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Some low-dimensional Lie group isomorphisms

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the center Z of G
(prove it).

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional real space equipped with a scalar product of signature (1,2),
SO71(1,2) a connected component of unity, and U(1,1) the group of complex
linear maps C2 —» C2 preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R), SO1(1,2) are isomorphic.

Proof: Isomorphism PU(1,1) = SO7T(1,2) will be established later. To see
PSL(2,R) = SOT1(1,2), consider the Killing form x on the Lie algebra
sl(2,R), with k(a,b) := Tr(ab). Check that it has signature (1,2). Then
the image of SL(2,R) in automorphisms of its Lie algebra is mapped
to SO(sl(2,R),x) = SOT(1,2). Both groups are 3-dimensional, hence it is an
isomorphism (“Corollary 2" in Lecture 3). =
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Mobius transforms (reminder)

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CPl holomorphially.

THEOREM: The natural map from PGL(2,C) to the group of Mobius
transforms is an isomorphism.

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation
subgroup U C PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-
cles.

THEOREM: AIll conformal automorphisms of C can be expressed by
z — az + b, where a,b are complex numbers, a = 0.
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Schwartz lemmma

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

Proof: By Cauchy formula, £(0) = 5 [ya f(z)— £, where A is a disk in C.
dz

—\/——1z|8A = Vol(0A) — the volume form on
OA. Therefore, f(0) is the average of f(z) on the circle, and it is the average
of f(z) on the disk A. Now, absolute value of the average |Av,cgqpu(x)| of a
complex-valued function p on a set S is equal to max,cg |u(s)| only if u = const
almost everywhere on S (check this). =

An elementary calculation gives

LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself
fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some o € C, |a| = 1.

Proof: Consider the function ¢ := f(zz). Since f(0) = 0O, it is holomorphic,
and since f(A) C A, on the boundary A we have |p|llgan < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)| < 1, and equality is realized
only if ¢ = const. =
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Conformal automorphisms of the disk act transitively

CLAIM: Let A C C be the unit disk. Then the group Aut(A) of its
holomorphic automorphisms acts on A transitively.

Proof. Step 1: Let Vi(z) = =% for some a € A. Then V4(0) = —a. To

1-az
prove transitivity, it remains to show that V,(A) = A.

Step 2: For |z| = 1, we have

ZzZ — az

Va(2)] = [Va(2)||z] = = 1.

_'1—a2

1 —az 1 —az
Therefore, V, preserves the circle. Maximum principle implies that V, maps

its interior to its interior.

Step 3: To prove invertibility, we interpret V, as an element of PGL(2,C). =
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Transitive action is determined by a stabilizer of a point

Lemma 2: Let M = G/H be a homogeneous space, and W : G;1 — G a
homomorphism such that G acts on M transitively and St;(G1) = Stz (G).
Then G1 = G.

Proof: Since any element in ker ¥ belongs to St (G71) = Stz (G) C G, the
homomorphism W is injective. It remais only to show that W is surjective.

Let ¢ € G. Since G71 acts on M transitively, gg1(x) = x for some g1 € G1.
Then gg1 € Stz (G1) = St (G) CimG1. Thisgives g€ G1. =
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Group of conformal automorphisms of the disk

REMARK: The group PU(1,1) Cc PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {{ € CP! | h(1,1) >
0} by holomorphic automorphisms.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and W : PU(1,1) — Aut(4A) the map constructed
above. Then W is an isomorphism.

Proof: We use Lemma 2. Both groups act on A transitively, hence it suffices
only to check that St,.(PU(1,1)) = S! and St;z(Aut(A)) = SL. The first
isomorphism is clear, because the space of unitary automorphisms fixing a
vector v is U(vl). The second isomorphism follows from Schwartz lemma
(prove it!). =

COROLLARY: Let h be a homogeneous metric on A = PU(1,1)/S!. Then
(A, h) is conformally equivalent to (A, flat metric).

Proof: The group Aut(A) = PU(1,1) acts on A holomorphically, that is,
preserving the conformal structure of the flat metric. However, homoge-
neous conformal structure on PU(1, 1)/S1 is unique for the same reason the
homogeneous metric is unique up to a contant multiplier (prove it). =
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Upper half-plane

REMARK: The map z— —(z—+/—1)"1 — —Vgl induces a diffeomorphism
from the unit disc in C to the upper half-plane H? (prove it).

