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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St:(G) ={9€ G | g(x) =z} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St (G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to g(x) identifies M
with the space of conjugacy classes G/H. m

REMARK: Let g(x) =y. Then St,(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A bilinear symmetric form (or any tensor) & on a homoge-
neous manifold M = G/H is called invariant if it is mapped to itself by all
diffeomorphisms which come from g € G.

REMARK: Let ®, be an isotropy invariant bilinear symmetric form (or any
tensor) on T;M, where M = G/H is a homogeneous space. For any y € M
obtained as y = g(x), consider the form &, on T, M obtained as &, := g*(P).
The choice of g is not unique, however, for another ¢ € G which satisfies
¢ (z) = vy, we have g = g’h where h € St;(G). Since & is h-invariant, the
tensor ¢, is independent from the choice of g.

We proved

THEOREM: Let M = G/H be a homogeneous space and z € M a point.
Then the G-invariant bilinear forms (or tensors) on M = G/H are in bijective
correspondence with isotropy invariant bilinear forms (tensors) on the
vector space T, M. m
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Space forms

DEFINITION: Simply connected space form is a homogeneous Rieman-
nian manifold of one of the following types:

positive curvature: S"™ (an n-dimensional sphere), equipped with an
action of the group SO(n + 1) of rotations

zero curvature: R"™ (an n-dimensional Euclidean space), equipped with
an action of affine isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincare plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined in the next slide.
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique up to a constant multiplier G-invariant symmetric 2-form: the
standard Euclidean metric.

Proof. Step 1: Let g,g9’ be two metrics. Clearly, it suffices to show that the
functions x — g(x) and = — ¢'(z) are proportional. Fix a vector v on a unit
sphere. Replacing ¢’ by 5,(";))9’ if necessary, we can assume that ¢ = ¢’ on a

sphere. Indeed, a sphere is an orbit of SO(n), and g, ¢ are SO(n)-invariant.

Step 2: Then g(\z, \z) = ¢(\z, \z) for any z € S"~1, X\ € R; however, all
vectors can be written as \x for appropriate x € Sn_l, AER. =

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, GG-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =
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Hermitian and conformal structures (reminder)

DEFINITION: Let h € SmeT*M be a symmetric 2-form on a manifold
which satisfies h(x,x) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: A Riemannian metric A on an almost complex manifold is
called Hermitian if h(z,y) = h(lz, Iy).

DEFINITION: Let h, k' be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if ' = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k'’ two Hermitian metrics. Then h and A’ are conformally
equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.
6
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric (it is unique
as shown above). Then v determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture v. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: p: U(1) — GL(TM). Rescaling h does not change
this action, hence it is determined by v. Now, define I as p(v/—1); then
I?2 = p(—1) = —1Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with A and with v. =

DEFINITION: A Riemann surface is a complex manifold of dimension 1,
or (equivalently) an oriented 2-manifold equipped with a conformal structure.
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Poincaré-Koebe uniformization theorem

DEFINITION: A Riemannian manifold of constant curvature is a Rie-
mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-
mann surface. Then M admits a complete metric of constant curvature
in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X
by a discrete group of isometries I' C Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally
equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later
lectures.
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Matrix exponent and Lie groups

DEFINITION: Exponent of an endomorphism A is e = > 00 A7 Loga-

n=Q, n!

rithm of an endomorphism 1+ A is log(1 + A) 1= 372 4 —(—1)n7

EXERCISE: Prove that exponent is inverse to logarithm in a neighbour-
hood of O.

EXERCISE: Prove that if A, B € End(V) commute, one has eA+5 = 4B,

EXERCISE: Find an example when A, B € End(V) do not commute, and
eATB £ ¢AeB,

EXERCISE: Prove that exponent is invertible in a sufficiently small
neighbourhood of 0 (use the inverse map theorem).

DEFINITION: Let W C End(V) be a subspace obtained by logarithms of
all elements in a neighbourhood of zero of a subgroup G C GL(V). A group
G C GL(V) is called a Lie subgroup of GL(V), or a matrix Lie group, if
it is closed and equal to eV in a neighbourhood of unity. In this case W is
called its Lie algebra.

