Complex manifolds of dimension 1

lecture 8 1/2: Isometries of the Poincaré plane (2)

Misha Verbitsky

IMPA, sala 232

February 5, 2020

Reflections, geodesics, negative lines (reminder)

DEFINITION: A reflection on a hyperbolic plane is an involution which reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as $q(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$. Then the map $x_1, x_2, x_3 \longrightarrow x_1, x_2, -x_3$ is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a bijection between the set of geodesics and the set of reflections.

Let $V = \mathbb{R}^3$ be a vector space with quadratic form q of signature (1,2), Pos := { $v \in V \mid q(v) > 0$ }, and \mathbb{P} Pos its projectivisation. Then \mathbb{P} Pos = $SO^+(1,2)/SO(1)$ (check this), giving \mathbb{P} Pos = \mathbb{H}^2 ; this is one of the standard models of a hyperbolic plane.

REMARK: Let $l \,\subset V$ be a line, that is, a 1-dimensional subspace. The property q(x,x) < 0 for a non-zero $x \in l$ is written as q(l,l) < 0. A line l with q(l,l) < 0 is called **negative line**, a line with q(l,l) > 0 is called **positive line**.

PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.

Geodesics and the absolute (reminder)

Let $V = \mathbb{R}^3$ be a vector space with quadratic form q of signature (1,2), Pos := { $v \in V \mid q(v) > 0$ }, and \mathbb{P} Pos its projectivisation. Then \mathbb{P} Pos = $SO^+(1,2)/SO(1)$, giving \mathbb{P} Pos = \mathbb{H}^2 .

DEFINITION: A line $l \in V$ is **isotropic** if q(l, l) = 0. **Absolute** of a hyperbolic plane \mathbb{P} Pos = \mathbb{H}^2 is the set of all isotropic lines,

Abs := $\{l \in \mathbb{P}V \mid q(l, l) = 0\}.$

It is identified with the boundary of the disk $\mathbb{P} \operatorname{Pos} \subset \mathbb{P} V = \mathbb{R} P^2$.

CLAIM: Let $l \in \mathbb{P}V$ be a negative line, and $\gamma := \mathbb{P}l^{\perp} \cap \mathbb{P}$ Pos the corresponding geodesic. Then l^{\perp} intersects the absolute in precisely 2 points, called the boundary points of γ , or ends of γ . Conversely, every geodesic is uniquely determined by the two distinct points in the absolute.

Proof: The plane l^{\perp} has signature (1,1), and the set q(v) = 0 is a union of two isotropic lines in l^{\perp} . Each of these lines lies on the boundary of the set $\mathbb{P}l^{\perp} \cap \mathbb{P}$ Pos. Conversely, suppose that $\mu, \rho \in Abs$ are two distinct lines. The corresponding 2-dimensional plane W has signature (1,1), because it has precisely two isotropic lines (if it has more than two, $q|_W = 0$, which is impossible – prove it!). As shown above, $\mathbb{P}W \cap \mathbb{P}$ Pos is a geodesic.

Isomorphism between SO(1,2) and $PSL(2,\mathbb{R})$ (reminder)

CLAIM: $PSL(2,\mathbb{R}) \cong SO^+(1,2)$

Proof: Consider the Killing form κ on the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$, $a, b \to \mathsf{Tr}(ab)$. **Check that it has signature** (1,2). Then the image of $SL(2,\mathbb{R})$ in automorphisms of its Lie algebra is mapped to $SO(\mathfrak{sl}(2,\mathbb{R}),\kappa) = SO^+(1,2)$. Both groups are 3-dimensional, hence it is an isomorphism ("Corollary 2" in Lecture 3).

PROPOSITION: Let V be a 2-dimensional vector space. Then $\mathfrak{sl}(V)$ is isomorphic to $\operatorname{Sym}^2(V)$ (the space of symmetric 2-tensors), and this isomorphism is compatible with the SL(V)-action.

Corollary 1: Let $A \in SL(2,\mathbb{R})$ be a matrix with eigenvalues α, α^{-1} , and $B \in SO(1,2)$ the endomorphism associated with A through $PSL(2,\mathbb{R}) \cong SO^+(1,2)$. Then B has eigenvalues $\alpha^2, 1, \alpha^{-2}$.

Classification of isometries of a hyperbolic plane (part 1)

THEOREM: Let $A \in SL(2,\mathbb{R})$, and $\alpha \in SO^+(1,2)$ the corresponding isometry of a hyperbolic plane. Denote by q the quadratic form of signature (1,2) on R^3 . Assume that $\alpha \neq Id$, that is, $A \neq \pm 1$. Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x,x) > 0. In this case α is called "elliptic isometry". The matrix A satisfies $|\operatorname{Tr} A| < 2$; it is conjugate to a rotation of a disk around 0.

(ii) α has an eigenvector x with q(x,x) < 0. In that case α is called "hyperbolic isometry". The matrix A satisfies $|\operatorname{Tr} A| > 2$; it is conjugate to a matrix $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$, with $t \neq \pm 1$.

