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Hermitian and pseudo-Hermitian forms

DEFINITION: Let (V, I) be a (real) vector space equipped with a complex

structure, and h a bilinear symmetric form. It is called pseudo-Hermitian if

h(x, y) = h(Ix, Iy).

REMARK: The corresponding quadratic form x 7→ h(x, x) is sometimes

writen as h(x). One can recover h(x, y) from h(x) as usual: 2h(x, y) =

h(x+ y)− h(x)− h(y).

REMARK: Often one considers a complex-valued form h(x, y)+
√
−1h(x, Iy).

It is sesquilinear as a form on the complex space: h(λx, y) = λ(x, y), h(x, λy) =

λ(x, y), for any λ ∈ C, and the imaginary part
√
−1 h(x, Iy) is anti-symmetric.

CLAIM: Let (V, I, h) be a pseudo-Hermitian vector space. Consider V as a

complex vector space, dimC V = n. Then there exists a basis z1, ..., zn in V

such that h(zi, zj) = 0 for i 6= j (such a basis is called orthogonal). Moreover,

this basis can be chosen in such a way that h(zi, zi) is ±1 or 0 (such a basis

is called orthonormal).
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Orthonormal basis for a pseudo-Hermitian form

CLAIM: For any pseudo-Hermitian form h on (V, I), there exists orthonor-

mal basis z1, ..., zn.

Proof: Use induction on dimV . If h = 0, this claim is clear. Assume that

h 6= 0. For any A ⊂ V , denote by A⊥ the space {x ∈ V | h(x, a) = 0∀a ∈ A}.

Choose any z1 ∈ V such that h(z1, z1) 6= 0, and let z
⊥,C
1 := 〈z1, I(z1)〉⊥ =

z⊥1 ∩ I(z1)⊥. This is a complex vector space which is orthogonal to z1. It can

also be obtained as an orthogonal complement with respect to the sesquilinear

form h(x, y) +
√
−1 h(x, Iy).

By induction assumption, the space z
⊥,C
1 has an orthonormal basis z2, ..., zn.

Then z1, ..., zn is an orthogonal basis in V . Replacing z1 by h(z1, z1)1/2z1,

we obtain an orthonormal basis z1, ..., zn.
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Signature of a Hermitian form

REMARK: By Sylvester’s law of inertia, the number of zi such that h(zi, zi) =

1, h(zi, zi) = −1 and h(zi, zi) = 0 is independent form the choice of an

orthonormal basis.

DEFINITION: Let (V, I, h) be a vector space with non-degenerate Hermi-

tian form, and z1, ..., zn an orthonormal basis, h(zi, zi) = 1 for i = 1, ...p and

h(zi, zi) = 1 for i = p + 1, ..., n, with q = n − p. Then h is called Hermi-

tian form of signature (p, q). The group of complex linear automorphisms

preserving h is denoted U(p, q).
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Normal form for a pair of Hermitian forms

Theorem 1: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric

forms, with h positive definite. Then there exists a basis x1, ..., xn which

is orthonormal with respect to h, and orthogonal with respect to h′.

Theorem 1’: Let V = Cn, and h, h′ ∈ Sym2 V ∗ be two (pseudo-)Hermitian

forms, with h positive definite. Then there exists a basis x1, ..., xn which

is orthonormal with respect to h, and orthogonal with respect to h′.

REMARK: In this basis, h′ is written as diagonal matrix, with eigenvalues

α1, ..., αn independent from the choice of the basis. Indeed, consider h, h′ as

maps from V to V ∗, h(v) = h(v, ·). Then h1h
−1 is an endomorphism with

eigenvalues α1, ..., αn. This implies that Theorem 1 gives a normal form

of the pair h, h′.
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Finding principal axes of an ellipsoid

REMARK: Theorem 1 implies the following statement about ellipsoids: for

any positive definite quadratic form q in Rn, consider the ellipsoid

S = {v ∈ V | q(v) = 1}.

The group SO(n) acts on Rn preserving the standard scalar product. Then

for some g ∈ SO(n), g(S) is given by equation
∑
aix

2
i = 1, where ai > 0.

This is called finding principal axes of an ellipsoid.
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Compactness

DEFINITION: Recall that a subset Z ⊂ Rn is called (sequentially) compact

if any sequence x1, ..., xn, ... ⊂ Z has a converging subsequence.

THEOREM: A subset Z ⊂ Rn is sequentially compact if and only if Z is

closed and bounded (that is, contained in a ball of finite diameter).

EXERCISE: Let f be a continuous function on a compact Z. Prove that

Z is bounded and attains its supremum on Z.

COROLLARY: Let f be a continuous function on a sphere Sn ⊂ Rn+1.

Then f is bounded, and attains its supremum.

Further on, we prove the following lemma.

LEMMA: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric forms,

h positive definite, and q(v) = h(v, v), q′(v) = h′(v, v) the corresponding

quadratic forms. Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1},
and let x ∈ S be the point where q′ attains maximum. Denote by x⊥h and

x⊥h′ the orthogonal complement with respect to h, h′. Then x⊥h = x⊥h′.
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Maximum of a quadratic form on a sphere

Further on, we prove the following lemma.

