Complex manifolds of dimension 1

lecture 4: Möbius group

Misha Verbitsky

IMPA, sala 232

January 13, 2020

Complex projective space

DEFINITION: Let $V = \mathbb{C}^n$ be a complex vector space equipped with a Hermitian form h, and U(n) the group of complex endomorphisms of V preserving h. This group is called **the complex isometry group**.

DEFINITION: Complex projective space $\mathbb{C}P^n$ is the space of 1-dimensional subspaces (lines) in \mathbb{C}^{n+1} .

REMARK: Since the group U(n+1) of unitary matrices acts on lines in \mathbb{C}^{n+1} transitively (prove it), $\mathbb{C}P^n$ is a homogeneous space, $\mathbb{C}P^n = \frac{U(n+1)}{U(1) \times U(n)}$, where $U(1) \times U(n)$ is a stabilizer of a line in \mathbb{C}^{n+1} .

EXAMPLE: $\mathbb{C}P^1$ is S^2 .

Homogeneous and affine coordinates on $\mathbb{C}P^n$

DEFINITION: We identify $\mathbb{C}P^n$ with the set of n + 1-tuples $x_0 : x_1 : ... : x_n$ defined up to equivalence $x_0 : x_1 : ... : x_n \sim \lambda x_0 : \lambda x_1 : ... : \lambda x_n$, for each $\lambda \in \mathbb{C}^*$. This representation is called **homogeneous coordinates**. Affine **coordinates** in the chart $x_k \neq 0$ are are $\frac{x_0}{x_k} : \frac{x_1}{x_k} : ... : 1 : ... : \frac{x_n}{x_k}$. The space $\mathbb{C}P^n$ is a union of n + 1 affine charts identified with \mathbb{C}^n , with the complement to each chart identified with $\mathbb{C}P^{n-1}$.

CLAIM: Complex projective space is a complex manifold, with the atlas given by affine charts $\mathbb{A}_k = \left\{\frac{x_0}{x_k} : \frac{x_1}{x_k} : \ldots : 1 : \ldots : \frac{x_n}{x_k}\right\}$, and the transition functions mapping the set

$$\mathbb{A}_k \cap \mathbb{A}_l = \left\{ \frac{x_0}{x_k} : \frac{x_1}{x_k} : \dots : 1 : \dots : \frac{x_n}{x_k} \mid x_l \neq 0 \right\}$$

to

$$\mathbb{A}_l \cap \mathbb{A}_k = \left\{ \frac{x_0}{x_l} : \frac{x_1}{x_l} : \dots : 1 : \dots : \frac{x_n}{x_l} \mid x_k \neq 0 \right\}$$

as a multiplication of all terms by the scalar $\frac{x_k}{x_l}$.

Hermitian and conformal structures (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: A Riemannia metric *h* on an almost complex manifold is called **Hermitian** if h(x,y) = h(Ix, Iy).

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on *M* is a class of conformal equivalence of Riemannian metrics.

CLAIM: Let *I* be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then *h* and *h'* are conformally equivalent. Conversely, any metric conformally equivalent to Hermitian is Hermitian.

Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let *M* be a 2-dimensional oriented manifold. Given a complex structure *I*, let ν be the conformal class of its Hermitian metric (it is unique as shown above). Then ν determines *I* uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal structure ν . Since M is oriented, the group SO(2) = U(1) acts in its tangent bundle in a natural way: $\rho : U(1) \longrightarrow GL(TM)$. Rescaling h does not change this action, hence it is determined by ν . Now, define I as $\rho(\sqrt{-1})$; then $I^2 = \rho(-1) = -\operatorname{Id}$. Since U(1) acts by isometries, this almost complex structure is compatible with h and with ν .

DEFINITION: A Riemann surface is a complex manifold of dimension 1, or (equivalently) an oriented 2-manifold equipped with a conformal structure.

REMARK: We assume that **all almost complex manifolds in real dimen-sion 2 are complex** ("Newlander-Nirenberg theorem").

Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Riemannian manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

The Riemannian metric is defined by the following lemma, proven in Lecture 3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits a unique up to a constant multiplier G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds equipped with a *G*-invariant Riemannian form.

Next subject: We are going to classify conformal automorphisms of all space forms.

Laurent power series

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

 $R = \{ z \mid \alpha < |z| < \beta \}.$

Then f can be expressed as a Laurent power series $f(z) = \sum_{i \in \mathbb{Z}} z^i a_i$ converging in R.

Proof: Same as Cauchy formula. ■

REMARK: This theorem remains valid if $\alpha = 0$ and $\beta = \infty$.

REMARK: A function φ : $\mathbb{C}^* \longrightarrow \mathbb{C}$ uniquely determines its Laurent power series. Indeed, the residue of $z^k \varphi$ in 0 is $\sqrt{-1} 2\pi a_{-k-1}$.

REMARK: Let $\varphi : \mathbb{C}^* \longrightarrow \mathbb{C}$ be a holomorphic function, and $\varphi = \sum_{i \in \mathbb{Z}} z^i a_i$ its Laurent power series. Then $\psi(z) := \varphi(z^{-1})$ has Laurent polynomial $\psi = \sum_{i \in \mathbb{Z}} z^{-i} a_i$.

