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Left-invariant vector fields

REMARK: A group acts on itself in three different ways: there is left action

g(x) = gx, right action g(x) = xg−1, and adjoint action g(x) = gxg−1,

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of

left-invariant vector fields.

REMARK: Since the group acts on itself freely and transitively, left-invariant

vector fields on G are identified TeG. Indeed, any vector x ∈ TeG can be

extended to a left-invariant vector field in a unique way.

REMARK: The same is true for any left-invariant tensor on G: it can

be obtained in a unique way from a tensor on a vector space TeG.
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Lie algebra

REMARK: Since the commutator of left-invariant vector fields is left-
invariant, commutator is well defined on the space of left invariant vector
fields A. Commutator is a bilinear, antisymmetric operation A×A−→A which
satisfies the Jacobi identity:

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

DEFINITION: A Lie algebra is a vector space A equipped with a bilinear,
antisymmetric operation A×A−→A which satisfies the Jacobi identity.

THEOREM: (The main theorem of Lie theory) A simply connected Lie
group is uniquely determined by its Lie algebra. Every finite-dimensional
Lie algebra is obtained as a Lie algebra of a simply connected Lie group.

DEFINITION: Adjoint representation of a Lie group is the action of G on
its Lie algebra TeG obtained from the adjoint action of G on itself, g(x) =
gxg−1.

REMARK: Any matrix Lie group G ⊂ GL(V ), is generated by exponents of
its Lie algebra Lie(G), and locally in a neighbourhood of zero the exponent
map exp : Lie(G)−→G is a diffeomorphism.
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Homotopy lifting principle

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,

and M̃ −→M a covering map. Then for each continuous map X −→M ,

there exists a lifting X −→ M̃ making the following diagram commutative.

M̃

X -

-

M
?
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Universal covering of a Lie group

THEOREM: Let G be a connected Lie group, and G̃ its universal covering.

Then G̃ has a unique structure of a Lie group, such that the covering

map π : G̃−→G is a homomorphism.

Proof: The multiplication map G̃−→ G̃
µ̃−→ G̃ is a lifting of the composition

of π and multiplication G̃ × G̃ π×π−→ G × G µ−→ G mapping the unity ẽ × ẽ to

ẽ. Similarly, the inverse map ã : G̃−→ G̃ is a lifting of the inverse a : G−→G

mapping ẽ to ẽ

G̃

G̃× G̃
(π × π) ◦ µ

-

µ̃

-

G

π

?

G̃

G̃
π ◦ a

-

ã

-

G

π

?

Uniqueness and group identities on G̃ both follow from the uniqueness of the

homotopy lifting.

5



Riemann surfaces, lecture 5 M. Verbitsky

Classification of 1-dimensional Lie groups

Exercise 1: Prove that any non-trivial discrete subgroup of R is cyclic

(isomorphic to Z).

THEOREM: Any 1-dimensional connected Lie group G is isomorphic

to S1 or R.

Proof. Step 1: Any 1-dimensional manifold is diffeomorphic to S1 or R.

By Exercise 1 it suffices to prove that any simply connected, connected 1-

dimensional Lie group is isomorphic to R.
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Classification of 1-dimensional Lie groups (2)

THEOREM: Any 1-dimensional connected Lie group G is isomorphic
to S1 or R.

Step 2: Since G is simply connected, it is diffeomorphic to R. Let v ∈ TeG
be a non-zero tangent vector, ~v ∈ TG the corresponding left-invariant vector
field, and E : R−→G a solution of the ODE

d

dt
E(t) = ~v. (∗)

mapping 0 to e. A solution of (*), considered as a map from R to G = R,
exists and is uniquely determined by P (0) by the uniqueness and existence of
solutions of ODE. Since the left action Lg of G on itself preserves ~v, it maps
solutions of (*) to solutions of (*). Let g = E(s). Then t−→ Lg−1E(s + t)

is a solution of (*) which maps 0 to E(s)−1E(s) = e, hence Lg−1E(s + t) =
E(t) and E(s + t) = E(s)E(t). Therefore, the map E : R−→G is a group
homomorphism.

Step 3: Differential of E is non-degenerate, hence E is locally a diffeomor-
phism; since G is connected, G is generated by a neighbourhood of 0, hence
E is surjective. If E is not injective, its kernel is discrete, but then kerE = Z,
and G is a circle. Therefore, E is invertible.
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Group of unitary quaternions (reminder)

DEFINITION: A quaternion z is called unitary if |z|2 := zz = 1. The
group of unitary quaternions is denoted by U(1,H). This is a group of all
quaternions satisfying z−1 = z.

CLAIM: Let imH := R3 be the space aI+bJ+cK of all imaginary quaternions.
The map x, y −→ −Re(xy) defines scalar product on imH.

CLAIM: This scalar product is positive definite.

Proof: Indeed, if z = aI + bJ + cK, Re(z2) = −a2 − b2 − c2.

COROLLARY: The group U(1,H) acts on the space imH by isometries.

REMARK: We have just defined a group homomorphism U(1,H)−→ SO(3)
mapping h, z to hzh.

COROLLARY 2 (Lecture 3): Let ψ : G−→G′ be a Lie group homo-
morphism. Assume that ψ is injective in a neighbourhood of unity, and
dimG = dimG′. Then ψ is surjective on a connected component of
unity.
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Group of rotations of R3 (reminder)

Similar to complex numbers which can be used to describe rotations of R2,

quaternions can be used to describe rotations of R3.

THEOREM: Let U(1,H) be the group of unitary quaternions acting on

R3 = ImH as above: h(x) := hxh. Then the corresponding group homo-

morphism defines an isomorphism Ψ : U(1,H)/{±1} −̃→ SO(3).

