
Riemann surfaces, lecture 8 1/2 M. Verbitsky

Complex manifolds of dimension 1
lecture 8 1/2: Isometries of the Poincaré plane (2)
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Reflections, geodesics, negative lines (reminder)

DEFINITION: A reflection on a hyperbolic plane is an involution which
reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as q(x1, x2, x3) = x2
1−x

2
2−x

2
3.

Then the map x1, x2, x3 −→ x1, x2,−x3 is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a
bijection between the set of geodesics and the set of reflections.

Let V = R3 be a vector space with quadratic form q of signature (1,2),
Pos := {v ∈ V | q(v) > 0}, and PPos its projectivisation. Then PPos =
SO+(1,2)/SO(1) (check this), giving PPos = H2; this is one of the stan-
dard models of a hyperbolic plane.

REMARK: Let l ⊂ V be a line, that is, a 1-dimensional subspace. The
property q(x, x) < 0 for a non-zero x ∈ l is written as q(l, l) < 0. A line l with
q(l, l) < 0 is called negative line, a line with q(l, l) > 0 is called positive line.

PROPOSITION: Reflections on PPos are in bijective correspondence
with negative lines l ⊂ V .
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Geodesics and the absolute (reminder)

Let V = R3 be a vector space with quadratic form q of signature (1,2),
Pos := {v ∈ V | q(v) > 0}, and PPos its projectivisation. Then PPos =
SO+(1,2)/SO(1), giving PPos = H2.

DEFINITION: A line l ∈ V is isotropic if q(l, l) = 0. Absolute of a hyper-
bolic plane PPos = H2 is the set of all isotropic lines,

Abs := {l ∈ PV | q(l, l) = 0}.
It is identified with the boundary of the disk PPos ⊂ PV = RP2}.

CLAIM: Let l ∈ PV be a negative line, and γ := Pl⊥∩PPos the corresponding
geodesic. Then l⊥ intersects the absolute in precisely 2 points, called
the boundary points of γ, or ends of γ. Conversely, every geodesic is
uniquely determined by the two distinct points in the absolute.

Proof: The plane l⊥ has signature (1,1), and the set q(v) = 0 is a union
of two isotropic lines in l⊥. Each of these lines lies on the boundary of the
set Pl⊥ ∩ PPos. Conversely, suppose that µ, ρ ∈ Abs are two distinct lines.
The corresponding 2-dimensional plane W has signature (1,1), because it has
precisely two isotropic lines (if it has more than two, q|W = 0, which is
impossible - prove it!). As shown above, PW ∩ PPos is a geodesic.
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Isomorphism between SO(1,2) and PSL(2,R) (reminder)

CLAIM: PSL(2,R) ∼= SO+(1,2)

Proof: Consider the Killing form κ on the Lie algebra sl(2,R), a, b−→ Tr(ab).

Check that it has signature (1,2). Then the image of SL(2,R) in au-

tomorphisms of its Lie algebra is mapped to SO(sl(2,R), κ) = SO+(1,2).

Both groups are 3-dimensional, hence it is an isomorphism (“Corollary 2” in

Lecture 3).

PROPOSITION: Let V be a 2-dimensional vector space. Then sl(V ) is

isomorphic to Sym2(V ) (the space of symmetric 2-tensors), and this iso-

morphism is compatible with the SL(V )-action.

Corollary 1: Let A ∈ SL(2,R) be a matrix with eigenvalues α, α−1, and

B ∈ SO(1,2) the endomorphism associated with A through PSL(2,R) ∼=
SO+(1,2). Then B has eigenvalues α2,1, α−2.
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Classification of isometries of a hyperbolic plane (part 1)

THEOREM: Let A ∈ SL(2,R), and α ∈ SO+(1,2) the corresponding isome-

try of a hyperbolic plane. Denote by q the quadratic form of signature (1,2)

on R3. Assume that α 6= Id, that is, A 6= ±1. Then one and only one of these

three cases occurs

(i) α has an eigenvector x with q(x, x) > 0. In this case α is called

“elliptic isometry”. The matrix A satisfies |TrA| < 2; it is conjugate to a

rotation of a disk around 0.

(ii) α has an eigenvector x with q(x, x) < 0. In that case α is called

“hyperbolic isometry”. The matrix A satisfies |TrA| > 2; it is conjugate to

a matrix

(
t 0
0 t−1

)
, with t 6= ±1.