Affine coordinates on $\mathbb{C}P^1$

DEFINITION: We identify $\mathbb{C}P^1$ with the set of pairs x : y defined up to equivalence $x : y \sim \lambda x : \lambda y$, for each $\lambda \in \mathbb{C}^*$. This representation is called **homogeneous coordimates**. Affine coordinates are 1 : z for $x \neq 0$, z = y/x and z : 1 for $y \neq 0$, z = x/y. The corresponding gluing functions are given by the map $z \longrightarrow z^{-1}$.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are holomorphic and $g \neq 0$.

REMARK: A holomorphic map $\mathbb{C} \longrightarrow \mathbb{C}P^1$ is the same as a pair of maps f:g up to equivalence $f:g \sim fh:gh$. In other words, holomorphic maps $\mathbb{C} \longrightarrow \mathbb{C}P^1$ are identified with meromorphic functions on \mathbb{C} .

REMARK: In homogeneous coordinates, an element $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{C})$ acts as $x : y \longrightarrow ax + by : cx + dy$. Therefore, in affine coordinates it acts as $z \longrightarrow \frac{az+b}{cz+d}$.

Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C}P^1$.

```
REMARK: The group PGL(2, \mathbb{C}) acts on \mathbb{C}P^1 holomorphically.
```

The following theorem will be proven later in this lecture.

THEOREM: The natural map from $PGL(2, \mathbb{C})$ to the group of Möbius transforms is an isomorphism.

Claim 1: Let $\varphi : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ be a holomorphic automorphism, $\varphi_0 : \mathbb{C} \longrightarrow \mathbb{C}P^1$ its restriction to the chart z : 1, and $\varphi_{\infty} : \mathbb{C} \longrightarrow \mathbb{C}P^1$ its restriction 1 : z. We consider φ_0 , φ_{∞} as meromorphic functions on \mathbb{C} . Then $\varphi_{\infty} = \varphi_0(z^{-1})^{-1}$.

Möbius transforms and $PGL(2, \mathbb{C})$

THEOREM: The natural map from $PGL(2,\mathbb{C})$ to the group $Aut(\mathbb{C}P^1)$ of Möbius transforms is an isomorphism.

Proof. Step 1: Let $\varphi \in Aut(\mathbb{C}P^1)$. Since $PSL(2,\mathbb{C})$ acts transitively on pairs of points $x \neq y$ in $\mathbb{C}P^1$, by composing φ with an appropriate element in $PGL(2,\mathbb{C})$ we can assume that $\varphi(0) = 0$ and $\varphi(\infty) = \infty$. This means that we may consider the restrictions φ_0 and φ_∞ of φ to the affine charts as a holomorphic functions on these charts, $\varphi_0, \varphi_\infty : \mathbb{C} \longrightarrow \mathbb{C}$.

Step 2: Let
$$\varphi_0 = \sum_{i>0} a_i z^i$$
, $a_1 \neq 0$. Claim 1 gives

$$\varphi_{\infty}(z) = \varphi_0(z^{-1})^{-1} = a_1 z (1 + \sum_{i \ge 2} \frac{a_i}{a_1} z^{-i})^{-1}.$$

Unless $a_i = 0$ for all $i \ge 2$, this Laurent series has singularities in 0 and cannot be holomorphic. Therefore φ_0 is a linear function, and it belongs to $PGL(2,\mathbb{C})$.

Lemma 1: Let φ be a Möbius transform fixing $\infty \in \mathbb{C}P^1$. Then $\varphi(z) = az + b$ for some $a, b \in \mathbb{C}$ and all $z = z : 1 \in \mathbb{C}P^1$. **Proof:** Let $A \in PGL(2,\mathbb{C})$ be a map acting on $\mathbb{C} = \mathbb{C}P^1 \setminus \infty$ as parallel transport mapping $\varphi(0)$ to 0. Then $\varphi \circ A$ is a Moebius transform which fixes ∞ and 0. As shown in Step 2 above, it is a linear function.

Conformal automorphisms of $\ensuremath{\mathbb{C}}$

THEOREM: (Riemann removable singularity theorem) Let $f : \mathbb{C} \to \mathbb{C}$ be a continuous function which is holomorphic outside of a finite set. Then f is holomorphic.

Proof: Use the Cauchy formula. ■

THEOREM: All conformal automorphisms of \mathbb{C} can be expressed as $z \rightarrow az + b$, where a, b are complex numbers, $a \neq 0$.

Proof: Let φ be a conformal automorphism of \mathbb{C} . The Riemann removable singularity theorem implies that φ can be extended to a holomorphic automorphism of $\mathbb{C}P^1$. Indeed, $\mathbb{C}P^1$ is obtained as a 1-point compactification of \mathbb{C} , and any continuous map from \mathbb{C} to \mathbb{C} is extended to a continuous map on $\mathbb{C}P^1$. Now, Lemma 1 implies that $\varphi(z) = az + b$.