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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of Stx(G) on TxM .

DEFINITION: A bilinear symmetric form (or any tensor) Φ on a homoge-
neous manifold M = G/H is called invariant if it is mapped to itself by all
diffeomorphisms which come from g ∈ G.

REMARK: Let Φx be an isotropy invariant bilinear symmetric form (or any
tensor) on TxM , where M = G/H is a homogeneous space. For any y ∈ M
obtained as y = g(x), consider the form Φy on TyM obtained as Φy := g∗(Φ).
The choice of g is not unique, however, for another g′ ∈ G which satisfies
g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the
tensor Φy is independent from the choice of g.

We proved

THEOREM: Let M = G/H be a homogeneous space and x ∈ M a point.
Then the G-invariant bilinear forms (or tensors) on M = G/H are in bijective
correspondence with isotropy invariant bilinear forms (tensors) on the
vector space TxM .
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Space forms

DEFINITION: Simply connected space form is a homogeneous Rieman-

nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of affine isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined in the next slide.
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique up to a constant multiplier G-invariant symmetric 2-form: the

standard Euclidean metric.

Proof. Step 1: Let g, g′ be two metrics. Clearly, it suffices to show that the

functions x−→ g(x) and x−→ g′(x) are proportional. Fix a vector v on a unit

sphere. Replacing g′ by g(v)
g′(v)g

′ if necessary, we can assume that g = g′ on a

sphere. Indeed, a sphere is an orbit of SO(n), and g, g′ are SO(n)-invariant.

Step 2: Then g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all

vectors can be written as λx for appropriate x ∈ Sn−1, λ ∈ R.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.
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Hermitian and conformal structures (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold

which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called

Riemannian metric, of Riemannian structure, and (M,h) Riemannian

manifold.

DEFINITION: A Riemannian metric h on an almost complex manifold is

called Hermitian if h(x, y) = h(Ix, Iy).

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures

on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex

structure I, let ν be the conformal class of its Hermitian metric (it is unique

as shown above). Then ν determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-

ture ν. Since M is oriented, the group SO(2) = U(1) acts in its tangent

bundle in a natural way: ρ : U(1)−→GL(TM). Rescaling h does not change

this action, hence it is determined by ν. Now, define I as ρ(
√
−1 ); then

I2 = ρ(−1) = − Id. Since U(1) acts by isometries, this almost complex struc-

ture is compatible with h and with ν.

DEFINITION: A Riemann surface is a complex manifold of dimension 1,

or (equivalently) an oriented 2-manifold equipped with a conformal structure.
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Poincaré-Koebe uniformization theorem

DEFINITION: A Riemannian manifold of constant curvature is a Rie-

mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-

mann surface. Then M admits a complete metric of constant curvature

in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X

by a discrete group of isometries Γ ⊂ Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally

equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later

lectures.
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Matrix exponent and Lie groups

DEFINITION: Exponent of an endomorphism A is eA :=
∑∞
n=0

An

n! . Loga-
rithm of an endomorphism 1 +A is log(1 +A) :=

∑∞
n=1−(−1)nA

n

n

EXERCISE: Prove that exponent is inverse to logarithm in a neighbour-
hood of 0.

EXERCISE: Prove that if A,B ∈ End(V ) commute, one has eA+B = eAeB.

EXERCISE: Find an example when A,B ∈ End(V ) do not commute, and
eA+B 6= eAeB.

EXERCISE: Prove that exponent is invertible in a sufficiently small
neighbourhood of 0 (use the inverse map theorem).

DEFINITION: Let W ⊂ End(V ) be a subspace obtained by logarithms of
all elements in a neighbourhood of zero of a subgroup G ⊂ GL(V ). A group
G ⊂ GL(V ) is called a Lie subgroup of GL(V ), or a matrix Lie group, if
it is closed and equal to eW in a neighbourhood of unity. In this case W is
called its Lie algebra.

REMARK: It is possible to show that any closed subgroup of GL(V ) is a
matrix group. However, for many practical purposes this can be assumed.
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Lie groups: first examples

EXAMPLE: From (local) invertibility of exponent it follows that in a neigh-

bourhood of IdV we have GL(V ) = eW , for W = End(V ) (prove it).

