ is surjective on a connected component of unity.

Proof: Let $W = T_e G$ and $W' = T_e G'$. Since the differential of Ψ is surjective, Ψ is surjective to some neighbourhood of unity by the inverse function theorem. However, a neighbourhood of unity generates G' by the previous lemma. Therefore, Ψ is surjective.

COROLLARY 2: Let ψ : $G \longrightarrow G'$ be a Lie group homomorphism. Assume that ψ is injective in a neighbourhood of unity, and dim $G = \dim G'$. Then ψ is surjective on a connected component of unity.

Proof: The differential of ψ is an isomorphism (it is an injective map of vector spaces of the same dimension). Now ψ is surjective by Corollary 1.

Group of unitary quaternions

DEFINITION: A quaternion z is called **unitary** if $|z|^2 := z\overline{z} = 1$. The group of unitary quaternions is denoted by $U(1,\mathbb{H})$. This is a group of all **quaternions satisfying** $z^{-1} = \overline{z}$.

CLAIM: Let im $\mathbb{H} := \mathbb{R}^3$ be the space aI + bJ + cK of all imaginary quaternions. The map $x, y \longrightarrow -\operatorname{Re}(xy)$ defines scalar product on im \mathbb{H} .

CLAIM: This scalar product is positive definite.

Proof: Indeed, if z = aI + bJ + cK, $Re(z^2) = -a^2 - b^2 - c^2$.

COROLLARY: Consider the action of $U(1,\mathbb{H})$ on Im H with $h \in U(1,\mathbb{H})$ mapping $z \in \text{Im }\mathbb{H}$ to $hz\overline{h}$. Since $\overline{hz\overline{h}} = h\overline{z}\overline{h}$, this quaternion also imaginary. Also, $|hz\overline{h}|^2 = hz\overline{h}h\overline{z}\overline{h} = h|z|^2\overline{h} = |z|^2$. This implies that $U(1,\mathbb{H})$ acts on the space im \mathbb{H} by isometries.

DEFINITION: Denote the group of all oriented linear isometries of \mathbb{R}^3 by SO(3). This group is called **the group of rotations of** \mathbb{R}^3 .

REMARK: We have just defined a group homomorphism $U(1, \mathbb{H}) \longrightarrow SO(3)$ mapping h, z to $hz\overline{h}$.

Group of rotations of \mathbb{R}^3

Similar to complex numbers which can be used to describe rotations of \mathbb{R}^2 , quaternions can be used to describe rotations of \mathbb{R}^3 .

THEOREM: Let $U(1,\mathbb{H})$ be the group of unitary quaternions acting on $\mathbb{R}^3 = \operatorname{Im} H$ as above: $h(x) := hx\overline{h}$. Then **the corresponding group homo-morphism defines an isomorphism** $\Psi : U(1,\mathbb{H})/\{\pm 1\} \xrightarrow{\sim} SO(3)$.

Proof. Step 1: First, any quaternion h which lies in the kernel of the homomorpism $U(1, \mathbb{H}) \longrightarrow SO(3)$ commutes with all imaginary quaternions, Such a quaternion must be real (check this). Since |h| = 1, we have $h = \pm 1$. This implies that Ψ is injective.

Step 2: These groups are 3-dimensional. Then Ψ is surjective by Corollary 2.

COROLLARY: The group SO(3) is identified with the real projective space $\mathbb{R}P^3$. **Proof:** Indeed, $U(1,\mathbb{H})$ is identified with a 3-sphere, and $\mathbb{R}P^3 := S^3/\{\pm 1\}$.

The group SO(4)

Consider the following scalar product on $\mathbb{H} = \mathbb{R}^4$: $g(x, y) = \operatorname{Re}(x\overline{y})$. Clearly, it is positive definite. Let $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ act on \mathbb{H} as follows: $h_1, h_2, z \longrightarrow h_1 z \overline{h}_2$, with $z \in \mathbb{H}$ and $h_1, h_2 \in U(1, \mathbb{H})$. Clearly, $|h_1 z \overline{h}_2|^2 = h_1 z \overline{h}_2 h_2 \overline{z} \overline{h}_1 = h_1 z \overline{z} \overline{h}_1 =$ $z\overline{z}$, hence **the group** $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ **acts on** $\mathbb{H} = \mathbb{R}^4$ **by isometries.** Clearly, ker Ψ contains a pair $(-1, -1) \subset U(1, \mathbb{H}) \times U(1, \mathbb{H})$. We denote the group generated by (-1, -1) as $\{\pm 1\} \subset U(1, \mathbb{H}) \times U(1, \mathbb{H})$.

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms of \mathbb{R}^4 , and let Ψ : $U(1,\mathbb{H}) \times U(1,\mathbb{H})/\{\pm 1\} \longrightarrow SO(4)$ be the group homomorphism constructed above, $h_1, h_2(x) = h_1 x \overline{h}_2$. Then Ψ is an isomorphism. In particular, SO(4) is diffeomorphic to $S^3 \times S^3/\{\pm 1\}$.

Proof. Step 1: Again, let $(h_1, h_2) \in \ker \Psi$. Since $\Psi(h_1, h_2)(1) = 1$, this gives $h_2 = \overline{h}_1 = h_1^{-1}$. However, $h_1 z h_1^{-1} = z$ means that h_1 commutes with z, which implies that h_1 commutes with all quaternions, hence it is real. Then $h_1 = \pm 1$. This proves injectivity of Ψ .

Step 2: The group SO(4) is 6-dimensional (prove it), and $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ is also 6-dimensional. Then Ψ is surjective by Corollary 2.