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Some low-dimensional Lie group isomorphisms

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the center Z of G

(prove it).

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional real space equipped with a scalar product of signature (1,2),
SO+(1,2) a connected component of unity, and U(1,1) the group of complex
linear maps C2 −→ C2 preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R), SO+(1,2) are isomorphic.

Proof: Isomorphism PU(1,1) = SO+(1,2) will be established later. To see
PSL(2,R) ∼= SO+(1,2), consider the Killing form κ on the Lie algebra
sl(2,R), with κ(a, b) := Tr(ab). Check that it has signature (1,2). Then
the image of SL(2,R) in automorphisms of its Lie algebra is mapped
to SO(sl(2,R), κ) = SO+(1,2). Both groups are 3-dimensional, hence it is an
isomorphism (“Corollary 2” in Lecture 3).

2



Riemann surfaces, lecture 7 M. Verbitsky

Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

THEOREM: The natural map from PGL(2,C) to the group of Möbius

transforms is an isomorphism.

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation

subgroup U ⊂ PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-

cles.

THEOREM: All conformal automorphisms of C can be expressed by

z −→ az + b, where a, b are complex numbers, a 6= 0.
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Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined

on an open set U . Then f cannot have strict maxima in U. If f has

non-strict maxima, it is constant.

Proof: By Cauchy formula, f(0) = 1
2π

∫
∂∆ f(z) dz

−
√
−1 z

, where ∆ is a disk in C.

An elementary calculation gives dz
−
√
−1 z
|∂∆ = Vol(∂∆) – the volume form on

∂∆. Therefore, f(0) is the average of f(z) on the circle, and it is the average

of f(z) on the disk ∆. Now, absolute value of the average |Avx∈S µ(x)| of a

complex-valued function µ on a set S is equal to maxx∈S |µ(s)| only if µ = const

almost everywhere on S (check this).

LEMMA: (Schwartz lemma) Let f : ∆−→∆ be a map from disk to itself

fixing 0. Then |f ′(0)| 6 1, and equality can be realized only if f(z) = αz

for some α ∈ C, |α| = 1.

Proof: Consider the function ϕ := f(z)
z . Since f(0) = 0, it is holomorphic,

and since f(∆) ⊂ ∆, on the boundary ∂∆ we have |ϕ||∂∆ 6 1. Now, the

maximum principle implies that |f ′(0)| = |ϕ(0)| 6 1, and equality is realized

only if ϕ = const.
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Conformal automorphisms of the disk act transitively

CLAIM: Let ∆ ⊂ C be the unit disk. Then the group Aut(∆) of its

holomorphic automorphisms acts on ∆ transitively.

Proof. Step 1: Let Va(z) = z−a
1−az for some a ∈ ∆. Then Va(0) = −a. To

prove transitivity, it remains to show that Va(∆) = ∆.

Step 2: For |z| = 1, we have

|Va(z)| = |Va(z)||z| =
∣∣∣∣zz − az1− az

∣∣∣∣ =
∣∣∣∣1− az1− az

∣∣∣∣ = 1.

Therefore, Va preserves the circle. Maximum principle implies that Va maps

its interior to its interior.

Step 3: To prove invertibility, we interpret Va as an element of PGL(2,C).
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Transitive action is determined by a stabilizer of a point

Lemma 2: Let M = G/H be a homogeneous space, and Ψ : G1 −→G a

homomorphism such that G1 acts on M transitively and Stx(G1) = Stx(G).

Then G1 = G.

Proof: Since any element in ker Ψ belongs to Stx(G1) = Stx(G) ⊂ G, the

homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let g ∈ G. Since G1 acts on M transitively, gg1(x) = x for some g1 ∈ G1.

Then gg1 ∈ Stx(G1) = Stx(G) ⊂ imG1. This gives g ∈ G1.
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Group of conformal automorphisms of the disk

REMARK: The group PU(1,1) ⊂ PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {l ∈ CP1 | h(l, l) >
0} by holomorphic automorphisms.

COROLLARY: Let ∆ ⊂ C be the unit disk, Aut(∆) the group of its con-
formal automorphisms, and Ψ : PU(1,1)−→ Aut(∆) the map constructed
above. Then Ψ is an isomorphism.

