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Complex projective space

DEFINITION: Let V = Cn be a complex vector space equipped with a Her-

mitian form h, and U(n) the group of complex endomorphisms of V preserving

h. This group is called the complex isometry group.

DEFINITION: Complex projective space CPn is the space of 1-dimensional

subspaces (lines) in Cn+1.

REMARK: Since the group U(n+1) of unitary matrices acts on lines in Cn+1

transitively (prove it), CPn is a homogeneous space, CPn = U(n+1)
U(1)×U(n),

where U(1)× U(n) is a stabilizer of a line in Cn+1.

EXAMPLE: CP1 is S2.
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Homogeneous and affine coordinates on CPn

DEFINITION: We identify CPn with the set of n + 1-tuples x0 : x1 : ... : xn
defined up to equivalence x0 : x1 : ... : xn ∼ λx0 : λx1 : ... : λxn, for each

λ ∈ C∗. This representation is called homogeneous coordinates. Affine

coordinates in the chart xk 6= 0 are are x0
xk

: x1
xk

: ... : 1 : ... : xn
xk

. The space

CPn is a union of n+ 1 affine charts identified with Cn, with the complement

to each chart identified with CPn−1.

CLAIM: Complex projective space is a complex manifold, with the atlas given

by affine charts Ak =
{
x0
xk

: x1
xk

: ... : 1 : ... : xnxk

}
, and the transition functions

mapping the set

Ak ∩ Al =

{
x0

xk
:
x1

xk
: ... : 1 : ... :

xn

xk

∣∣∣∣∣ xl 6= 0

}
to

Al ∩ Ak =

{
x0

xl
:
x1

xl
: ... : 1 : ... :

xn

xl

∣∣∣∣∣ xk 6= 0

}
as a multiplication of all terms by the scalar xk

xl
.
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Hermitian and conformal structures (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold

which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called

Riemannian metric, of Riemannian structure, and (M,h) Riemannian

manifold.

DEFINITION: A Riemannia metric h on an almost complex manifold is called

Hermitian if h(x, y) = h(Ix, Iy).

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures

on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex

structure I, let ν be the conformal class of its Hermitian metric (it is unique

as shown above). Then ν determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-

ture ν. Since M is oriented, the group SO(2) = U(1) acts in its tangent

bundle in a natural way: ρ : U(1)−→GL(TM). Rescaling h does not change

this action, hence it is determined by ν. Now, define I as ρ(
√
−1 ); then

I2 = ρ(−1) = − Id. Since U(1) acts by isometries, this almost complex struc-

ture is compatible with h and with ν.

DEFINITION: A Riemann surface is a complex manifold of dimension 1,

or (equivalently) an oriented 2-manifold equipped with a conformal structure.

REMARK: We assume that all almost complex manifolds in real dimen-

sion 2 are complex (“Newlander-Nirenberg theorem”).
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Rieman-
nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an
action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by the following lemma, proven in Lecture
3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits
a unique up to a constant multiplier G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds
equipped with a G-invariant Riemannian form.

Next subject: We are going to classify conformal automorphisms of all
space forms.
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Laurent power series

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

R = {z | α < |z| < β}.

Then f can be expressed as a Laurent power series f(z) =
∑
i∈Z z

iai
converging in R.

Proof: Same as Cauchy formula.

REMARK: This theorem remains valid if α = 0 and β =∞.

REMARK: A function ϕ : C∗ −→ C uniquely determines its Laurent

power series. Indeed, the residue of zkϕ in 0 is
√
−1 2πa−k−1.

REMARK: Let ϕ : C∗ −→ C be a holomorphic function, and ϕ =
∑
i∈Z z

iai
its Laurent power series. Then ψ(z) := ϕ(z−1) has Laurent polynomial

ψ =
∑
i∈Z z

−iai.
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Affine coordinates on CP1

DEFINITION: We identify CP1 with the set of pairs x : y defined up to

equivalence x : y ∼ λx : λy, for each λ ∈ C∗. This representation is called

homogeneous coordimates. Affine coordinates are 1 : z for x 6= 0, z = y/x

and z : 1 for y 6= 0, z = x/y. The corresponding gluing functions are given by

the map z −→ z−1.

DEFINITION: Meromorphic function is a quotient f/g, where f, g are

holomorphic and g 6= 0.

REMARK: A holomorphic map C−→ CP1 is the same as a pair of maps

f : g up to equivalence f : g ∼ fh : gh. In other words, holomorphic maps

C−→ CP1 are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element

(
a b
c d

)
∈ PSL(2,C)

acts as x : y −→ ax + by : cx + dy. Therefore, in affine coordinates it acts as

z −→ az+b
cz+d.
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Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphically.

The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Möbius

transforms is an isomorphism.

Claim 1: Let ϕ : CP1 −→ CP1 be a holomorphic automorphism, ϕ0 :

C−→ CP1 its restriction to the chart z : 1, and ϕ∞ : C−→ CP1 its restric-

tion 1 : z. We consider ϕ0, ϕ∞ as meromorphic functions on C. Then

ϕ∞ = ϕ0(z−1)−1.
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Möbius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Möbius transforms is an isomorphism.

Proof. Step 1: Let ϕ ∈ Aut(CP1). Since PSL(2,C) acts transitively on
pairs of points x 6= y in CP1, by composing ϕ with an appropriate element in
PGL(2,C) we can assume that ϕ(0) = 0 and ϕ(∞) = ∞. This means that
we may consider the restrictions ϕ0 and ϕ∞ of ϕ to the affine charts as a
holomorphic functions on these charts, ϕ0, ϕ∞ : C−→ C.

Step 2: Let ϕ0 =
∑
i>0 aiz

i, a1 6= 0. Claim 1 gives

ϕ∞(z) = ϕ0(z−1)−1 = a1z(1 +
∑
i>2

ai
a1
z−i)−1.

Unless ai = 0 for all i > 2, this Laurent series has singularities in 0 and
cannot be holomorphic. Therefore ϕ0 is a linear function, and it belongs
to PGL(2,C).

Lemma 1: Let ϕ be a Möbius transform fixing ∞ ∈ CP1. Then ϕ(z) = az+b
for some a, b ∈ C and all z = z : 1 ∈ CP1.
Proof: Let A ∈ PGL(2,C) be a map acting on C = CP1\∞ as parallel trans-
port mapping ϕ(0) to 0. Then ϕ ◦ A is a Moebius transform which fixes ∞
and 0. As shown in Step 2 above, it is a linear function.
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Conformal automorphisms of C

THEOREM: (Riemann removable singularity theorem) Let f : C−→ C
be a continuous function which is holomorphic outside of a finite set. Then

f is holomorphic.

Proof: Use the Cauchy formula.

THEOREM: All conformal automorphisms of C can be expressed as

z −→ az + b, where a, b are complex numbers, a 6= 0.

Proof: Let ϕ be a conformal automorphism of C. The Riemann removable

singularity theorem implies that ϕ can be extended to a holomorphic au-

tomorphism of CP1. Indeed, CP1 is obtained as a 1-point compactification

of C, and any continuous map from C to C is extended to a continuous map

on CP1. Now, Lemma 1 implies that ϕ(z) = az + b.
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