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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Rieman-

nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: Hn := SO(1, n)/SO(n), equipped with the natural

SO(1, n)-action. This space is also called hyperbolic space, and in dimension

2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by the following lemma, proven in Lecture

3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits

a unique (up to a constant multiplier) G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds

equipped with a G-invariant Riemannian form.
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Upper half-plane as a Riemannian manifold (reminder)

THEOREM: Let G be a group of orientation-preserving conformal (that is,
holomorphic) automorphisms of the upper halfplane H2. Then G = PSL(2,R)
and the stabilizer of a point is S1.

REMARK: PSL(2,R) = SO(1,2)

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a
G-invariant metric.

REMARK: This metric is unique up to a constant multiplier, and H2 =
PSL(2,R)/S1 is a hyperbolic space.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H2.

Then the Riemannian structure s on H2 is written as s = const dx
2+dy2

y2 .

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise
smooth path connecting x to y such that its length is equal to the geodesic
distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ
there exists a neighbourhood of x in γ which is a minimising geodesic.

THEOREM: Geodesics on a Poincaré half-plane are vertical half-lines
and their images under the action of PSL(2,R).
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Geodesics in Poincaré half-plane (reminder)

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and

S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is

a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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M. C. Escher, Circle Limit IV
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Crochet coral (Great Barrier Reef, Australia)

6



Riemann surfaces, lecture 8 M. Verbitsky

Reflections and geodesics

DEFINITION: A reflection on a hyperbolic plane is an involution which

reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as q(x1, x2, x3) = x2
1−x

2
2−x

2
3.

Then the map x1, x2, x3 −→ x1, x2,−x3 is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a

bijection between the set of geodesics and the set of reflections.

Proof: Let x, y ∈ F be two distinct points on a fixed set of a reflection τ .

Since the geodesic connecting x and y is unique, it is τ-invariant. Therefore,

it is contained in F . It remains to show that any geodesic on H is a fixed

point set of some reflection.

Let γ be a vertical line x = 0 on the upper half-plane {(x, y) ∈ R2, y >

0} with the metric dx2+dy2

y2 . Clearly, γ is a fixed point set of a reflection

(x, y)−→ (−x, y). Since every geodesic is conjugate to γ, every geodesic

is a fixed point set of a reflection.
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Geodesics on hyperbolic plane

Let V = R3 be a vector space with quadratic form q of signature (1,2),

Pos := {v ∈ V | q(v) > 0}, and PPos its projectivisation. Then PPos =

SO+(1,2)/SO(1) (check this), giving PPos = H2; this is one of the stan-

dard models of a hyperbolic plane.

REMARK: Let l ⊂ V be a line, that is, a 1-dimensional subspace. The

property q(x, x) < 0 for a non-zero x ∈ l is written as q(l, l) < 0. A line l with

q(l, l) < 0 is called negative line, a line with q(l, l) > 0 is called positive line.

PROPOSITION: Reflections on PPos are in bijective correspondence

with negative lines l ⊂ V .

(see the proof on the next slide)

REMARK: Using the equivalence between reflections and geodesics estab-

lished above, this proposition can be reformulated by saying that geodesics

on PPos are the same as negative lines l ∈ PV .
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Geodesics on hyperbolic plane (2)

PROPOSITION: Reflections on PPos are in bijective correspondence

with negative lines l ⊂ V .

Proof. Step 1: Consider an isometry τ of V which fixes x and acts as

v −→ − v on its orthogonal complement v⊥. Since v⊥ has signature (1,1),

the set PPos∩Pv⊥ is 1-dimensional and fixed by τ . We proved that τ fixes a

codimension 1 submanifold in PPos = H2, hence τ is a reflection.

It remains to show that any reflection is obtained this way.

Step 2: Since geodesics are fixed point sets of reflections, and all geodesics

are conjugate by isometries, all reflections are also conjugated by isome-

tries. Therefore, it suffices to prove that the reflection x1, x2, x3 −→ x1, x2,−x3

is obtained from a negative line l. Let l = (0,0, λ). Then τ(x1, x2, x3) =

−x1,−x2, x3, and on PV this operation acts as x1, x2, x3 −→ x1, x2,−x3.

REMARK: This also implies that all geodesics in PPos are obtained as

intersections PPos∩PW , where W ⊂ V is a subspace of signature (1,1).
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Geodesics and the absolute

Let V = R3 be a vector space with quadratic form q of signature (1,2),
Pos := {v ∈ V | q(v) > 0}, and PPos its projectivisation. Then PPos =
SO+(1,2)/SO(1), giving PPos = H2.

DEFINITION: A line l ∈ V is isotropic if q(l, l) = 0. Absolute of a hyper-
bolic plane PPos = H2 is the set of all isotropic lines,

Abs := {l ∈ PV | q(l, l) = 0}.
It is identified with the boundary of the disk PPos ⊂ PV = RP2}.

CLAIM: Let l ∈ PV be a negative line, and γ := Pl⊥∩PPos the corresponding
geodesic. Then l⊥ intersects the absolute in precisely 2 points, called
the boundary points of γ, or ends of γ. Conversely, every geodesic is
uniquely determined by the two distinct points in the absolute.

