Complex manifolds of dimension 1

lecture 8: Geodesics on the Poincaré plane

Misha Verbitsky

IMPA, sala 232

February 3, 2020

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Riemannian manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: $\mathbb{H}^n := SO(1, n)/SO(n)$, equipped with the natural SO(1, n)-action. This space is also called **hyperbolic space**, and in dimension 2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by the following lemma, proven in Lecture 3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits a unique (up to a constant multiplier) G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds equipped with a *G*-invariant Riemannian form.

2

M. Verbitsky

Upper half-plane as a Riemannian manifold (reminder)

THEOREM: Let G be a group of orientation-preserving conformal (that is, holomorphic) automorphisms of the upper halfplane \mathbb{H}^2 . Then $G = PSL(2, \mathbb{R})$ and the stabilizer of a point is S^1 .

REMARK: $PSL(2,\mathbb{R}) = SO(1,2)$

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a *G*-invariant metric.

REMARK: This metric is unique up to a constant multiplier, and $\mathbb{H}^2 = PSL(2,\mathbb{R})/S^1$ is a hyperbolic space.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane \mathbb{H}^2 . **Then the Riemannian structure** s on \mathbb{H}^2 is written as $s = const \frac{dx^2 + dy^2}{y^2}$.

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise smooth path connecting x to y such that its length is equal to the geodesic distance. Geodesic is a piecewise smooth path γ such that for any $x \in \gamma$ there exists a neighbourhood of x in γ which is a minimising geodesic.

THEOREM: Geodesics on a Poincaré half-plane are vertical half-lines and their images under the action of $PSL(2,\mathbb{R})$.

Geodesics in Poincaré half-plane (reminder)

CLAIM: Let S be a circle or a straight line on a complex plane $\mathbb{C} = \mathbb{R}^2$, and S_1 closure of its image in $\mathbb{C}P^1$ inder the natural map $z \longrightarrow 1 : z$. Then S_1 is a circle, and any circle in $\mathbb{C}P^1$ is obtained this way.

Proof: The circle $S_r(p)$ of radius r centered in $p \in \mathbb{C}$ is given by equation |p-z| = r, in homogeneous coordinates it is $|px-z|^2 = r|x|^2$. This is the zero set of the pseudo-Hermitian form $h(x,z) = |px-z|^2 - |x|^2$, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight lines and half-circles orthogonal to the line im z = 0 in the intersection points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius transforms of straight lines orthogonal to im z = 0. However, any Möbius transform preserves angles and maps circles or straight lines to circles or straight lines.

M. C. Escher, Circle Limit IV

Crochet coral (Great Barrier Reef, Australia)

Reflections and geodesics

DEFINITION: A reflection on a hyperbolic plane is an involution which reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as $q(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$. Then the map $x_1, x_2, x_3 \longrightarrow x_1, x_2, -x_3$ is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a bijection between the set of geodesics and the set of reflections.

Proof: Let $x, y \in F$ be two distinct points on a fixed set of a reflection τ . Since the geodesic connecting x and y is unique, it is τ -invariant. Therefore, it is contained in F. It remains to show that any geodesic on \mathbb{H} is a fixed point set of some reflection.

Let γ be a vertical line x = 0 on the upper half-plane $\{(x,y) \in \mathbb{R}^2, y > 0\}$ with the metric $\frac{dx^2 + dy^2}{y^2}$. Clearly, γ is a fixed point set of a reflection $(x,y) \longrightarrow (-x,y)$. Since every geodesic is conjugate to γ , every geodesic is a fixed point set of a reflection.

Geodesics on hyperbolic plane

Let $V = \mathbb{R}^3$ be a vector space with quadratic form q of signature (1,2), Pos := { $v \in V \mid q(v) > 0$ }, and \mathbb{P} Pos its projectivisation. Then \mathbb{P} Pos = $SO^+(1,2)/SO(1)$ (check this), giving \mathbb{P} Pos = \mathbb{H}^2 ; this is one of the standard models of a hyperbolic plane.

REMARK: Let $l \subset V$ be a line, that is, a 1-dimensional subspace. The property q(x,x) < 0 for a non-zero $x \in l$ is written as q(l,l) < 0. A line l with q(l,l) < 0 is called **negative line**, a line with q(l,l) > 0 is called **positive line**.

PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.

(see the proof on the next slide)

REMARK: Using the equivalence between reflections and geodesics established above, this proposition can be reformulated by saying that **geodesics** on \mathbb{P} Pos are the same as negative lines $l \in \mathbb{P}V$.

