# Complex manifolds of dimension 1

lecture 5: 1-dimensional Lie groups

Misha Verbitsky

IMPA, sala 232

January 15, 2020

#### Left-invariant vector fields

**REMARK:** A group acts on itself in three different ways: there is **left action** g(x) = gx, **right action**  $g(x) = xg^{-1}$ , and **adjoint action**  $g(x) = gxg^{-1}$ ,

**DEFINITION:** Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-invariant vector fields.

**REMARK:** Since the group acts on itself freely and transitively, left-invariant vector fields on G are identified  $T_eG$ . Indeed, any vector  $x \in T_eG$  can be extended to a left-invariant vector field in a unique way.

**REMARK:** The same is true for any left-invariant tensor on G: it can be obtained in a unique way from a tensor on a vector space  $T_eG$ .

#### Lie algebra

**REMARK:** Since the commutator of left-invariant vector fields is leftinvariant, commutator is well defined on the space of left invariant vector fields A. Commutator is a bilinear, antisymmetric operation  $A \times A \longrightarrow A$  which satisfies the Jacobi identity:

[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]

**DEFINITION:** A Lie algebra is a vector space A equipped with a bilinear, antisymmetric operation  $A \times A \longrightarrow A$  which satisfies the Jacobi identity.

**THEOREM: (The main theorem of Lie theory)** A simply connected Lie group **is uniquely determined by its Lie algebra.** Every finite-dimensional Lie algebra **is obtained as a Lie algebra of a simply connected Lie group**.

**DEFINITION:** Adjoint representation of a Lie group is the action of G on its Lie algebra  $T_eG$  obtained from the adjoint action of G on itself,  $g(x) = gxg^{-1}$ .

**REMARK:** Any matrix Lie group  $G \subset GL(V)$ , is generated by exponents of its Lie algebra Lie(G), and locally in a neighbourhood of zero the exponent map exp : Lie(G)  $\rightarrow$  G is a diffeomorphism.

#### Homotopy lifting principle

#### **THEOREM:** (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space, and  $\tilde{M} \longrightarrow M$  a covering map. Then for each continuous map  $X \longrightarrow M$ , there exists a lifting  $X \longrightarrow \tilde{M}$  making the following diagram commutative.





#### Universal covering of a Lie group

**THEOREM:** Let G be a connected Lie group, and  $\tilde{G}$  its universal covering. Then  $\tilde{G}$  has a unique structure of a Lie group, such that the covering map  $\pi : \tilde{G} \longrightarrow G$  is a homomorphism.

**Proof:** The multiplication map  $\tilde{G} \longrightarrow \tilde{G} \xrightarrow{\tilde{\mu}} \tilde{G}$  is a lifting of the composition of  $\pi$  and multiplication  $\tilde{G} \times \tilde{G} \xrightarrow{\pi \times \pi} G \times G \xrightarrow{\mu} G$  mapping the unity  $\tilde{e} \times \tilde{e}$  to  $\tilde{e}$ . Similarly, the inverse map  $\tilde{a} : \tilde{G} \longrightarrow \tilde{G}$  is a lifting of the inverse  $a : G \longrightarrow G$ mapping  $\tilde{e}$  to  $\tilde{e}$ 



Uniqueness and group identities on  $\tilde{G}$  both follow from the uniqueness of the homotopy lifting.  $\blacksquare$ 

#### **Classification of 1-dimensional Lie groups**

**Exercise 1:** Prove that any non-trivial discrete subgroup of  $\mathbb{R}$  is cyclic (isomorphic to  $\mathbb{Z}$ ).

# **THEOREM:** Any 1-dimensional connected Lie group G is isomorphic to $S^1$ or $\mathbb{R}$ .

**Proof.** Step 1: Any 1-dimensional manifold is diffeomorphic to  $S^1$  or  $\mathbb{R}$ . By Exercise 1 it suffices to prove that any simply connected, connected 1-dimensional Lie group is isomorphic to  $\mathbb{R}$ .