Proof. Step 1: First, any quaternion h which lies in the kernel of the

homomorpism U(1,H)−→ SO(3) commmutes with all imaginary quaternions,

Such a quaternion must be real (check this). Since |h| = 1, we have h = ±1.

This implies that Ψ is injective.

Step 2: The groups U(1,H) and SO(3) are 3-dimensional. Then Ψ is

surjective by Corollary 2.

COROLLARY: The group SO(3) is identified with the real projective

space RP3.

Proof: Indeed, U(1,H) is identified with a 3-sphere, and RP3 := S3/{±1}.
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U(H,1) is generated by exponents

LEMMA: The group U(H,1) is generated locally by exponents of imag-

inary quaternions.

Proof: Let h be an imaginary quaternion. Then d
dt(e

th, eth) = (heth, eth) +

(eth, heth) = 0 because (h(x), y) = −(x, h(y)) for any imaginary quaternion.

Indeed, rescaling h if necessary, we may assume that h2 = −1, then (h(x), y) =

(h2x, hy) = −(x, hy).
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SU(2) = U(H,1)

The left action of U(H,1) on H = C2 commutes with the right action of the

algebra C on H = C2. This defines a homomorphism U(H,1)−→ U(2).

THEOREM: This homomorphism defines an isomorphism U(H,1) ∼= SU(2),

where SU(2) ⊂ U(2) is a subgroup of special unitary matrices (unitary ma-

trices with determinant 1).

Proof. Step 1: The group U(2) is 4-dimensional, because it is a fixed

point set of an anti-complex involution A−→ (At)−1 in a space GL(2,C) of

real dimension 8. The group SU(2) is a kernel of the determinant map

U(2)
det−→ U(1), hence it is 3-dimensional.

Step 2: The map U(H,1)−→ U(2) is by construction injective. Its image is

generated by exponents of imaginary quaternions. The elements of imH act

on H = C2 by traceless matrices (prove this). Using the formula eTrA =

det eA, we obtain that their exponents have trivial determinant. This gives

an injective map U(H,1)−→ SU(2). It is surjective by Corollary 2.
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Complex projective space (reminder)

DEFINITION: Let V = Cn be a complex vector space equipped with a Her-

mitian form h, and U(n) the group of complex endomorphisms of V preserving

h. This group is called the complex isometry group.

DEFINITION: Complex projective space CPn is the space of 1-dimensional

subspaces (lines) in Cn+1.

REMARK: Since the group U(n+1) of unitary matrices acts on lines in Cn+1

transitively (prove it), CPn is a homogeneous space, CPn = U(n+1)
U(1)×U(n),

where U(1)× U(n) is a stabilizer of a line in Cn+1.

EXAMPLE: CP1 is S2.
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Homogeneous and affine coordinates on CPn (reminder)

DEFINITION: We identify CPn with the set of n + 1-tuples x0 : x1 : ... : xn
defined up to equivalence x0 : x1 : ... : xn ∼ λx0 : λx1 : ... : λxn, for each

λ ∈ C∗. This representation is called homogeneous coordinates. Affine

coordinates in the chart xk 6= 0 are are x0
xk

: x1
xk

: ... : 1 : ... : xn
xk

. The space

CPn is a union of n+ 1 affine charts identified with Cn, with the complement

to each chart identified with CPn−1.

CLAIM: Complex projective space is a complex manifold, with the atlas given

by affine charts Ak =
{
x0
xk

: x1
xk

: ... : 1 : ... : xnxk

}
, and the transition functions

mapping the set

Ak ∩ Al =

{
x0

xk
:
x1

xk
: ... : 1 : ... :

xn

xk

∣∣∣∣∣ xl 6= 0

}
to

Al ∩ Ak =

{
x0

xl
:
x1

xl
: ... : 1 : ... :

xn

xl

∣∣∣∣∣ xk 6= 0

}
as a multiplication of all terms by the scalar xk

xl
.
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Rieman-
nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an
action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by the following lemma, proven in Lecture
3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits
a unique up to a constant multiplier G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds
equipped with a G-invariant Riemannian form.

Next subject: We are going to classify conformal automorphisms of all
space forms.
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Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphically.

The following theorem was proven in Lecture 4.

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)

of Möbius transforms is an isomorphism.
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PU(2) = SO(3)

DEFINITION: Let U(2) ⊂ GL(2,C) be the group of unitary matrices, and
PU(2) its quotient by the group U(1) of diagonal matrices. It is called pro-
jective unitary group.

REMARK: PU(2) is a quotient of SU(2) by its center − Id (prove it). The
group U(2) acts on CP1, its action is factorized through PU(2), and all non-
trivial g ∈ PU(2) act on CP1 non-trivially (prove it).

THEOREM: PU(2) is isomorphic to SO(3), the isotropy group of its action
on CP1 is U(1), and the U(2)-invariant metric on CP1 is isometric to the
standard Riemannian metric on S2.

Proof: As shown above, PU(2) = SU(2)
±1 , and SO(3) = U(1,H)

±1 . On the other
hand, SU(2) = U(1,H).

An element a ∈ SU(2) fixing a line x ∈ CP1 acts on its orthogonal complement
by rotations. Since det a = 1, the angle of this rotation uniquely determines
the angle of rotation of a on the line x. Therefore, the isotropy group of
SU(2)-action on CP1 is S1. For PU(2) it is S1/{±1} = S1.

Finally, there exists only one, up to a constant, SO(3) = PU(2)-invariant
metric on SO(3)

SO(2) = S2.
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