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Hermitian and pseudo-Hermitian forms

DEFINITION: Let (V,I) be a (real) vector space equipped with a complex
structure, and h a bilinear symmetric form. It is called pseudo-Hermitian if

h(x,y) = h(Ix, 1y).

REMARK: The corresponding quadratic form z — h(x,x) is sometimes
writen as h(xz). One can recover h(x,y) from h(z) as usual: 2h(x,y) =

h(z +y) — h(z) — h(y).

REMARK: Often one considers a complex-valued form h(z,y)++v—1h(z, Iy).
It is sesquilinear as a form on the complex space: h(Axz,y) = A(z,vy), h(x, \y) =
Mz, y), for any A € C, and the imaginary part v/—1 h(z, Iy) is anti-symmetric.

CLAIM: Let (V,I,h) be a pseudo-Hermitian vector space. Consider V as a
complex vector space, dimgV = n. Then there exists a basis z1,...,zn IN V
such that h(z;, z;) = 0 for i # j (such a basis is called orthogonal). Moreover,
this basis can be chosen in such a way that h(z;, z;) is =1 or O (such a basis
is called orthonormal).
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Orthonormal basis for a pseudo-Hermitian form

CLAIM: For any pseudo-Hermitian form h on (V,I), there exists orthonor-
mal basis zq, ..., zn.

Proof: Use induction on dimV. If h = 0, this claim is clear. Assume that
h # 0. For any A C V, denote by Al the space {zx € V | h(z,a) = 0Va € A}.

Choose any z1 € V such that h(z1,21) #= 0, and let zf’c = (21, 1(21))+ =
,zlL ﬂI(zl)L. This is a complex vector space which is orthogonal to z7. It can
also be obtained as an orthogonal complement with respect to the sesquilinear

form h(z,y) + V-1 h(z, Iy).

By induction assumption, the space zf’c has an orthonormal basis zo, ..., zn.
Then z4,...,z, is an orthogonal basis in V. Replacing z1 by h(z1,21)1/224,
we obtain an orthonormal basis z1,...,zn. ®
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Signature of a Hermitian form

REMARK: By Sylvester’s law of inertia, the number of z; such that h(z;, z;) =
1, h(z;,2;) = —1 and h(z;,2;) = 0 Is independent form the choice of an
orthonormal basis.

DEFINITION: Let (V,I,h) be a vector space with non-degenerate Hermi-
tian form, and zq,...,zn, an orthonormal basis, h(z;,z;) = 1 for ¢ = 1,...p and
h(z;,z;) =1 fori=p+4+1,...n, with ¢ = n —p. Then h is called Hermi-
tian form of signature (p,q). The group of complex linear automorphisms
preserving h is denoted U(p, q).
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Normal form for a pair of Hermitian forms

Theorem 1: Let V = R", and h,h' € Sym2V* be two bilinear symmetric
forms, with h positive definite. Then there exists a basis xq,...,z, wWhich
is orthonormal with respect to h, and orthogonal with respect to #/'.

Theorem 1': Let V = C", and h,h € Sym2V* be two (pseudo-)Hermitian
forms, with h positive definite. Then there exists a basis xq,...,z, wWhich
is orthonormal with respect to A, and orthogonal with respect to A'.

REMARK: In this basis, kA’ is written as diagonal matrix, with eigenvalues
a1, ...,an independent from the choice of the basis. Indeed, consider h,h’ as
maps from V to V*, h(v) = h(v,-). Then hih~ ! is an endomorphism with
eigenvalues a1, ...,an. This implies that Theorem 1 gives a normal form
of the pair h,h/.
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Finding principal axes of an ellipsoid

REMARK: Theorem 1 implies the following statement about ellipsoids: for
any positive definite quadratic form ¢ in R™, consider the ellipsoid

S={veV | q) =1}

The group SO(n) acts on R™ preserving the standard scalar product. Then
for some g € SO(n), g(S) is given by equation Y a;z? = 1, where a; > 0.
This is called finding principal axes of an ellipsoid.
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Compactness

DEFINITION: Recall that a subset Z C R" is called (sequentially) compact
if any sequence x1,...,xn,... C Z has a converging subsequence.

THEOREM: A subset Z C R” is sequentially compact if and only if 7 is
closed and bounded (that is, contained in a ball of finite diameter).

EXERCISE: Let f be a continuous function on a compact Z. Prove that
Z 1S bounded and attains its supremum on ~Z.

COROLLARY: Let f be a continuous function on a sphere S ¢ R*t1,
Then f is bounded, and attains its supremum.

Further on, we prove the following lemma.

LEMMA: Let V =R", and h,h' € Sym2V* be two bilinear symmetric forms,
h positive definite, and q(v) = h(v,v),qd'(v) = K/ (v,v) the corresponding
quadratic forms. Consider ¢’ as a function on asphere S ={v eV | q(v) =1},
and let x € S be the point where ¢’ attains maximum. Denote by zLh and

T the orthogonal complement with respect to h,h’. Then zth = xtnw,
7
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Maximum of a quadratic form on a sphere
Further on, we prove the following lemma.