Geodesics on hyperbolic plane (2)

PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.

Proof. Step 1: Consider an isometry τ of V which fixes x and acts as $v \longrightarrow -v$ on its orthogonal complement v^{\perp} . Since v^{\perp} has signature (1,1), the set $\mathbb{P} \operatorname{Pos} \cap \mathbb{P} v^{\perp}$ is 1-dimensional and fixed by τ . We proved that τ fixes a codimension 1 submanifold in $\mathbb{P} \operatorname{Pos} = \mathbb{H}^2$, hence τ is a reflection.

It remains to show that any reflection is obtained this way.

Step 2: Since geodesics are fixed point sets of reflections, and all geodesics are conjugate by isometries, **all reflections are also conjugated by isometries.** Therefore, it suffices to prove that the reflection $x_1, x_2, x_3 \rightarrow x_1, x_2, -x_3$ is obtained from a negative line l. Let $l = (0, 0, \lambda)$. Then $\tau(x_1, x_2, x_3) = -x_1, -x_2, x_3$, and on $\mathbb{P}V$ this operation acts as $x_1, x_2, x_3 \rightarrow x_1, x_2, -x_3$.

REMARK: This also implies that all geodesics in \mathbb{P} Pos are obtained as intersections \mathbb{P} Pos $\cap \mathbb{P}W$, where $W \subset V$ is a subspace of signature (1,1).

Geodesics and the absolute

Let $V = \mathbb{R}^3$ be a vector space with quadratic form q of signature (1,2), Pos := { $v \in V \mid q(v) > 0$ }, and \mathbb{P} Pos its projectivisation. Then \mathbb{P} Pos = $SO^+(1,2)/SO(1)$, giving \mathbb{P} Pos = \mathbb{H}^2 .

DEFINITION: A line $l \in V$ is **isotropic** if q(l, l) = 0. **Absolute** of a hyperbolic plane \mathbb{P} Pos = \mathbb{H}^2 is the set of all isotropic lines,

Abs := $\{l \in \mathbb{P}V \mid q(l, l) = 0\}.$

It is identified with the boundary of the disk $\mathbb{P} \operatorname{Pos} \subset \mathbb{P} V = \mathbb{R} P^2$.

CLAIM: Let $l \in \mathbb{P}V$ be a negative line, and $\gamma := \mathbb{P}l^{\perp} \cap \mathbb{P}$ Pos the corresponding geodesic. Then l^{\perp} intersects the absolute in precisely 2 points, called the boundary points of γ , or ends of γ . Conversely, every geodesic is uniquely determined by the two distinct points in the absolute.

Proof: The plane l^{\perp} has signature (1,1), and the set q(v) = 0 is a union of two isotropic lines in l^{\perp} . Each of these lines lies on the boundary of the set $\mathbb{P}l^{\perp} \cap \mathbb{P}$ Pos. Conversely, suppose that $\mu, \rho \in Abs$ are two distinct lines. The corresponding 2-dimensional plane W has signature (1,1), because it has precisely two isotropic lines (if it has more than two, $q|_W = 0$, which is impossible – prove it!). As shown above, $\mathbb{P}W \cap \mathbb{P}$ Pos is a geodesic.

Classification of isometries of a Euclidean plane

THEOREM: Let α be a non-trivial isometry of \mathbb{R}^2 with Euclidean metric preserving the orientation. Then α is either a parallel translation or a rotation with certain center on \mathbb{R}^2 .

Proof. Step 1: If α fixes a point $a \in \mathbb{R}^2$, then it is clearly a rotation. However, the group A of parallel translations acts transitively on \mathbb{R}^2 , hence there exists $a \in A$ such that $a\alpha$ fixes a point on \mathbb{R}^2 . Then $r := a\alpha$ is a rotation, and $\alpha = a^{-1}r$ is a composition of a parallel translation and rotation.

Step 2: It remains to show that a composition of a rotation a with center in A and angle α and a parallel transport R along a vector $\vec{v} \in \mathbb{R}^2$ has a fixed point. Consider a triangle ABC with $BC = \vec{v}$, |AB| = |AC| and angle $\angle (BAC) = \alpha$. Clearly, aR maps C to itself.

Isomorphism between SO(1,2) and $PSL(2,\mathbb{R})$

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a 3-dimensional real space equipped with a scalar product of signature (1,2), $SO^+(1,2)$ a connected component of unity, and U(1,1) the group of complex linear maps $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ preserving a pseudio-Hermitian form of signature (1,1).