PROPOSITION: The group Aut(A) acts on the upper half-plane H?

as z 2 @+t \where a,b,c,d € R, and det (a b) > 0.

cz+d’ c d

REMARK: The group of such A is naturally identified with PSL(2,R) C
PSL(2,C).

Proof: The group PSL(2,R) preserves the line imz = 0, hence acts on 2 by
conformal automorphisms. The stabilizer of a point is S! (prove it). Now,
Lemma 2 implies that PSL(2,R) = PU(1,1). =

COROLLARY: The group of conformal automorphisms of H2 acts on HZ2
preserving a unique, up to a constant, Riemannian metric. The Riemannian
manifold PSL(2,R)/S! obtained this way is isometric to a hyperbolic
space.
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a
homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (z,y) be the usual coordinates on the upper half-plane H2.

) ) 2 2
Then the Riemannian structure s on H? is written as s = const dxy%dy.

Proof: Since the complex structure on H2 is the standard one and all Her-
mitian structures are proportional, we obtain that s = u(dz? 4 dy?), where
p € C®(H?). It remains to find u, using the fact that s is PSL(2,R)-
invariant.

For each a € R, the parallel transport z — z 4 a fixes s, hence p is a func-
tion of y. For any A € R>0, the homothety Hy(z) = Az also fixes s; since
Hy (dz? 4+ dy?) = A\2(dz2 4 dy?), we have p(\z) = A"2u(z) for any z € H2. The

only function u(z,y) which is constant in = and satisfies u(\y) = A" 2u(y) is

2

u(x,y) = consty™ <. m
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Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise
smooth path connecting = to y such that its length is equal to the geodesic
distance. Geodesic is a piecewise smooth path ~ such that for any = € ~
there exists a neighbourhood of x in v which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove
that an interval of a big circle of length < 7 IS a minimising geodesic.
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Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight
lines and their images under the action of SL(2,R).

Proof. Step 1: Let a,b € H2 be two points satisfying Rea = Reb, and |
the vertical line connecting these two points. Denote by Il the orthogonal
projection from H? to the vertical line connecting a to b. For any tangent
vector v € T,H?, one has |Dn(v)| < |v|, and the equality means that v is
vertical (prove it). Therefore, a projection of a path v connecting a to b
to | has length < L(v), and the equality is realized only if v is a straight
vertical interval.

Step 2: For any points a,b in the Poincaré half-plane, there exists an
isometry mapping (a,b) to a pair of points (a1,b1) such that Re(aq) =
Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic v on a Poincaré half-
plane is obtained as an isometric image of a straight vertical line:
v =v(vg), v € Iso(H?) = PSL(2,R) m
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Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and
S; closure of its image in CP! inder the natural map z— 1 : 2. Then Sq is
a circle, and any circle in CcP!l is obtained this way.

Proof: The circle S,(p) of radius r centered in p € C is given by equation
lp— z| = r, in homogeneous coordinates it is |pz — z|2 = r|z|2. This is the zero
set of the pseudo-Hermitian form h(z, z) = |px — 2|2 — |z|?, hence it is a circle.
=

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight
lines and half-circles orthogonal to the line imz = 0 in the intersection
points.

Proof: We have shown that geodesics in the Poincaré half-plane are Mobius
transforms of straight lines orthogonal to imz = 0. However, any MOobius
transform preserves angles and maps circles or straight lines to circles or
straight lines. =
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Poincaré metric on a disk

DEFINITION: Poincaré metric on the unit disk A C C is an Aut(A)-
invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let f: M — M1 be a map of metric spaces. Then f is
called C-Lipschitz if d(z,y) > Cd(f(x), f(y)). A map is called Lipschitz if it
is C-Lipschitz for some C > O.

THEOREM: (Schwartz-Pick lemma)
Any holomorphic map ¢ . A — A from a unit disk to itself is 1-
Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each z € A the norm of the
differential, taken with respect to the Poincaré metric, satisfies |Dpz|p < 1.
Since the automorphism group acts on A transitively, it suffices to prove
that |Dy:;| <1 when z =0 and ¢(z) = 0.

Step 2: This is Schwartz lemma. =
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