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Complex projective space

DEFINITION: Let V = C" be a complex vector space equipped with a Her-
mitian form h, and U(n) the group of complex endomorphisms of V preserving
h. This group is called the complex isometry group.

DEFINITION: Complex projective space CP" is the space of 1-dimensional
subspaces (lines) in C* 1.

REMARK: Since the group U(n+1) of unitary matrices acts on lines in C*11

" _ _ U(n+1
transitively (prove it), CP" is a homogeneous space, CP" = U(l()"””xj;]()n),

where U(1) x U(n) is a stabilizer of a line in C*t1,

EXAMPLE: CP! is §2.
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Homogeneous and affine coordinates on CP"

DEFINITION: We identify CP™ with the set of n 4+ 1-tuples xg : x1 : ... . xn
defined up to equivalence zg : 1 : ... | T ~ Axg | Ax1 : ... | Axp, fOr each
A € C*. This representation is called homogeneous coordinates. Affine
coordinates in the chart z;, = 0 are are ig : f}; ool i: The space
CP™ is a union of n+ 1 affine charts identified with C", with the complement

to each chart identified with CP"—1.

CLAIM: Complex projective space is a complex manifold, with the atlas given

by affine charts A, = {i—: ; % SUUUREE OO ﬁ—’;} , and the transition functions
mapping the set
AkﬂAl:{x—O:ﬂ:...:l:...:x—n :cl;to}
L Tk L
to
AlﬂAkz{@:ﬂ:...:l:...:x—n xk#O}
Ly I L]

as a multiplication of all terms by the scalar %

3



Riemann surfaces, lecture 4 M. Verbitsky

Hermitian and conformal structures (reminder)

DEFINITION: Let h € SmeT*M be a symmetric 2-form on a manifold
which satisfies h(x,x) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: A Riemannia metric h on an almost complex manifold is called
Hermitian if h(x,y) = h(lz, Iy).

DEFINITION: Let h, k' be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if ' = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k'’ two Hermitian metrics. Then h and A’ are conformally
equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric (it is unique
as shown above). Then v determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture v. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: p: U(1) — GL(TM). Rescaling h does not change
this action, hence it is determined by v. Now, define I as p(v/—1); then
I2 = p(—1) = —1Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with A and with v. =

DEFINITION: A Riemann surface is a complex manifold of dimension 1,
or (equivalently) an oriented 2-manifold equipped with a conformal structure.

REMARK: We assume that all almost complex manifolds in real dimen-

sion 2 are complex (“Newlander-Nirenberg theorem').
5
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St:(G) ={9€ G | g(x) =z} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St (G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to g(x) identifies M
with the space of conjugacy classes G/H. m

REMARK: Let g(x) =y. Then St,(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Rieman-
nian manifold of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n + 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by the following lemma, proven in Lecture
3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits
a unique up to a constant multiplier G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds
equipped with a G-invariant Riemannian form.

Next subject: We are going to classify conformal automorphisms of all
space forms.
7
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Laurent power series

THEOREM: (Laurent theorem)
Let f be a holomorphic function on an annulus (that is, a ring)

R={z | a<]|z|<p}

Then f can be expressed as a Laurent power series f(z) = Yo7 2'a;
converging in R.

Proof: Same as Cauchy formula. m
REMARK: This theorem remains valid if o« =0 and 8 = ~c.

REMARK: A function ¢ : C* — C uniquely determines its Laurent
power series. Indeed, the residue of zFyp in 0 is /—1 2ma_j_1.

REMARK: Let ¢ : C* — C be a holomorphic function, and ¢ = Y,z 2'a;
its Laurent power series. Then ¢(z) := ¢(z~1) has Laurent polynomial

Y= ez z ‘a;.
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Affine coordinates on CP1

DEFINITION: We identify CP! with the set of pairs z : y defined up to
equivalence = : y ~ Ax . Ay, for each A € C*. This representation is called
homogeneous coordimates. Affine coordinatesarel:zforz #0, z =y/x
and z:1 for y # 0, z = x/y. The corresponding gluing functions are given by

the map z — 2~ 1.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are
holomorphic and g # 0.

REMARK: A holomorphic map C —s CP! is the same as a pair of maps
f g up to equivalence f: g~ fh:gh. In other words, holomorphic maps
C —s CP1l are identified with meromorphic functions on C.

b

REMARK: In homogeneous coordinates, an element 7] € PSL(2,C)
acts as x : y—ax + by : cx + dy. Therefore, in affine coordinates it acts as
. . az+b

" cz+d-
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Mobius transforms

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CPl holomorphically.
The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Mobius
transforms is an isomorphism.

Claim 1: Let ¢ : CPl—CP! be a holomorphic automorphism, g
C —s CP1! its restriction to the chart z : 1, and o : C —s CP1! its restric-
tion 1 : z. We consider ¢g, 9o as meromorphic functions on C. Then

poo = oz~ 1)L
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Mobius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Mobius transforms is an isomorphism.

Proof. Step 1: Let ¢ € Aut(CP!). Since PSL(2,C) acts transitively on
pairs of points z = y Iin (CPl, by composing ¢ with an appropriate element in
PGL(2,C) we can assume that ¢(0) = 0 and ¢(oc0) = co. This means that
we may consider the restrictions g and ¢~ Of ¢ to the affine charts as a
holomorphic functions on these charts, ¢g, poo : C — C.

Step 2: Let pg = Y;>0aiz’, a1 # 0. Claim 1 gives

poo(2) = ozt =a1z(1 + Y )7L
i>2 41
Unless a; = O for all ¢ > 2, this Laurent series has singularities in O and
cannot be holomorphic. Therefore ¢g is a linear function, and it belongs
to PGL(2,C). =

Lemma 1: Let ¢ be a Mdbius transform fixing oo € CPL. Then ¢(2) = az+b
for some a,bcC and all z=2z:1 e CPL.
Proof: Let A € PGL(2,C) be a map acting on C = <CP1\oo as parallel trans-
port mapping ¢(0) to 0. Then po A is a Moebius transform which fixes oo
and 0. As shown in Step 2 above, it is a linear function. m
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Conformal automorphisms of C

THEOREM: (Riemann removable singularity theorem) Let f: C—C
be a continuous function which is holomorphic outside of a finite set. Then
f is holomorphic.

Proof: Use the Cauchy formula. m

THEOREM: All conformal automorphisms of C can be expressed as
z — az + b, where a,b are complex numbers, a # 0.

Proof: Let ¢ be a conformal automorphism of C. The Riemann removable
singularity theorem implies that ¢ can be extended to a holomorphic au-
tomorphism of CPL. Indeed, CP! is obtained as a 1-point compactification
of C, and any continuous map from C to C is extended to a continuous map
on CPLl. Now, Lemma 1 implies that ¢(2) =az+b. =
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