Proof: We use Lemma 2. Both groups act on ∆ transitively, hence it suffices
only to check that Stx(PU(1,1)) = S1 and Stx(Aut(∆)) = S1. The first
isomorphism is clear, because the space of unitary automorphisms fixing a
vector v is U(v⊥). The second isomorphism follows from Schwartz lemma
(prove it!).

COROLLARY: Let h be a homogeneous metric on ∆ = PU(1,1)/S1. Then
(∆, h) is conformally equivalent to (∆,flat metric).

Proof: The group Aut(∆) = PU(1,1) acts on ∆ holomorphically, that is,
preserving the conformal structure of the flat metric. However, homoge-
neous conformal structure on PU(1,1)/S1 is unique for the same reason the
homogeneous metric is unique up to a contant multiplier (prove it).
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Upper half-plane

REMARK: The map z −→ − (z −
√
−1 )−1 −

√
−1
2 induces a diffeomorphism

from the unit disc in C to the upper half-plane H2 (prove it).

PROPOSITION: The group Aut(∆) acts on the upper half-plane H2

as z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C).

Proof: The group PSL(2,R) preserves the line im z = 0, hence acts on H2 by

conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,

Lemma 2 implies that PSL(2,R) = PU(1,1).

COROLLARY: The group of conformal automorphisms of H2 acts on H2

preserving a unique, up to a constant, Riemannian metric. The Riemannian

manifold PSL(2,R)/S1 obtained this way is isometric to a hyperbolic

space.
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a

homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H2.

Then the Riemannian structure s on H2 is written as s = const dx
2+dy2

y2 .

Proof: Since the complex structure on H2 is the standard one and all Her-

mitian structures are proportional, we obtain that s = µ(dx2 + dy2), where

µ ∈ C∞(H2). It remains to find µ, using the fact that s is PSL(2,R)-

invariant.

For each a ∈ R, the parallel transport z −→ z + a fixes s, hence µ is a func-

tion of y. For any λ ∈ R>0, the homothety Hλ(z) = λz also fixes s; since

Hλ(dx2 + dy2) = λ2(dx2 + dy2), we have µ(λz) = λ−2µ(z) for any z ∈ H2. The

only function µ(x, y) which is constant in x and satisfies µ(λy) = λ−2µ(y) is

µ(x, y) = const y−2.

9



Riemann surfaces, lecture 7 M. Verbitsky

Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove

that an interval of a big circle of length 6 π is a minimising geodesic.
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Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight

lines and their images under the action of SL(2,R).

Proof. Step 1: Let a, b ∈ H2 be two points satisfying Re a = Re b, and l

the vertical line connecting these two points. Denote by Π the orthogonal

projection from H2 to the vertical line connecting a to b. For any tangent

vector v ∈ TzH2, one has |Dπ(v)| 6 |v|, and the equality means that v is

vertical (prove it). Therefore, a projection of a path γ connecting a to b

to l has length 6 L(γ), and the equality is realized only if γ is a straight

vertical interval.

Step 2: For any points a, b in the Poincaré half-plane, there exists an

isometry mapping (a, b) to a pair of points (a1, b1) such that Re(a1) =

Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré half-

plane is obtained as an isometric image of a straight vertical line:

γ = v(γ0), v ∈ Iso(H2) = PSL(2,R)
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Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and

S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is

a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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Poincaré metric on a disk

DEFINITION: Poincaré metric on the unit disk ∆ ⊂ C is an Aut(∆)-

invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let f : M −→M1 be a map of metric spaces. Then f is

called C-Lipschitz if d(x, y) > Cd(f(x), f(y)). A map is called Lipschitz if it

is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map ϕ : ∆−→∆ from a unit disk to itself is 1-

Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x ∈ ∆ the norm of the

differential, taken with respect to the Poincaré metric, satisfies |Dϕx|P 6 1.

Since the automorphism group acts on ∆ transitively, it suffices to prove

that |Dϕx| 6 1 when x = 0 and ϕ(x) = 0.

Step 2: This is Schwartz lemma.
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