#### **Classification of 1-dimensional Lie groups (2)**

**THEOREM:** Any 1-dimensional connected Lie group G is isomorphic to  $S^1$  or  $\mathbb{R}$ .

**Step 2:** Since G is simply connected, it is diffeomorphic to  $\mathbb{R}$ . Let  $v \in T_eG$  be a non-zero tangent vector,  $\vec{v} \in TG$  the corresponding left-invariant vector field, and  $E : \mathbb{R} \longrightarrow G$  a solution of the ODE

$$\frac{d}{dt}E(t) = \vec{v}. \quad (*)$$

mapping 0 to e. A solution of (\*), considered as a map from  $\mathbb{R}$  to  $G = \mathbb{R}$ , exists and is uniquely determined by P(0) by the uniqueness and existence of solutions of ODE. Since the left action  $L_g$  of G on itself preserves  $\vec{v}$ , it maps solutions of (\*) to solutions of (\*). Let g = E(s). Then  $t \longrightarrow L_{g^{-1}}E(s+t)$  is a solution of (\*) which maps 0 to  $E(s)^{-1}E(s) = e$ , hence  $L_{g^{-1}}E(s+t) = E(t)$  and E(s+t) = E(s)E(t). Therefore, the map  $E : \mathbb{R} \longrightarrow G$  is a group homomorphism.

**Step 3:** Differential of *E* is non-degenerate, hence *E* is locally a diffeomorphism; since *G* is connected, *G* is generated by a neighbourhood of 0, hence *E* is surjective. If *E* is not injective, its kernel is discrete, but then ker  $E = \mathbb{Z}$ , and *G* is a circle. Therefore, *E* is invertible.

#### Group of unitary quaternions (reminder)

**DEFINITION:** A quaternion z is called **unitary** if  $|z|^2 := z\overline{z} = 1$ . The group of unitary quaternions is denoted by  $U(1,\mathbb{H})$ . This is a group of all **quaternions satisfying**  $z^{-1} = \overline{z}$ .

**CLAIM:** Let im  $\mathbb{H} := \mathbb{R}^3$  be the space aI + bJ + cK of all imaginary quaternions. The map  $x, y \longrightarrow - \operatorname{Re}(xy)$  defines scalar product on im  $\mathbb{H}$ .

#### **CLAIM:** This scalar product is positive definite.

**Proof:** Indeed, if z = aI + bJ + cK,  $Re(z^2) = -a^2 - b^2 - c^2$ .

**COROLLARY:** The group  $U(1, \mathbb{H})$  acts on the space im  $\mathbb{H}$  by isometries.

**REMARK:** We have just defined a group homomorphism  $U(1, \mathbb{H}) \longrightarrow SO(3)$  mapping h, z to  $hz\overline{h}$ .

**COROLLARY 2 (Lecture 3):** Let  $\psi$  :  $G \longrightarrow G'$  be a Lie group homomorphism. Assume that  $\psi$  is injective in a neighbourhood of unity, and dim  $G = \dim G'$ . Then  $\psi$  is surjective on a connected component of unity.

Riemann surfaces, lecture 5

#### Group of rotations of $\mathbb{R}^3$ (reminder)

Similar to complex numbers which can be used to describe rotations of  $\mathbb{R}^2$ , quaternions can be used to describe rotations of  $\mathbb{R}^3$ .

**THEOREM:** Let  $U(1,\mathbb{H})$  be the group of unitary quaternions acting on  $\mathbb{R}^3 = \operatorname{Im} H$  as above:  $h(x) := hx\overline{h}$ . Then **the corresponding group homo-morphism defines an isomorphism**  $\Psi : U(1,\mathbb{H})/\{\pm 1\} \xrightarrow{\sim} SO(3)$ .

**Proof.** Step 1: First, any quaternion h which lies in the kernel of the homomorpism  $U(1, \mathbb{H}) \longrightarrow SO(3)$  commutes with all imaginary quaternions, Such a quaternion must be real (check this). Since |h| = 1, we have  $h = \pm 1$ . This implies that  $\Psi$  is injective.