REMARK: It is possible to show that any closed subgroup of GL(V) is a
matrix group. However, for many practical purposes this can be assumed.
9
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Lie groups: first examples

EXAMPLE: From (local) invertibility of exponent it follows that in a neigh-
bourhood of Idy, we have GL(V) = eV, for W = End(V) (prove it).

EXERCISE: Prove that dete? = eT"4, where Tr A is a trace of A.

EXAMPLE: Let SL(V) be the group of all matrices with determinant 1,
and Endg(V) the space of all matrices with trace 0. Then eENdo(V) = s1,(V)
(prove it). This implies that SL(V) is also a Lie group.

10
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Lie groups as submanifolds

DEFINITION: A subset M C R" is an m-dimensional smooth submanifold
if for each x € M there exists an open in R"™ neighbourhood U > x and a
diffeomorphism from U to an open ball B C R"™ which maps U N M to an
intersection BN R™ of B and an m-dimensional linear subspace.

PROPOSITION: Let G ¢ End(V) be a matrix subgroup in GL(V). Then
G is a submanifold.

Proof. Step 1: From inverse function theorem, it follows that A — e is a
diffeomorphism on a neighbourhood of O mapping the Lie algebra W of G to
G.

Step 2: For any g € G, consider the map x — ge?. This map defines a dif-
feomorphism between a neighbourhood of 0 in End(V) and a neighbourhood
gU of g, mapping W to gU C G. m
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Orthogonal group as a Lie group

DEFINITION: Let V be a vector space equipped with a non-degenerate
bilinear symmetric form h. Then the group of all endomorphisms of V pre-
serving h and orientation is called (special) orthogonal group, denoted by
SO(V,h).

DEFINITION: Consider the space of all A € End(V) which satisfy h(Ax,y) =
—h(x, Ay). This space is called the space of antisymmetric matrices and
denoted so(V, h).

REMARK: Clearly, so(V,h) = {A € End(V) | Al = —A}.
THEOREM: SO(V,h) is a Lie group, and so(V, h) its Lie algebra.

Proof. Step 1:

d
0= ﬁh(etAv, etAw) = h(Aett, e dw) 4+ h(etdv, Aetdw).
If h is et4-invariant, this gives 0 = h(Av,w) + h(v, Aw), hence A is antisym-

metric.
12
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Orthogonal group as a Lie group (2)
THEOREM: SO(V,h) is a Lie group, and so(V, h) its Lie algebra.

Proof. Step 1.
d
0= ah(et% etAw) = h(e A(v), ) + h(etdv, et A(w)).

If h is et4-invariant, this gives 0 = h(Av,w) + h(v, Aw), hence A is antisym-
metric.

Step 2: Conversely, suppose that A is antisymmetric. Then
d

Jh(et o, ew) = h(Ae v, e hw) 4 h(e v, At Aw) = 0,

hence h(et4v, etAw) is independent from ¢ and equal to h(v,w). =

13
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Classical Lie groups
EXERCISE: Prove that the following groups are Lie groups.

U(n) (“unitary group’”): the group of complex linear automorphisms of C"
preserving a Hermitian form.

SU(n): (“special unitary group’” ): the group of complex linear automor-
phisms of C" of determinant 1 preserving a Hermitian form.

Sp(2n,R) (“symplectic group”): the group of linear automorphisms of R2"
preserving a non-degenerate, antisymmetric 2-form.

14
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Properties of matrix groups

LEMMA: Let G C GL(V) be a matrix Lie group, equal to e in a neighbour-
hood of 1. Then W =T.G C End(V) = TeGL(V).

Proof: The exponent map W —eW c@is an iIsomorphism in a neighbour-
hood of O, but the differential of this map is identity.

LEMMA: Let G be a connected Lie group. Then &G iIs generated by any
neighbourhood of unity.

Proof: A subgroup H C G generated by a given neighbourhood of unity U > e
is open, The map U — G mapping (u,z) to uzx is a diffeomorphism from U
to a neighbourhood of x hence it is open. Since any orbit Hx of H acting on
G is open, it is also closed, and (unless G is disconnected) there is only one
such orbit. =

15
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Surjective homomorphisms of matrix groups

COROLLARY 1: Lety : G — G’ be a Lie group homomorphism. Suppose
that its differential is surjective. Then W is surjective on a connected
component of unity.