Proof: The plane l⊥ has signature (1,1), and the set q(v) = 0 is a union
of two isotropic lines in l⊥. Each of these lines lies on the boundary of the
set Pl⊥ ∩ PPos. Conversely, suppose that µ, ρ ∈ Abs are two distinct lines.
The corresponding 2-dimensional plane W has signature (1,1), because it has
precisely two isotropic lines (if it has more than two, q|W = 0, which is
impossible - prove it!). As shown above, PW ∩ PPos is a geodesic.
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Classification of isometries of a Euclidean plane

THEOREM: Let α be a non-trivial isometry of R2 with Euclidean metric

preserving the orientation. Then α is either a parallel translation or a

rotation with certain center on R2.

Proof. Step 1: If α fixes a point a ∈ R2, then it is clearly a rotation. However,

the group A of parallel translations acts transitively on R2, hence there exists

a ∈ A such that aα fixes a point on R2. Then r := aα is a rotation, and

α = a−1r is a composition of a parallel translation and rotation.

Step 2: It remains to show that a composition

of a rotation a with center in A and angle α and

a parallel transport R along a vector ~v ∈ R2 has

a fixed point. Consider a triangle ABC with

BC = ~v, |AB| = |AC| and angle ∠(BAC) = α.

Clearly, aR maps C to itself.
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Isomorphism between SO(1,2) and PSL(2,R)

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a

3-dimensional real space equipped with a scalar product of signature (1,2),

SO+(1,2) a connected component of unity, and U(1,1) the group of complex

linear maps C2 −→ C2 preserving a pseudio-Hermitian form of signature (1,1).

CLAIM: PSL(2,R) ∼= SO+(1,2)

Proof: Consider the Killing form κ on the Lie algebra sl(2,R), a, b−→ Tr(ab).

Check that it has signature (1,2). Then the image of SL(2,R) in au-

tomorphisms of its Lie algebra is mapped to SO(sl(2,R), κ) = SO+(1,2).

Both groups are 3-dimensional, hence it is an isomorphism (“Corollary 2” in

Lecture 3).
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The isomorphism sl(V ) = Sym2(V )

REMARK: For any finite-dimensional vector space, one has V ⊗V ∗ = EndV

(prove it).

PROPOSITION: Let V be a 2-dimensional vector space. Then sl(V ) is

isomorphic to Sym2(V ) (the space of symmetric 2-tensors), and this iso-

morphism is compatible with the SL(V )-action.

Proof: Fix a non-degenerate 2-form ω on V . Since ω is SL(2,R)-invariant,

we can use ω to construct the isomorphism sl(V ) = Sym2(V ).

The first way to see the isomorphism sl(V ) = Sym2(V ): Now, V ⊗ V ∗ =

EndV and V ⊗ V = Sym2(V ) ⊕ Λ2(V ). Using the form ω to produce an

isomorphism V = V ∗, we find that the decomposition

EndV = V ⊗ V ∗ = 〈IdV 〉 ⊕ sl(V )

is identical to

EndV = V ⊗ V = 〈ω〉 ⊕ Sym2(V ).
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The isomorphism sl(V ) = Sym2(V ) (2)

The second way to see the isomorphism sl(V ) = Sym2(V ): Now, A ∈ sl(V )

if and only if ω(A(x), y) = −ω(x,A(y)). Indeed, A ∈ sl(V ) if and only if

eA ∈ SL(V ), and this gives ω(etA(x), etAy) = ω(x, y). Taking derivative in t,

we obtain ω(A(x), y) = −ω(x,A(y)). However, ω(A(x), y) = ω(A(y), x), hence

A ∈ sl(V ) if and only if ω(A(x), y) is a symmetric 2-form.

Corollary 1: Let A ∈ SL(2,R) be a matrix with eigenvalues α, α−1, and

B ∈ SO(1,2) the endomorphism associated with A through PSL(2,R) ∼=
SO+(1,2). Then B has eigenvalues α2,1, α−2.

Proof: Let x, y be a basis in V . Then x2 = x ⊗ x, xy = x ⊗ y, y2 = y ⊗ y is a

basis in Sym2(V ). When x, y are eigenvectors of A with eigenvalues α, α−1,

the tensors x2, xy, y2 are eigenvectors for B with eigenvalues α2,1, α−2.
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Classification of isometries of a hyperbolic plane (part 1)

THEOREM: Let A ∈ SL(2,R), and α ∈ SO+(1,2) the corresponding isome-

try of a hyperbolic plane. Denote by q the quadratic form of signature (1,2)

on R3. Assume that α 6= Id, that is, A 6= ±1. Then one and only one of these

three cases occurs

(i) α has an eigenvector x with q(x, x) > 0. In this case α is called

“elliptic isometry”. The matrix A satisfies |TrA| < 2; it is conjugate to a

rotation of a disk around 0.

(ii) α has an eigenvector x with q(x, x) < 0. In that case α is called

“hyperbolic isometry”. The matrix A satisfies |TrA| > 2; it is conjugate to

a matrix

(
t 0
0 t−1

)
, with t 6= ±1.

(iii) α has a unique eigenvector x with q(x, x) = 0. In that case α is called

“parabolic isometry”. The matrix A satisfies |TrA| = 2, and is conjugate

to

(
1 λ
0 1

)
.

Proof in the next lecture
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