LEMMA: Let V =R", and h,h/ € Sym2 V* be two bilinear symmetric forms,
h positive definite, and qg(v) = h(v,v),¢d(v) = h'(v,v) the corresponding
quadratic forms. Consider ¢’ as a function on asphere S ={v eV | q(v) = 1},
and let x € S be the point where ¢’ attains maximum. Denote by z1h and
cTr the orthogonal complement with respect to h,h’. Then cth = xlnw,

This lemma immediately implies Theorem 1. Let h, k', as above. Using
induction, we may assume that tth = 11 admits a basis xo,...,Tn Which is
orthonormal for h and orthogonal for /. Then z,z-,...,z, iS a basis we
need.

Similarly one proves Theorem 1’. Take x € S as above. Then I(x) is also
a maximum for ¢’. The orthogonal complements to =z, I(x) with respect to
h and K’ coincide by our lemma. Therefore, W = (z, [z)+h = (z, Iz) 1. We
obtain a complex vector space W orthogonal to x with respect to h and h'.
Using induction, we find a basis xzo, ..., zn in W which is orthonormal for h and

orthogonal for A/. Then z,zo,...,x, IS such a basis in V.
8
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Maximum of a quadratic form on a sphere

LEMMA: Let V =R", and h,h' € Sym2V* be two bilinear symmetric forms,
h positive definite, and q(v) = h(v,v),qd'(v) = K (v,v) the corresponding
quadratic forms. Consider ¢’ as a function on asphere S={v eV | q(v) = 1},
and let = € S be the point where ¢’ attains maximum. Denote by z+r and
11 the orthogonal complements with respect to h,h’. Then zlh = gtw.

Proof: Let us rescale q,q¢’ in such a way that ¢ > ¢/, with equality on =z.
Suppose that v € z1h. Then ¢(z +ev) = ¢(x) 4+ 2¢(v). However, ¢ (z +ev) =
q(x) + £2¢'(v) 4+ 2eh’(v, 2). This gives

¢(z) + £2q(v) > q(x) + e2¢'(v) + 2/ (v, z)
cancelling ¢g(x) and dividing by € > 0, obtain

e(q(v) — ¢'(v)) = 21/ (v, z).

for all e > 0. This implies that 0 > 2h/(v,z) for all v € ztr. Since v — K/ (v, z)
is a linear form on v, inequality 0 > h/(v,z) implies that A/(v,2) = 0. =
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Mobius transforms (reminder)

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CPl holomorphically.
The following theorem was proven in Lecture 4.

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Mobius transforms is an isomorphism.

10
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PU(2) = SO(3) (reminder)

DEFINITION: Let U(2) Cc GL(2,C) be the group of unitary matrices, and
PU(2) its quotient by the group U(1) of diagonal matrices. It is called pro-
jective unitary group.

REMARK: PU(2) is a quotient of SU(2) by its center —Id (prove it). The
group U(2) acts on CP1, its action is factorized through PU(2), and all non-
trivial g € PU(2) act on CP! non-trivially (prove it).

THEOREM: PU(2) is isomorphic to SO(3), the isotropy group of its action

on CP! is U(1), and the U(2)-invariant metric on CP1! is isometric to the
standard Riemannian metric on SZ2.

11



Riemann surfaces, lecture 6 M. Verbitsky

Circles on a sphere

DEFINITION: A circle in S2 is an orbit of rotation subgroup, that is, a
subgroup U C SO(3) = PU(2) ¢ PGL(2,C) isomorphic to S and acting on
S2 = CP1l by isometries.

REMARK: Let U be a rotation group rotating S2 around an axis passing
through = and y € S2. Any orbit C of U satisfies d(z,v) = const for all
v e C.

LEMMA: Let 21,25 be a basis in V = C?, and h(azy + bzo) = a|a|? — B]b|]? a
pseudo-Hermitian form, with a, 8> 0. Then the set Z;, =P{z €V | h(x) =
0} is a circle in CP!, and all circles can be obtained this way.

Proof: In homogeneous coordinates, Z; is the set of all z : y such that
a|z|? = Bly|2, and rotation acts as z:y —» xz: eV~ 1%. Clearly, the orbits of
rotation are precisely the sets Z; for different o, 5. m
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Properties of Mobius transform

PROPOSITION: The action of PGL(2,C) on CP! maps circles to cir-
cles.

Proof. Step 1: Consider a pseudo-Hermitian form h on V = C?2 of signature
(1,1). There exists an orthonormal basis z1,2> € V such that h(azq + bzo) =
ala|? — B|b|2 with «, 8 > 0 real numbers. The set {z | h(z,z) = 0} is invariant
under the rotation 27,20 —s e~ V=102 eV=10,, hence it is a circle.

Step 2: By the previous lemma, all circles are obtained this way.

Step 3: PGL(2,C) maps pseudo-Hermitian forms to pseudo-Hermitian forms
of the same signature, and therefore preserves circles. m
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Orbits of compact one-parametric subgroups in PGL(2,C)

LEMMA: Let G =2 S! be a compact 1-dimensional subgroup in PGL(2,C).
Then any G-orbit in CP! is a circle.

Proof: Let V = <C2, and consider the natural projection map

7. SL(V) — PGL(2,C) = SL(V)/£1.

Then G = 7~ (@) is compact. Chose a G-invariant Hermitian metric h on
V by averaging a given metric with G-action. By definition, circles on cpPl
are orbits of rotation subgroups in SU(V,h). Since u(G) is a 1-dimensional
compact subgroup in SU(V,h), its orbit is a circle. =
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