**Step 2:** The groups  $U(1, \mathbb{H})$  and SO(3) are 3-dimensional. Then  $\Psi$  is surjective by Corollary 2.

**COROLLARY:** The group SO(3) is identified with the real projective space  $\mathbb{R}P^3$ .

**Proof:** Indeed,  $U(1, \mathbb{H})$  is identified with a 3-sphere, and  $\mathbb{R}P^3 := S^3/\{\pm 1\}$ .

# $U(\mathbb{H},1)$ is generated by exponents

LEMMA: The group  $U(\mathbb{H}, 1)$  is generated locally by exponents of imaginary quaternions.

**Proof:** Let *h* be an imaginary quaternion. Then  $\frac{d}{dt}(e^{th}, e^{th}) = (he^{th}, e^{th}) + (e^{th}, he^{th}) = 0$  because (h(x), y) = -(x, h(y)) for any imaginary quaternion. Indeed, rescaling *h* if necessary, we may assume that  $h^2 = -1$ , then  $(h(x), y) = (h^2x, hy) = -(x, hy)$ .

### $SU(2) = U(\mathbb{H}, 1)$

The left action of  $U(\mathbb{H}, 1)$  on  $\mathbb{H} = \mathbb{C}^2$  commutes with the right action of the algebra  $\mathbb{C}$  on  $\mathbb{H} = \mathbb{C}^2$ . This defines a homomorphism  $U(\mathbb{H}, 1) \longrightarrow U(2)$ .

**THEOREM:** This homomorphism **defines an isomorphism**  $U(\mathbb{H}, 1) \cong SU(2)$ , where  $SU(2) \subset U(2)$  is a subgroup of **special unitary matrices** (unitary matrices with determinant 1).

**Proof.** Step 1: The group U(2) is 4-dimensional, because it is a fixed point set of an anti-complex involution  $A \longrightarrow (A^t)^{-1}$  in a space  $GL(2,\mathbb{C})$  of real dimension 8. The group SU(2) is a kernel of the determinant map  $U(2) \xrightarrow{\det} U(1)$ , hence it is 3-dimensional.

**Step 2:** The map  $U(\mathbb{H}, 1) \longrightarrow U(2)$  is by construction injective. Its image is generated by exponents of imaginary quaternions. The elements of im  $\mathbb{H}$  act on  $\mathbb{H} = \mathbb{C}^2$  by traceless matrices (prove this). Using the formula  $e^{\operatorname{Tr} A} = \det e^A$ , we obtain that their exponents have trivial determinant. This gives an injective map  $U(\mathbb{H}, 1) \longrightarrow SU(2)$ . It is surjective by Corollary 2.

## **Complex projective space (reminder)**

**DEFINITION:** Let  $V = \mathbb{C}^n$  be a complex vector space equipped with a Hermitian form h, and U(n) the group of complex endomorphisms of V preserving h. This group is called **the complex isometry group**.

**DEFINITION: Complex projective space**  $\mathbb{C}P^n$  is the space of 1-dimensional subspaces (lines) in  $\mathbb{C}^{n+1}$ .

**REMARK:** Since the group U(n+1) of unitary matrices acts on lines in  $\mathbb{C}^{n+1}$  transitively (prove it),  $\mathbb{C}P^n$  is a homogeneous space,  $\mathbb{C}P^n = \frac{U(n+1)}{U(1) \times U(n)}$ , where  $U(1) \times U(n)$  is a stabilizer of a line in  $\mathbb{C}^{n+1}$ .

**EXAMPLE:**  $\mathbb{C}P^1$  is  $S^2$ .

#### Homogeneous and affine coordinates on $\mathbb{C}P^n$ (reminder)

**DEFINITION:** We identify  $\mathbb{C}P^n$  with the set of n + 1-tuples  $x_0 : x_1 : ... : x_n$  defined up to equivalence  $x_0 : x_1 : ... : x_n \sim \lambda x_0 : \lambda x_1 : ... : \lambda x_n$ , for each  $\lambda \in \mathbb{C}^*$ . This representation is called **homogeneous coordinates**. Affine **coordinates** in the chart  $x_k \neq 0$  are are  $\frac{x_0}{x_k} : \frac{x_1}{x_k} : ... : 1 : ... : \frac{x_n}{x_k}$ . The space  $\mathbb{C}P^n$  is a union of n + 1 affine charts identified with  $\mathbb{C}^n$ , with the complement to each chart identified with  $\mathbb{C}P^{n-1}$ .

