Complex manifolds of dimension 1

lecture 6: Pseudo-Hermitian forms, circles on a sphere and Möbius group

Misha Verbitsky

IMPA, sala 232

January 17, 2020

Hermitian and pseudo-Hermitian forms

DEFINITION: Let (V, I) be a (real) vector space equipped with a complex structure, and h a bilinear symmetric form. It is called **pseudo-Hermitian** if h(x, y) = h(Ix, Iy).

REMARK: The corresponding quadratic form $x \mapsto h(x,x)$ is sometimes writen as h(x). One can recover h(x,y) from h(x) as usual: 2h(x,y) = h(x+y) - h(x) - h(y).

REMARK: Often one considers a complex-valued form $h(x, y) + \sqrt{-1}h(x, Iy)$. It is **sesquilinear** as a form on the complex space: $h(\lambda x, y) = \lambda(x, y)$, $h(x, \lambda y) = \overline{\lambda}(x, y)$, for any $\lambda \in \mathbb{C}$, and the imaginary part $\sqrt{-1}h(x, Iy)$ is anti-symmetric.

CLAIM: Let (V, I, h) be a pseudo-Hermitian vector space. Consider V as a complex vector space, $\dim_{\mathbb{C}} V = n$. Then there exists a basis $z_1, ..., z_n$ in V such that $h(z_i, z_j) = 0$ for $i \neq j$ (such a basis is called **orthogonal**). Moreover, this basis can be chosen in such a way that $h(z_i, z_i)$ is ± 1 or 0 (such a basis is called **orthonormal**).

Orthonormal basis for a pseudo-Hermitian form

CLAIM: For any pseudo-Hermitian form h on (V, I), there exists orthonormal basis $z_1, ..., z_n$.

Proof: Use induction on dim V. If h = 0, this claim is clear. Assume that $h \neq 0$. For any $A \subset V$, denote by A^{\perp} the space $\{x \in V \mid h(x, a) = 0 \forall a \in A\}$.

Choose any $z_1 \in V$ such that $h(z_1, z_1) \neq 0$, and let $z_1^{\perp,\mathbb{C}} := \langle z_1, I(z_1) \rangle^{\perp} = z_1^{\perp} \cap I(z_1)^{\perp}$. This is a complex vector space which is orthogonal to z_1 . It can also be obtained as an orthogonal complement with respect to the sesquilinear form $h(x, y) + \sqrt{-1} h(x, Iy)$.

By induction assumption, the space $z_1^{\perp,\mathbb{C}}$ has an orthonormal basis $z_2, ..., z_n$. **Then** $z_1, ..., z_n$ **is an orthogonal basis in** V. Replacing z_1 by $h(z_1, z_1)^{1/2} z_1$, we obtain an orthonormal basis $z_1, ..., z_n$.

Signature of a Hermitian form

REMARK: By Sylvester's law of inertia, the number of z_i such that $h(z_i, z_i) = 1$, $h(z_i, z_i) = -1$ and $h(z_i, z_i) = 0$ is independent form the choice of an orthonormal basis.

DEFINITION: Let (V, I, h) be a vector space with non-degenerate Hermitian form, and $z_1, ..., z_n$ an orthonormal basis, $h(z_i, z_i) = 1$ for i = 1, ..., p and $h(z_i, z_i) = 1$ for i = p + 1, ..., n, with q = n - p. Then h is called **Hermitian form of signature** (p, q). The group of complex linear automorphisms preserving h is denoted U(p, q).

Normal form for a pair of Hermitian forms

Theorem 1: Let $V = \mathbb{R}^n$, and $h, h' \in \text{Sym}^2 V^*$ be two bilinear symmetric forms, with h positive definite. Then there exists a basis $x_1, ..., x_n$ which is orthonormal with respect to h, and orthogonal with respect to h'.

Theorem 1': Let $V = \mathbb{C}^n$, and $h, h' \in \text{Sym}^2 V^*$ be two (pseudo-)Hermitian forms, with h positive definite. Then there exists a basis $x_1, ..., x_n$ which is orthonormal with respect to h, and orthogonal with respect to h'.

REMARK: In this basis, h' is written as diagonal matrix, with eigenvalues $\alpha_1, ..., \alpha_n$ independent from the choice of the basis. Indeed, consider h, h' as maps from V to V^* , $h(v) = h(v, \cdot)$. Then h_1h^{-1} is an endomorphism with eigenvalues $\alpha_1, ..., \alpha_n$. This implies that Theorem 1 gives a normal form of the pair h, h'.