EXERCISE: Prove that det eA = eTrA, where TrA is a trace of A.

EXAMPLE: Let SL(V ) be the group of all matrices with determinant 1,

and End0(V ) the space of all matrices with trace 0. Then eEnd0(V ) = SL(V )

(prove it). This implies that SL(V ) is also a Lie group.
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Lie groups as submanifolds

DEFINITION: A subset M ⊂ Rn is an m-dimensional smooth submanifold

if for each x ∈ M there exists an open in Rn neighbourhood U 3 x and a

diffeomorphism from U to an open ball B ⊂ Rn which maps U ∩ M to an

intersection B ∩Rm of B and an m-dimensional linear subspace.

PROPOSITION: Let G ⊂ End(V ) be a matrix subgroup in GL(V ). Then

G is a submanifold.

Proof. Step 1: From inverse function theorem, it follows that A−→ eA is a

diffeomorphism on a neighbourhood of 0 mapping the Lie algebra W of G to

G.

Step 2: For any g ∈ G, consider the map x−→ gex. This map defines a dif-

feomorphism between a neighbourhood of 0 in End(V ) and a neighbourhood

gU of g, mapping W to gU ⊂ G.
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Orthogonal group as a Lie group

DEFINITION: Let V be a vector space equipped with a non-degenerate

bilinear symmetric form h. Then the group of all endomorphisms of V pre-

serving h and orientation is called (special) orthogonal group, denoted by

SO(V, h).

DEFINITION: Consider the space of all A ∈ End(V ) which satisfy h(Ax, y) =

−h(x,Ay). This space is called the space of antisymmetric matrices and

denoted so(V, h).

REMARK: Clearly, so(V, h) = {A ∈ End(V ) | At = −A}.

THEOREM: SO(V, h) is a Lie group, and so(V, h) its Lie algebra.

Proof. Step 1:

0 =
d

dt
h(etAv, etAw) = h(AetAv, etAw) + h(etAv,AetAw).

If h is etA-invariant, this gives 0 = h(Av,w) + h(v,Aw), hence A is antisym-

metric.
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Orthogonal group as a Lie group (2)

THEOREM: SO(V, h) is a Lie group, and so(V, h) its Lie algebra.

Proof. Step 1:

0 =
d

dt
h(etAv, etAw) = h(etAA(v), etAw) + h(etAv, etAA(w)).

If h is etA-invariant, this gives 0 = h(Av,w) + h(v,Aw), hence A is antisym-

metric.

Step 2: Conversely, suppose that A is antisymmetric. Then

d

dt
h(etAv, etAw) = h(AetAv, etAw) + h(etAv,AetAAw) = 0,

hence h(etAv, etAw) is independent from t and equal to h(v, w).
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Classical Lie groups

EXERCISE: Prove that the following groups are Lie groups.

U(n) (“unitary group”): the group of complex linear automorphisms of Cn

preserving a Hermitian form.

SU(n): (“special unitary group”): the group of complex linear automor-

phisms of Cn of determinant 1 preserving a Hermitian form.

Sp(2n,R) (“symplectic group”): the group of linear automorphisms of R2n

preserving a non-degenerate, antisymmetric 2-form.
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Properties of matrix groups

LEMMA: Let G ⊂ GL(V ) be a matrix Lie group, equal to eW in a neighbour-

hood of 1. Then W = TeG ⊂ End(V ) = TeGL(V ).

Proof: The exponent map W −→ eW ⊂ G is an isomorphism in a neighbour-

hood of 0, but the differential of this map is identity.

LEMMA: Let G be a connected Lie group. Then G is generated by any

neighbourhood of unity.

Proof: A subgroup H ⊂ G generated by a given neighbourhood of unity U 3 e
is open, The map U −→G mapping (u, x) to ux is a diffeomorphism from U

to a neighbourhood of x hence it is open. Since any orbit Hx of H acting on

G is open, it is also closed, and (unless G is disconnected) there is only one

such orbit.
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Surjective homomorphisms of matrix groups

COROLLARY 1: Let ψ : G−→G′ be a Lie group homomorphism. Suppose

that its differential is surjective. Then Ψ is surjective on a connected

component of unity.