**CLAIM:** Complex projective space is a complex manifold, with the atlas given by affine charts  $\mathbb{A}_k = \left\{\frac{x_0}{x_k} : \frac{x_1}{x_k} : \ldots : 1 : \ldots : \frac{x_n}{x_k}\right\}$ , and the transition functions mapping the set

$$\mathbb{A}_k \cap \mathbb{A}_l = \left\{ \frac{x_0}{x_k} : \frac{x_1}{x_k} : \dots : 1 : \dots : \frac{x_n}{x_k} \mid x_l \neq 0 \right\}$$

to

$$\mathbb{A}_l \cap \mathbb{A}_k = \left\{ \frac{x_0}{x_l} : \frac{x_1}{x_l} : \dots : 1 : \dots : \frac{x_n}{x_l} \mid x_k \neq 0 \right\}$$

as a multiplication of all terms by the scalar  $\frac{x_k}{x_l}$ .

#### **Space forms (reminder)**

**DEFINITION: Simply connected space form** is a homogeneous Riemannian manifold of one of the following types:

**positive curvature:**  $S^n$  (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

**zero curvature:**  $\mathbb{R}^n$  (an *n*-dimensional Euclidean space), equipped with an action of isometries

**negative curvature:** SO(1,n)/SO(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane** 

The Riemannian metric is defined by the following lemma, proven in Lecture 3.

**LEMMA:** Let M = G/H be a simply connected space form. Then M admits a unique up to a constant multiplier G-invariant Riemannian form.

**REMARK: We shall consider space forms as Riemannian manifolds** equipped with a *G*-invariant Riemannian form.

Next subject: We are going to classify conformal automorphisms of all space forms.

# Möbius transforms (reminder)

**DEFINITION:** Möbius transform is a conformal (that is, holomorphic) diffeomorphism of  $\mathbb{C}P^1$ .

**REMARK:** The group  $PGL(2, \mathbb{C})$  acts on  $\mathbb{C}P^1$  holomorphically.

The following theorem was proven in Lecture 4.

**THEOREM:** The natural map from  $PGL(2,\mathbb{C})$  to the group  $Aut(\mathbb{C}P^1)$  of Möbius transforms is an isomorphism.

PU(2) = SO(3)

**DEFINITION:** Let  $U(2) \subset GL(2, \mathbb{C})$  be the group of unitary matrices, and PU(2) its quotient by the group U(1) of diagonal matrices. It is called **projective unitary group**.

**REMARK:** PU(2) is a quotient of SU(2) by its center – Id (prove it). The group U(2) acts on  $\mathbb{C}P^1$ , its action is factorized through PU(2), and all non-trivial  $g \in PU(2)$  act on  $\mathbb{C}P^1$  non-trivially (prove it).

**THEOREM:** PU(2) is isomorphic to SO(3), the isotropy group of its action on  $\mathbb{C}P^1$  is U(1), and the U(2)-invariant metric on  $\mathbb{C}P^1$  is isometric to the standard Riemannian metric on  $S^2$ .

**Proof:** As shown above,  $PU(2) = \frac{SU(2)}{\pm 1}$ , and  $SO(3) = \frac{U(1,\mathbb{H})}{\pm 1}$ . On the other hand,  $SU(2) = U(1,\mathbb{H})$ .

An element  $a \in SU(2)$  fixing a line  $x \in \mathbb{C}P^1$  acts on its orthogonal complement by rotations. Since det a = 1, the angle of this rotation uniquely determines the angle of rotation of a on the line x. Therefore, the isotropy group of SU(2)-action on  $\mathbb{C}P^1$  is  $S^1$ . For PU(2) it is  $S^1/\{\pm 1\} = S^1$ .

Finally, there exists only one, up to a constant, SO(3) = PU(2)-invariant metric on  $\frac{SO(3)}{SO(2)} = S^2$ .