Finding principal axes of an ellipsoid

REMARK: Theorem 1 implies the following statement about ellipsoids: for any positive definite quadratic form q in \mathbb{R}^n , consider the ellipsoid

$$S = \{ v \in V \mid q(v) = 1 \}.$$

The group SO(n) acts on \mathbb{R}^n preserving the standard scalar product. Then for some $g \in SO(n)$, g(S) is given by equation $\sum a_i x_i^2 = 1$, where $a_i > 0$. This is called finding principal axes of an ellipsoid.

Compactness

DEFINITION: Recall that a subset $Z \subset \mathbb{R}^n$ is called (sequentially) compact if any sequence $x_1, ..., x_n, ... \subset Z$ has a converging subsequence.

THEOREM: A subset $Z \subset \mathbb{R}^n$ is sequentially compact if and only if Z is closed and bounded (that is, contained in a ball of finite diameter).

EXERCISE: Let f be a continuous function on a compact Z. **Prove that** Z is bounded and attains its supremum on Z.

COROLLARY: Let f be a continuous function on a sphere $S^n \subset \mathbb{R}^{n+1}$. **Then** f **is bounded, and attains its supremum.**

Further on, we prove the following lemma.

LEMMA: Let $V = \mathbb{R}^n$, and $h, h' \in \text{Sym}^2 V^*$ be two bilinear symmetric forms, h positive definite, and q(v) = h(v, v), q'(v) = h'(v, v) the corresponding quadratic forms. Consider q' as a function on a sphere $S = \{v \in V \mid q(v) = 1\}$, and let $x \in S$ be the point where q' attains maximum. Denote by x^{\perp_h} and $x^{\perp_{h'}}$ the orthogonal complement with respect to h, h'. Then $x^{\perp_h} = x^{\perp_{h'}}$.

Maximum of a quadratic form on a sphere

Further on, we prove the following lemma.

LEMMA: Let $V = \mathbb{R}^n$, and $h, h' \in \text{Sym}^2 V^*$ be two bilinear symmetric forms, h positive definite, and q(v) = h(v, v), q'(v) = h'(v, v) the corresponding quadratic forms. Consider q' as a function on a sphere $S = \{v \in V \mid q(v) = 1\}$, and let $x \in S$ be the point where q' attains maximum. Denote by $x^{\perp h}$ and $x^{\perp h'}$ the orthogonal complement with respect to h, h'. Then $x^{\perp h} = x^{\perp h'}$.

This lemma immediately implies Theorem 1. Let h, h', x as above. Using induction, we may assume that $x^{\perp_h} = x^{\perp_{h'}}$ admits a basis $x_2, ..., x_n$ which is orthonormal for h and orthogonal for h'. Then $x, x_2, ..., x_n$ is a basis we need.

Similarly one proves Theorem 1'. Take $x \in S$ as above. Then I(x) is also a maximum for q'. The orthogonal complements to x, I(x) with respect to h and h' coincide by our lemma. Therefore, $W = \langle x, Ix \rangle^{\perp_h} = \langle x, Ix \rangle^{\perp_{h'}}$. We obtain a complex vector space W orthogonal to x with respect to h and h'. Using induction, we find a basis $x_2, ..., x_n$ in W which is orthonormal for h and orthogonal for h'. Then $x, x_2, ..., x_n$ is such a basis in V.

Maximum of a quadratic form on a sphere

LEMMA: Let $V = \mathbb{R}^n$, and $h, h' \in \text{Sym}^2 V^*$ be two bilinear symmetric forms, h positive definite, and q(v) = h(v, v), q'(v) = h'(v, v) the corresponding quadratic forms. Consider q' as a function on a sphere $S = \{v \in V \mid q(v) = 1\}$, and let $x \in S$ be the point where q' attains maximum. Denote by $x^{\perp h}$ and $x^{\perp h'}$ the orthogonal complements with respect to h, h'. Then $x^{\perp h} = x^{\perp h'}$.

Proof: Let us rescale q, q' in such a way that $q \ge q'$, with equality on x. Suppose that $v \in x^{\perp_h}$. Then $q(x + \varepsilon v) = q(x) + \varepsilon^2 q(v)$. However, $q'(x + \varepsilon v) = q(x) + \varepsilon^2 q'(v) + 2\varepsilon h'(v, x)$. This gives

$$q(x) + \varepsilon^2 q(v) \ge q(x) + \varepsilon^2 q'(v) + 2\varepsilon h'(v, x)$$

cancelling q(x) and dividing by $\varepsilon > 0$, obtain

$$\varepsilon(q(v)-q'(v)) \ge 2h'(v,x).$$

for all $\varepsilon > 0$. This implies that $0 \ge 2h'(v, x)$ for all $v \in x^{\perp_h}$. Since $v \mapsto h'(v, x)$ is a linear form on v, inequality $0 \ge h'(v, x)$ implies that h'(v, x) = 0.

Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C}P^1$.

REMARK: The group $PGL(2, \mathbb{C})$ acts on $\mathbb{C}P^1$ holomorphically.

The following theorem was proven in Lecture 4.

THEOREM: The natural map from $PGL(2,\mathbb{C})$ to the group $Aut(\mathbb{C}P^1)$ of Möbius transforms is an isomorphism.

PU(2) = SO(3) (reminder)

DEFINITION: Let $U(2) \subset GL(2,\mathbb{C})$ be the group of unitary matrices, and PU(2) its quotient by the group U(1) of diagonal matrices. It is called **projective unitary group**.

REMARK: PU(2) is a quotient of SU(2) by its center – Id (prove it). The group U(2) acts on $\mathbb{C}P^1$, its action is factorized through PU(2), and all non-trivial $g \in PU(2)$ act on $\mathbb{C}P^1$ non-trivially (prove it).

THEOREM: PU(2) is isomorphic to SO(3), the isotropy group of its action on $\mathbb{C}P^1$ is U(1), and the U(2)-invariant metric on $\mathbb{C}P^1$ is isometric to the standard Riemannian metric on S^2 .

Circles on a sphere

DEFINITION: A circle in S^2 is an orbit of rotation subgroup, that is, a subgroup $U \subset SO(3) = PU(2) \subset PGL(2,\mathbb{C})$ isomorphic to S^1 and acting on $S^2 = \mathbb{C}P^1$ by isometries.

REMARK: Let U be a rotation group rotating S^2 around an axis passing through x and $y \in S^2$. Any orbit C of U satisfies d(x,v) = const for all $v \in C$.

LEMMA: Let z_1, z_2 be a basis in $V = \mathbb{C}^2$, and $h(az_1 + bz_2) = \alpha |a|^2 - \beta |b|^2$ a pseudo-Hermitian form, with $\alpha, \beta \ge 0$. Then the set $Z_h = \mathbb{P}\{x \in V \mid h(x) = 0\}$ is a circle in $\mathbb{C}P^1$, and all circles can be obtained this way.

Proof: In homogeneous coordinates, Z_h is the set of all x : y such that $\alpha |x|^2 = \beta |y|^2$, and rotation acts as $x : y \longrightarrow x : e^{\sqrt{-1}\theta}y$. Clearly, the orbits of rotation are precisely the sets Z_h for different α, β .

Properties of Möbius transform

PROPOSITION: The action of $PGL(2, \mathbb{C})$ on $\mathbb{C}P^1$ maps circles to circles.

Proof. Step 1: Consider a pseudo-Hermitian form h on $V = \mathbb{C}^2$ of signature (1,1). There exists an orthonormal basis $z_1, z_2 \in V$ such that $h(az_1 + bz_2) = \alpha |a|^2 - \beta |b|^2$ with $\alpha, \beta > 0$ real numbers. The set $\{z \mid h(z, z) = 0\}$ is invariant under the rotation $z_1, z_2 \longrightarrow e^{-\sqrt{-1}\theta} z_1, e^{\sqrt{-1}\theta} z_2$, hence it is a circle.

Step 2: By the previous lemma, all circles are obtained this way.

Step 3: $PGL(2,\mathbb{C})$ maps pseudo-Hermitian forms to pseudo-Hermitian forms of the same signature, and therefore **preserves circles.**

Orbits of compact one-parametric subgroups in $PGL(2, \mathbb{C})$

LEMMA: Let $G \cong S^1$ be a compact 1-dimensional subgroup in $PGL(2, \mathbb{C})$. **Then any** *G***-orbit in** $\mathbb{C}P^1$ **is a circle.**

Proof: Let $V = \mathbb{C}^2$, and consider the natural projection map

 $\pi: SL(V) \longrightarrow PGL(2, \mathbb{C}) = SL(V)/\pm 1.$

Then $\tilde{G} = \pi^{-1}(G)$ is compact. Chose a \tilde{G} -invariant Hermitian metric h on V by averaging a given metric with \tilde{G} -action. By definition, circles on $\mathbb{C}P^1$ are orbits of rotation subgroups in SU(V,h). Since $u(\tilde{G})$ is a 1-dimensional compact subgroup in SU(V,h), its orbit is a circle.