(iii) α has a unique eigenvector x with q(x, x) = 0. In that case α is called

“parabolic isometry”. The matrix A satisfies |TrA| = 2, and is conjugate

to

(
1 λ
0 1

)
.
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Iometries of a hyperbolic plane (elliptic case)

THEOREM: Let A ∈ SL(2,R), and α ∈ SO+(1,2) the corresponding isome-

try of a hyperbolic plane. Denote by q the quadratic form of signature (1,2)

on R3. Assume that α 6= Id, that is, A 6= ±1. Then one and only one of these

three cases occurs

(i) α has an eigenvector x with q(x, x) > 0. In this case α is called

“elliptic isometry”. The matrix A satisfies |TrA| < 2; it is conjugate to a

rotation of a disk around 0. [...]

Isometries with a positive eigenvector. Let u, v = u−1 be eigenvalues of A,

and u2, v2,1 eigenvalues of α (Corollary 1). The map α has a real eigenvector

x. If q(x, x) > 0, α is an elliptic isometry. Then α(x) = x because q(x, x) =

q(α(x), α(x)) > 0. The map α acts as rotation on x⊥, which is 2-plane with

negative definite scalar product. All subgroups S1 ⊂ SL(2,R) are conjugate

to rotation (Lecture 7), hence A =

(
cos t sin t
− sin t cos t

)
and |TrA| = 2| cos t| < 2.

In this case u = v ∈ U(1).
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Isometries of a hyperbolic plane (hyperbolic case)

Step 2: hyperbolic isometries.
If q(x, x) < 0, α is a hyperbolic isometry. In this case, α acts by isometry on
a plane x⊥ which has signature (1,1). The set Pos of vectors z ∈ R3 with
positive square is {(a, b, c) | a2− b2− c2 > 0}. Since a 6= 0, this set is discon-
nected. Since α ∈ SO+(1,2), it preserves the connected components of Pos.
Let Q := {v ∈ x⊥ | q(v, v) = 0} be the corresponding homogeneous quadric in
x⊥. Clearly, Q is a union of two lines. Since α preserves connected com-
ponents of Pos, it acts on Q preserving the lines and the orientation.

x

y

Quadric x^2−y^2=0

Let ρ, µ be non-collinear vectors generating these lines. The action of α on

〈ρ, µ〉 is written by a matrix

(
t 0
0 t−1

)
, with t ∈ R>0\{1}. Then α is diagonal-

izable with eigenvalues 1, t, t−1, and A has eigenvalues ±
√
t,±
√
t−1.

REMARK: A hyperbolic isometry α fixes a unique geodesic with bound-
ary in ρ, µ ∈ Abs. Indeed, α fixes two and only two points on Abs, and every
geodesic is determined uniquely by two points on Abs.
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Isometries of a hyperbolic plane (parabolic case)

Parabolic case: (iii) α has a unique eigenvector x with q(x, x) = 0. In that
case α is called “parabolic isometry”. The matrix A satisfies |TrA| = 2,

and is conjugate to

(
1 1
0 1

)
.

Proof: This occurs when α has no fixed points on PV \Abs. In his case, α
cannot fix two points ρ, µ ∈ Abs, because if it does, it fixes a 2-dimensional
space W = 〈ρ, µ〉, and then it fixes the line W⊥ which is negative. This means
that α has a unique fixed point on PV , which lies in Abs. This implies
that α has only one eigenvalue, which is equal to 1, and its Jordan normal
form is

α =

1 1 0
0 1 1
0 0 1

 .
Then A is not diagonalizable, which implies that its Jordan normal form is

A =

(
1 λ
0 1

)
.

REMARK: All such matrices are conjugate, hence a parabolic isometry is

conjugate to the isometry of Poincaré plane given by z −→ z + λ, λ ∈ R.
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Polygons in a hyperbolic plane

DEFINITION: Geodesic bisects a hyperbolic or euclidean plane onto two

connected components, called half-planes. A convex polygon is an in-

tersection of a (generally, finite) collection of half-planes. A polygon is a

(generally, finite) union of convex polygons.

DEFINITION: Edge of a polygon is a connected interval of a geodesic

obtained by intersection of the boundary ∂P of a polygon and a geodesic. A

vertex of a polygon is an end of its edge, either in H2 or in Abs.

EXERCISE: Prove that a convex polygon is uniquely determined by its

vertices.