(iii) α has a unique eigenvector x with q(x,x) = 0. In that case α is called "parabolic isometry". The matrix A satisfies $|\operatorname{Tr} A| = 2$, and is conjugate to $\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$.

Iometries of a hyperbolic plane (elliptic case)

THEOREM: Let $A \in SL(2,\mathbb{R})$, and $\alpha \in SO^+(1,2)$ the corresponding isometry of a hyperbolic plane. Denote by q the quadratic form of signature (1,2) on R^3 . Assume that $\alpha \neq Id$, that is, $A \neq \pm 1$. Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x,x) > 0. In this case α is called "elliptic isometry". The matrix A satisfies $|\operatorname{Tr} A| < 2$; it is conjugate to a rotation of a disk around 0. [...]

Isometries with a positive eigenvector. Let $u, v = u^{-1}$ be eigenvalues of A, and $u^2, v^2, 1$ eigenvalues of α (Corollary 1). The map α has a real eigenvector x. If q(x,x) > 0, α is an elliptic isometry. Then $\alpha(x) = x$ because $q(x,x) = q(\alpha(x), \alpha(x)) > 0$. The map α acts as rotation on x^{\perp} , which is 2-plane with negative definite scalar product. All subgroups $S^1 \subset SL(2,\mathbb{R})$ are conjugate to rotation (Lecture 7), hence $A = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$ and $|\operatorname{Tr} A| = 2|\cos t| < 2$. In this case $u = \overline{v} \in U(1)$.

Isometries of a hyperbolic plane (hyperbolic case)

Step 2: hyperbolic isometries.

If q(x,x) < 0, α is a hyperbolic isometry. In this case, α acts by isometry on a plane x^{\perp} which has signature (1,1). The set Pos of vectors $z \in \mathbb{R}^3$ with positive square is $\{(a,b,c) \mid a^2 - b^2 - c^2 > 0\}$. Since $a \neq 0$, this set is disconnected. Since $\alpha \in SO^+(1,2)$, it preserves the connected components of Pos. Let $Q := \{v \in x^{\perp} \mid q(v,v) = 0\}$ be the corresponding homogeneous quadric in x^{\perp} . Clearly, Q is a union of two lines. Since α preserves connected components of Pos, it acts on Q preserving the lines and the orientation.

Let ρ, μ be non-collinear vectors generating these lines. The action of α on $\langle \rho, \mu \rangle$ is written by a matrix $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$, with $t \in \mathbb{R}^{>0} \setminus \{1\}$. Then α is diagonalizable with eigenvalues $1, t, t^{-1}$, and A has eigenvalues $\pm \sqrt{t}, \pm \sqrt{t^{-1}}$.

REMARK: A hyperbolic isometry α fixes a unique geodesic with boundary in $\rho, \mu \in Abs$. Indeed, α fixes two and only two points on Abs, and every geodesic is determined uniquely by two points on Abs.

Isometries of a hyperbolic plane (parabolic case)

Parabolic case: (iii) α has a unique eigenvector x with q(x,x) = 0. In that case α is called "parabolic isometry". The matrix A satisfies $|\operatorname{Tr} A| = 2$, and is conjugate to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Proof: This occurs when α has no fixed points on $\mathbb{P}V \setminus Abs$. In his case, α cannot fix two points $\rho, \mu \in Abs$, because if it does, it fixes a 2-dimensional space $W = \langle \rho, \mu \rangle$, and then it fixes the line W^{\perp} which is negative. This means that α has a unique fixed point on $\mathbb{P}V$, which lies in Abs. This implies that α has only one eigenvalue, which is equal to 1, and its Jordan normal form is

$$\alpha = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then A is not diagonalizable, which implies that its Jordan normal form is $A = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$.

REMARK: All such matrices are conjugate, hence a parabolic isometry is conjugate to the isometry of Poincaré plane given by $z \rightarrow z + \lambda$, $\lambda \in \mathbb{R}$.

Polygons in a hyperbolic plane

DEFINITION: Geodesic bisects a hyperbolic or euclidean plane onto two connected components, called **half-planes**. A **convex polygon** is an intersection of a (generally, finite) collection of half-planes. **A polygon** is a (generally, finite) union of convex polygons.

DEFINITION: Edge of a polygon is a connected interval of a geodesic obtained by intersection of the boundary ∂P of a polygon and a geodesic. A vertex of a polygon is an end of its edge, either in \mathbb{H}^2 or in Abs.

EXERCISE: Prove that a convex polygon is uniquely determined by its vertices.

EXERCISE: Let $P \subset \mathbb{H}^2$ be a convex polygon such that its closure in $\mathbb{H}^2 \cup Abs$ has only finitely many points on Abs. Suppose that P has n vertices and $\alpha_1, ..., \alpha_k$ are interior angles for all vertices of P in \mathbb{H}^2 . Prove that **there** exists a constant C > 0 such that $Vol(P) = (n-2)\pi - \sum \alpha_i$.