CLAIM: $PSL(2,\mathbb{R}) \cong SO^+(1,2)$

Proof: Consider the Killing form κ on the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$, $a, b \to \operatorname{Tr}(ab)$. **Check that it has signature** (1,2). Then the image of $SL(2,\mathbb{R})$ in automorphisms of its Lie algebra is mapped to $SO(\mathfrak{sl}(2,\mathbb{R}),\kappa) = SO^+(1,2)$. Both groups are 3-dimensional, hence it is an isomorphism ("Corollary 2" in Lecture 3).

The isomorphism $\mathfrak{sl}(V) = Sym^2(V)$

REMARK: For any finite-dimensional vector space, one has $V \otimes V^* = \text{End } V$ (prove it).

PROPOSITION: Let V be a 2-dimensional vector space. Then $\mathfrak{sl}(V)$ is isomorphic to $\operatorname{Sym}^2(V)$ (the space of symmetric 2-tensors), and this isomorphism is compatible with the SL(V)-action.

Proof: Fix a non-degenerate 2-form ω on V. Since ω is $SL(2,\mathbb{R})$ -invariant, we can use ω to construct the isomorphism $\mathfrak{sl}(V) = Sym^2(V)$.

The first way to see the isomorphism $\mathfrak{sl}(V) = \operatorname{Sym}^2(V)$: Now, $V \otimes V^* =$ End V and $V \otimes V = \operatorname{Sym}^2(V) \oplus \Lambda^2(V)$. Using the form ω to produce an isomorphism $V = V^*$, we find that the decomposition

End
$$V = V \otimes V^* = \langle \mathrm{Id}_V \rangle \oplus \mathfrak{sl}(V)$$

is identical to

End
$$V = V \otimes V = \langle \omega \rangle \oplus \operatorname{Sym}^2(V)$$
.

The isomorphism $\mathfrak{sl}(V) = \operatorname{Sym}^2(V)$ (2)

The second way to see the isomorphism $\mathfrak{sl}(V) = \operatorname{Sym}^2(V)$: Now, $A \in \mathfrak{sl}(V)$ if and only if $\omega(A(x), y) = -\omega(x, A(y))$. Indeed, $A \in \mathfrak{sl}(V)$ if and only if $e^A \in SL(V)$, and this gives $\omega(e^{tA}(x), e^{tA}y) = \omega(x, y)$. Taking derivative in t, we obtain $\omega(A(x), y) = -\omega(x, A(y))$. However, $\omega(A(x), y) = \omega(A(y), x)$, hence $A \in \mathfrak{sl}(V)$ if and only if $\omega(A(x), y)$ is a symmetric 2-form.

Corollary 1: Let $A \in SL(2,\mathbb{R})$ be a matrix with eigenvalues α, α^{-1} , and $B \in SO(1,2)$ the endomorphism associated with A through $PSL(2,\mathbb{R}) \cong SO^+(1,2)$. Then B has eigenvalues $\alpha^2, 1, \alpha^{-2}$.

Proof: Let x, y be a basis in V. Then $x^2 = x \otimes x, xy = x \otimes y, y^2 = y \otimes y$ is a basis in Sym²(V). When x, y are eigenvectors of A with eigenvalues α, α^{-1} , the tensors x^2, xy, y^2 are eigenvectors for B with eigenvalues $\alpha^2, 1, \alpha^{-2}$.

Classification of isometries of a hyperbolic plane (part 1)

THEOREM: Let $A \in SL(2,\mathbb{R})$, and $\alpha \in SO^+(1,2)$ the corresponding isometry of a hyperbolic plane. Denote by q the quadratic form of signature (1,2) on R^3 . Assume that $\alpha \neq Id$, that is, $A \neq \pm 1$. Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x,x) > 0. In this case α is called "elliptic isometry". The matrix A satisfies $|\operatorname{Tr} A| < 2$; it is conjugate to a rotation of a disk around 0.

(ii) α has an eigenvector x with q(x,x) < 0. In that case α is called "hyperbolic isometry". The matrix A satisfies $|\operatorname{Tr} A| > 2$; it is conjugate to a matrix $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$, with $t \neq \pm 1$.

(iii) α has a unique eigenvector x with q(x, x) = 0. In that case α is called "parabolic isometry". The matrix A satisfies $|\operatorname{Tr} A| = 2$, and is conjugate to $\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$.

Proof in the next lecture