EXERCISE: Let P ⊂ H2 be a convex polygon such that its closure in H2∪Abs

has only finitely many points on Abs. Suppose that P has n vertices and

α1, ..., αk are interior angles for all vertices of P in H2. Prove that there

exists a constant C > 0 such that Vol(P ) = (n− 2)π −
∑
αi.
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Definition of a volume

DEFINITION: Consider a function Φ from the set of all polygons on H2

to non-negative numbers. Assume that Φ is continuous as a function of

vertices of a polygon and invariant under isometries. Assume that for any

union W = V1 ∩ V2 with V1 intersecting V2 only in the boundary, one has

Φ(W ) = Φ(V1) + Φ(V2) (the function is additive). Then Φ is called a

volume.

EXERCISE: Prove that the volume is unique, up to a constant multiplier.

EXERCISE: Prove the additivity of the function Vol(P ) := (n−2)π−
∑
αi

defined above.
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Ideal triangles

DEFINITION: An ideal triangle on a hyperbolic plane is a triangle with ver-

tices on Abs.
EXERCISE: Let A ⊂ H be an angle formed by intersection of two halh-planes.
Prove that A contains infinitely many ideal triangles.

COROLLARY: Let P be a polygon which has finite volume. Then ∂P ∩Abs
is finite.
EXERCISE: Prove it.
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Voronoi partitions

DEFINITION: Let M be a metric space, and S ⊂M a finite subset. Voronoi

cell associated with xi ∈ S is {z ∈ M | (.z, xi) 6 d(z, xi)∀j 6= i}. Voronoi

partition is partition of M onto its Voronoi cells.

Voronoi partition
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Fundamental domains and polygons

DEFINITION: Let Γ be a discrete group acting on a manifold M , and U ⊂M
an open subset with piecewise smooth boundary. Assume that for any non-

trivial γ ∈ Γ one has U ∩ γ(U) = ∅ and Γ · U = M , where U is closure of U .

Then U is called a fundamental domain of the action of Γ.

THEOREM: Let Γ be a discrete group acting on a hyperbolic plane H2

by isometries. Then Γ has a polyhedral fundamental domain P with

(possibly) finitely many vertices. If, moreover, H2/Γ has finite volume, ∂P

has at most finitely many points on Abs.

Proof: Clearly, Vol(P ) = Vol(H2/Γ). This takes care of the last assertion,

because polygons with infinitely many points on Abs have infinite volume

To obtain P , take a point s ∈ H, and let P be the Voronoi cell associated

with the set Γ · s.

EXERCISE: Prove that in fact P has finitely many vertices when Vol(H2/Γ)

is finite.
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Semi-regular tilings

DEFINITION: A tiling of H2 is a partition of H2 onto polygons with finite

volume. A tiling is regular if the group Γ of isometries preserving tilings

acts transitively on vertices, edges and faces of the partition. A tiling T is

semi-regular if Γ acts on the set of faces of T with finitely many orbits.

REMARK: Tilings is good a way to produce hyperbolic manifolds and Rie-

mannian surfaces from a hyperbolic plane. Indeed, for any semi-regular tiling,

T , the quotient space H2/Γ has finite volume. Moreover, H2/Γ is compact

if all polygons in T have no vertices in Abs.
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Regular tiling of H2 by right-angle pentagons

Regular tiling of H2 by right-angle pentagons
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Semi-regular tiling of H2

Semi-regular tiling of H2 by octagons and triangles
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Cocompact subgroups of PSL(2,R) without torsion

DEFINITION: A discrete subgroup Γ ⊂ PSL(2,R) is cocompact if H2/Γ is
compact.

THEOREM: (a part of Poincaré uniformization theorem)
Let S be a compact Riemannian surface of genus > 1. Then S = H2/Γ for
Γ ⊂ PSL(2,R) freely acting on H2.

Proof will be given later in these lectures, if time permits.

THEOREM: Let Γ ⊂ PSL(2,R) be a discrete group. The action of Γ on H2

is free if and only if it does not contain elliptic elements. If, moreover,
Γ is cocompact, all its non-trivial elements are hyperbolic.

Proof: The first assertion is clear, because elliptic elements have fixed
points on H2, hyperbolic and parabolic act without fixed points.

To prove the second, let γ ∈ Γ = π1(S). Then corresponding class in π1(S)
can be represented by a closed geodesic s ⊂ S (prove it). Let s̃ ⊂ H2 be
its preimage. Since s̃ contains x and γ(x), the action of γ preserves the
geodesic s̃, hence γ is hyperbolic.
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Elliptic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry

42



Riemann surfaces, lecture 8 1/2 M. Verbitsky

Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Parabolic isometry

49



Riemann surfaces, lecture 8 1/2 M. Verbitsky

Parabolic isometry
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Parabolic isometry
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Parabolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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Hyperbolic isometry
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