Definition of a volume

DEFINITION: Consider a function Φ from the set of all polygons on \mathbb{H}^2 to non-negative numbers. Assume that Φ is continuous as a function of vertices of a polygon and invariant under isometries. Assume that for any union $W = V_1 \cap V_2$ with V_1 intersecting V_2 only in the boundary, one has $\Phi(W) = \Phi(V_1) + \Phi(V_2)$ (the function is additive). Then Φ is called a volume.

EXERCISE: Prove that **the volume is unique**, up to a constant multiplier.

EXERCISE: Prove the additivity of the function $Vol(P) := (n-2)\pi - \sum \alpha_i$ defined above.

Ideal triangles

DEFINITION: An ideal triangle on a hyperbolic plane is a triangle with ver-

tices on Abs.

EXERCISE: Let $A \subset \mathbb{H}$ be an angle formed by intersection of two halh-planes. **Prove that** A contains infinitely many ideal triangles.

COROLLARY: Let *P* be a polygon which has finite volume. Then $\partial P \cap Abs$ is finite.

EXERCISE: Prove it. ■

Voronoi partitions

DEFINITION: Let M be a metric space, and $S \subset M$ a finite subset. Voronoi cell associated with $x_i \in S$ is $\{z \in M \mid (z, x_i) \leq d(z, x_i) \forall j \neq i\}$. Voronoi partition is partition of M onto its Voronoi cells.

Voronoi partition

Fundamental domains and polygons

DEFINITION: Let Γ be a discrete group acting on a manifold M, and $U \subset M$ an open subset with piecewise smooth boundary. Assume that for any nontrivial $\gamma \in \Gamma$ one has $U \cap \gamma(U) = \emptyset$ and $\Gamma \cdot \overline{U} = M$, where \overline{U} is closure of U. Then \overline{U} is called a fundamental domain of the action of Γ .

THEOREM: Let Γ be a discrete group acting on a hyperbolic plane \mathbb{H}^2 by isometries. Then Γ has a polyhedral fundamental domain P with (possibly) finitely many vertices. If, moreover, \mathbb{H}^2/Γ has finite volume, ∂P has at most finitely many points on Abs.

Proof: Clearly, $Vol(P) = Vol(\mathbb{H}^2/\Gamma)$. This takes care of the last assertion, because polygons with infinitely many points on Abs have infinite volume

To obtain P, take a point $s \in \mathbb{H}$, and let P be the Voronoi cell associated with the set $\Gamma \cdot s$.

EXERCISE: Prove that in fact *P* has finitely many vertices when $Vol(\mathbb{H}^2/\Gamma)$ is finite.

Semi-regular tilings

DEFINITION: A tiling of \mathbb{H}^2 is a partition of \mathbb{H}^2 onto polygons with finite volume. A tiling is **regular** if the group Γ of isometries preserving tilings acts transitively on vertices, edges and faces of the partition. A tiling *T* is **semi-regular** if Γ acts on the set of faces of *T* with finitely many orbits.

REMARK: Tilings is good a way to produce hyperbolic manifolds and Riemannian surfaces from a hyperbolic plane. Indeed, for any semi-regular tiling, T, the quotient space \mathbb{H}^2/Γ has finite volume. Moreover, \mathbb{H}^2/Γ is compact if all polygons in T have no vertices in Abs.

Regular tiling of \mathbb{H}^2 by right-angle pentagons

Semi-regular tiling of \mathbb{H}^2

Semi-regular tiling of \mathbb{H}^2 by octagons and triangles

Riemann surfaces, lecture 8 1/2

M. Verbitsky

Cocompact subgroups of $PSL(2,\mathbb{R})$ without torsion

DEFINITION: A discrete subgroup $\Gamma \subset PSL(2,\mathbb{R})$ is **cocompact** if \mathbb{H}^2/Γ is compact.

THEOREM: (a part of Poincaré uniformization theorem) Let *S* be a compact Riemannian surface of genus > 1. Then $S = \mathbb{H}^2/\Gamma$ for $\Gamma \subset PSL(2,\mathbb{R})$ freely acting on \mathbb{H}^2 .

Proof will be given later in these lectures, if time permits.

THEOREM: Let $\Gamma \subset PSL(2,\mathbb{R})$ be a discrete group. The action of Γ on \mathbb{H}^2 is free if and only if it does not contain elliptic elements. If, moreover, Γ is cocompact, all its non-trivial elements are hyperbolic.

Proof: The first assertion is clear, because elliptic elements have fixed points on \mathbb{H}^2 , hyperbolic and parabolic act without fixed points.

To prove the second, let $\gamma \in \Gamma = \pi_1(S)$. Then corresponding class in $\pi_1(S)$ can be represented by a closed geodesic $s \subset S$ (prove it). Let $\tilde{s} \subset \mathbb{H}^2$ be its preimage. Since \tilde{s} contains x and $\gamma(x)$, the action of γ preserves the geodesic \tilde{s} , hence γ is hyperbolic.

Hyperbolic isometry

Hyperbolic isometry

Hyperbolic isometry