LEMMA: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric forms,

h positive definite, and q(v) = h(v, v), q′(v) = h′(v, v) the corresponding

quadratic forms. Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1},
and let x ∈ S be the point where q′ attains maximum. Denote by x⊥h and

x⊥h′ the orthogonal complement with respect to h, h′. Then x⊥h = x⊥h′.

This lemma immediately implies Theorem 1. Let h, h′, x as above. Using

induction, we may assume that x⊥h = x⊥h′ admits a basis x2, ..., xn which is

orthonormal for h and orthogonal for h′. Then x, x2, ..., xn is a basis we

need.

Similarly one proves Theorem 1’. Take x ∈ S as above. Then I(x) is also

a maximum for q′. The orthogonal complements to x, I(x) with respect to

h and h′ coincide by our lemma. Therefore, W = 〈x, Ix〉⊥h = 〈x, Ix〉⊥h′. We

obtain a complex vector space W orthogonal to x with respect to h and h′.
Using induction, we find a basis x2, ..., xn in W which is orthonormal for h and

orthogonal for h′. Then x, x2, ..., xn is such a basis in V .
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Maximum of a quadratic form on a sphere

LEMMA: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric forms,

h positive definite, and q(v) = h(v, v), q′(v) = h′(v, v) the corresponding

quadratic forms. Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1},
and let x ∈ S be the point where q′ attains maximum. Denote by x⊥h and

x⊥h′ the orthogonal complements with respect to h, h′. Then x⊥h = x⊥h′.

Proof: Let us rescale q, q′ in such a way that q > q′, with equality on x.

Suppose that v ∈ x⊥h. Then q(x+ εv) = q(x) + ε2q(v). However, q′(x+ εv) =

q(x) + ε2q′(v) + 2εh′(v, x). This gives

q(x) + ε2q(v) > q(x) + ε2q′(v) + 2εh′(v, x)

cancelling q(x) and dividing by ε > 0, obtain

ε(q(v)− q′(v)) > 2h′(v, x).

for all ε > 0. This implies that 0 > 2h′(v, x) for all v ∈ x⊥h. Since v 7→ h′(v, x)

is a linear form on v, inequality 0 > h′(v, x) implies that h′(v, x) = 0.
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Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphically.

The following theorem was proven in Lecture 4.

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)

of Möbius transforms is an isomorphism.
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PU(2) = SO(3) (reminder)

DEFINITION: Let U(2) ⊂ GL(2,C) be the group of unitary matrices, and

PU(2) its quotient by the group U(1) of diagonal matrices. It is called pro-

jective unitary group.

REMARK: PU(2) is a quotient of SU(2) by its center − Id (prove it). The

group U(2) acts on CP1, its action is factorized through PU(2), and all non-

trivial g ∈ PU(2) act on CP1 non-trivially (prove it).

THEOREM: PU(2) is isomorphic to SO(3), the isotropy group of its action

on CP1 is U(1), and the U(2)-invariant metric on CP1 is isometric to the

standard Riemannian metric on S2.
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Circles on a sphere

DEFINITION: A circle in S2 is an orbit of rotation subgroup, that is, a

subgroup U ⊂ SO(3) = PU(2) ⊂ PGL(2,C) isomorphic to S1 and acting on

S2 = CP1 by isometries.

REMARK: Let U be a rotation group rotating S2 around an axis passing

through x and y ∈ S2. Any orbit C of U satisfies d(x, v) = const for all

v ∈ C.

LEMMA: Let z1, z2 be a basis in V = C2, and h(az1 + bz2) = α|a|2 − β|b|2 a

pseudo-Hermitian form, with α, β > 0. Then the set Zh = P{x ∈ V | h(x) =

0} is a circle in CP1, and all circles can be obtained this way.

Proof: In homogeneous coordinates, Zh is the set of all x : y such that

α|x|2 = β|y|2, and rotation acts as x : y −→ x : e
√
−1 θy. Clearly, the orbits of

rotation are precisely the sets Zh for different α, β.
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Properties of Möbius transform

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-

cles.

Proof. Step 1: Consider a pseudo-Hermitian form h on V = C2 of signature

(1,1). There exists an orthonormal basis z1, z2 ∈ V such that h(az1 + bz2) =

α|a|2−β|b|2 with α, β > 0 real numbers. The set {z | h(z, z) = 0} is invariant

under the rotation z1, z2 −→ e−
√
−1 θz1, e

√
−1 θz2, hence it is a circle.

Step 2: By the previous lemma, all circles are obtained this way.

Step 3: PGL(2,C) maps pseudo-Hermitian forms to pseudo-Hermitian forms

of the same signature, and therefore preserves circles.
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Orbits of compact one-parametric subgroups in PGL(2,C)

LEMMA: Let G ∼= S1 be a compact 1-dimensional subgroup in PGL(2,C).

Then any G-orbit in CP1 is a circle.

Proof: Let V = C2, and consider the natural projection map

π : SL(V )−→ PGL(2,C) = SL(V )/±1.

Then G̃ = π−1(G) is compact. Chose a G̃-invariant Hermitian metric h on

V by averaging a given metric with G̃-action. By definition, circles on CP1

are orbits of rotation subgroups in SU(V, h). Since u(G̃) is a 1-dimensional

compact subgroup in SU(V, h), its orbit is a circle.
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