Proof: Let W = T.G and W/ = T.G'. Since the differential of W is surjective,
WV is surjective to some neighbourhood of unity by the inverse function theo-
rem. However, a neighbourhood of unity generates G’ by the previous lemma.
Therefore, W is surjective. =

COROLLARY 2: Let v : G — G’ be a Lie group homomorphism. Assume
that + is injective in a neighbourhood of unity, and dimG = dimG’. Then v
IS surjective on a connected component of unity.

Proof: The differential of ¢ is an isomorphism (it is an injective map of vector

spaces of the same dimension). Now 4 is surjective by Corollary 1. m
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Group of unitary quaternions

DEFINITION: A quaternion z is called unitary if |z|°2 := 2z = 1. The
group of unitary quaternions is denoted by U(1,H). This is a group of all
quaternions satisfying 2~ 1 = z.

CLAIM: Let imH := R3 be the space al+bJ+cK of all imaginary quaternions.
The map z,y — — Re(xy) defines scalar product on im H.

CLAIM: This scalar product is positive definite.
Proof: Indeed, if z=al +bJ + cK, Re(z2) = —a?2 — b2 —c%. m

COROLLARY: Consider the action of U(1,H) on ImH with h € U(1,H)
mapping z € ImMH to hzh. Since hzh = hzh, this quaternion also imaginary.
Also, |hzh|? = hzhhzh = h|z|°h = |z|2. This implies that U(1,H) acts on
the space imH by isometries.

DEFINITION: Denote the group of all oriented linear isometries of R3 by
SO(3). This group is called the group of rotations of R3.

REMARK: We have just defined a group homomorphism U(1,H) — SO(3)
mapping h, z to hzh.
17
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Group of rotations of R3

Similar to complex numbers which can be used to describe rotations of R2,
quaternions can be used to describe rotations of R3.

THEOREM: Let U(1,H) be the group of unitary quaternions acting on
R3 = Im H as above: h(z) := hzh. Then the corresponding group homo-
morphism defines an isomorphism W : U(1,H)/{£1} = SO(3).

Proof. Step 1: First, any quaternion A which lies in the kernel of the
homomorpism U(1,H) — SO(3) commmutes with all imaginary quaternions,
Such a quaternion must be real (check this). Since |h| = 1, we have h = +1.
This implies that W is injective.

Step 2: These groups are 3-dimensional. Then W is surjective by Corollary
2.

COROLLARY: The group SO(3) is identified with the real projective

space RP3.

Proof: Indeed, U(1,H) is identified with a 3-sphere, and RP3 := S3/{+1}.m
13
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The group SO(4)

Consider the following scalar product on H = R*: ¢g(z,y) = Re(ay). Clearly, it
is positive definite. Let U(1,H)xU(1,H) act on H as follows: hy, ho, 2 — hyzho,
with z € H and hy,ho € U(1,H). Clearly, |h1zho|?2 = hizhohozZhi = h12Zh] =
2z, hence the group U(1,H) x U(1,H) acts on H = R* by isometries.
Clearly, ker W contains a pair (—=1,—1) Cc U(1,H) x U(1,H). We denote the
group generated by (—1,—1) as {#1} C U(1,H) x U(1, H).

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms
of R%, and let W: U(1,H) x U(1,H)/{£1} — SO(4) be the group homomor-
phism constructed above, hi,ho(x) = hizho. Then W is an isomorphism.
In particular, SO(4) is diffeomorphic to S3 x §3/{+1}.

Proof. Step 1: Again, let (hq,hy) € kerW. Since W(hi,ho)(1) = 1, this
gives ho = hy = h{l. However, hlth1 = z means that h; commutes with z,
which implies that h; commutes with all quaternions, hence it is real. Then
h1 = £1. This proves injectivity of V.

Step 2: The group SO(4) is 6-dimensional (prove it), and U(1,H) x U(1,H)
is also 6-dimensional. Then W is surjective by Corollary 2. m
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