Proof: Let W = TeG and W ′ = TeG′. Since the differential of Ψ is surjective,

Ψ is surjective to some neighbourhood of unity by the inverse function theo-

rem. However, a neighbourhood of unity generates G′ by the previous lemma.

Therefore, Ψ is surjective.

COROLLARY 2: Let ψ : G−→G′ be a Lie group homomorphism. Assume

that ψ is injective in a neighbourhood of unity, and dimG = dimG′. Then ψ

is surjective on a connected component of unity.

Proof: The differential of ψ is an isomorphism (it is an injective map of vector

spaces of the same dimension). Now ψ is surjective by Corollary 1.
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Group of unitary quaternions

DEFINITION: A quaternion z is called unitary if |z|2 := zz = 1. The
group of unitary quaternions is denoted by U(1,H). This is a group of all
quaternions satisfying z−1 = z.

CLAIM: Let imH := R3 be the space aI+bJ+cK of all imaginary quaternions.
The map x, y −→ −Re(xy) defines scalar product on imH.

CLAIM: This scalar product is positive definite.

Proof: Indeed, if z = aI + bJ + cK, Re(z2) = −a2 − b2 − c2.

COROLLARY: Consider the action of U(1,H) on ImH with h ∈ U(1,H)
mapping z ∈ ImH to hzh. Since hzh = hzh, this quaternion also imaginary.
Also, |hzh|2 = hzhhzh = h|z|2h = |z|2. This implies that U(1,H) acts on
the space imH by isometries.

DEFINITION: Denote the group of all oriented linear isometries of R3 by
SO(3). This group is called the group of rotations of R3.

REMARK: We have just defined a group homomorphism U(1,H)−→ SO(3)
mapping h, z to hzh.
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Group of rotations of R3

Similar to complex numbers which can be used to describe rotations of R2,

quaternions can be used to describe rotations of R3.

THEOREM: Let U(1,H) be the group of unitary quaternions acting on

R3 = ImH as above: h(x) := hxh. Then the corresponding group homo-

morphism defines an isomorphism Ψ : U(1,H)/{±1} −̃→ SO(3).

Proof. Step 1: First, any quaternion h which lies in the kernel of the

homomorpism U(1,H)−→ SO(3) commmutes with all imaginary quaternions,

Such a quaternion must be real (check this). Since |h| = 1, we have h = ±1.

This implies that Ψ is injective.

Step 2: These groups are 3-dimensional. Then Ψ is surjective by Corollary

2.

COROLLARY: The group SO(3) is identified with the real projective

space RP3.

Proof: Indeed, U(1,H) is identified with a 3-sphere, and RP3 := S3/{±1}.
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The group SO(4)

Consider the following scalar product on H = R4: g(x, y) = Re(xy). Clearly, it

is positive definite. Let U(1,H)×U(1,H) act on H as follows: h1, h2, z −→ h1zh2,

with z ∈ H and h1, h2 ∈ U(1,H). Clearly, |h1zh2|2 = h1zh2h2zh1 = h1zzh1 =

zz, hence the group U(1,H) × U(1,H) acts on H = R4 by isometries.

Clearly, ker Ψ contains a pair (−1,−1) ⊂ U(1,H) × U(1,H). We denote the

group generated by (−1,−1) as {±1} ⊂ U(1,H)× U(1,H).

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms

of R4, and let Ψ : U(1,H)× U(1,H)/{±1} −→ SO(4) be the group homomor-

phism constructed above, h1, h2(x) = h1xh2. Then Ψ is an isomorphism.

In particular, SO(4) is diffeomorphic to S3 × S3/{±1}.

Proof. Step 1: Again, let (h1, h2) ∈ ker Ψ. Since Ψ(h1, h2)(1) = 1, this

gives h2 = h1 = h−1
1 . However, h1zh

−1
1 = z means that h1 commutes with z,

which implies that h1 commutes with all quaternions, hence it is real. Then

h1 = ±1. This proves injectivity of Ψ.

Step 2: The group SO(4) is 6-dimensional (prove it), and U(1,H)×U(1,H)

is also 6-dimensional. Then Ψ is surjective by Corollary 2.
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