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Upper half-plane as a Riemannian manifold (reminder)

DEFINITION: Let G = PSL(2,R) be a group of orientation-preserving

conformal (that is, holomorphic) automorphisms of the upper halfplane H2.

Poincaré half-plane is the upper half-plane equipped with a G-invariant met-

ric of constant negative curvature constructed in Lecture 7.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H2.

Then the Riemannian structure s on H2 is written as s = const dx
2+dy2

y2 .

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

THEOREM: Geodesics on a Poincaré half-plane are vertical half-lines

and their images under the action of PSL(2,R).
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Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and

S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is

a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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Poincaré metric on a disk

DEFINITION: Poincaré metric on the unit disk ∆ ⊂ C is an Aut(∆)-

invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let f : M −→M1 be a map of metric spaces. Then f is

called C-Lipschitz if d(x, y) > Cd(f(x), f(y)). A map is called Lipschitz if it

is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map ϕ : ∆−→∆ from a unit disk to itself is 1-

Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x ∈ ∆ the norm of the

differential, taken with respect to the Poincaré metric, satisfies |Dϕx|P 6 1.

Since the automorphism group acts on ∆ transitively, it suffices to prove

that |Dϕx| 6 1 when x = 0 and ϕ(x) = 0.

Step 2: This is Schwartz lemma.
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Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

REMARK: Let D be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y)
is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set D of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x, y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting x to y.

EXAMPLE: The Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X
ϕ−→ Y is 1-Lipschitz with respect to

the Kobayashi pseudometric.

Proof: If x ∈ X is connected to x′ by a sequence of Poincare disks ∆1, ...,∆n,
then ϕ(x) is connected to ϕ(x′) by ϕ(∆1), ..., ϕ(∆n).
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Kobayashi hyperbolic manifolds

COROLLARY: Let B ⊂ Cn be a unit ball, and x, y ∈ B points with coordi-

nates x = (x1, ..., xn), y = (y1, ..., yn). Since xi, yi belongs to ∆, it makes sense

to compute the Poincare distance dP (xi, yi). Then dK(x, y) > maxi dP (xi, yi).

Proof: Each of projection maps Πi : B −→∆ is 1-Lipshitz.

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi

pseudometric dK is non-degenerate.

DEFINITION: A domain in Cn is an open subset. A bounded domain is

an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in Cn is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that Ω ⊂ B where B is

an open ball. Then the Kobayashi distance in Ω is > that in B. However, the

Kobayashi distance in B is bounded by the metric d(x, y) := maxi dP (xi, yi) as

follows from above.
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Caratheodory metric

DEFINITION: Let x, y ∈ M be points on a complex manifold. Define

Caratheodory pseudometric as dC(x, y) = sup{dP (f(x), f(y))}, where the

supremum is taken over all holomorphic map f : M −→∆, and dP is Poincare

metric on the disk ∆.

REMARK: Usually the term “Kobayashi/Caratheodory pseudometric” is ab-

breviated to “Kobayashi/Caratheodory metric”, even when it is not a met-

ric.

REMARK: Caratheodory pseudometric satisfies the triangle inequality

because a supremum of pseudometrics satisfies triangle inequality.

EXERCISE: Prove that Caratheodory pseudometric is bounded by the

Kobayashi pseudometric: dK > dC.

REMARK: Clearly, dC 6= 0 on any bounded domain.
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Complex hyperbolic space

DEFINITION: Let V = Cn+1 be a complex vector space equipped with a
Hermitian metric h of signature (1, n), and HnC ⊂ PV projectivization of the
set of positive vectors {x ∈ V h(x, x) > 0}. Then HnC is equipped with
a homogeneous action of U(1, n). The same argument as used for space
forms implies that HnC admits a U(1, n)-invariant Hermitian metric, which is
unique up to a constant multiplier. This Hermitian complex manifold is called
complex hyperbolic space.

REMARK: For n > 1 it is not isometric to the real hyperbolic spaces
defined earlier.

REMARK: As a complex manifold HnC is isomorphic to an open ball in Cn
(prove it!)

REMARK: The Kobayashi metric and the Caratheodory metric on HnC are
U(1, n)-invariant, because U(1, n) acts holomorphically, hence proportional to
the hyperbolic metric, which is also called Bergman metric on an open ball.

EXERCISE: Prove that Kobayashi metric on a ball in Cn is equal to the
Caratheodory metric.
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Uniform convergence for Lipschitz maps

DEFINITION: A sequence of maps fi : M −→N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f : M −→N
if for any compact K ⊂M , we have lim

i→∞
supx∈K d(fi(x), f(x)) = 0.

Claim 1: Suppose that a sequence fi : M −→N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M ′ ⊂ M . Then fi con-
verges to f uniformly on compacts.

Proof: Let K ⊂ M be a compact set, and Nε ⊂ M ′ a finite subset such that
K is a union of ε-balls centered in Nε (such Nε is called an ε-net). Then
there exists N such that supx∈Nε d(fN+i(x), f(x)) < ε for all i > 0. Since fi
are 1-Lipschitz, this implies that

sup
y∈K

d(fN+i(y), f(y)) 6

6 d(fN+i(x), f(x)) + (d(fN+i(x), fN+i(y)) + d(f(x), f(y)) 6 3ε,

where x ∈ Nε is chosen in such a way that d(x, y) < ε.

EXERCISE: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long
as N is a metric space.
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Arzela-Ascoli theorem for Lipschitz maps

DEFINITION: Let M , N be metric spaces. A subset B ⊂ N is bounded if
it is contained in a ball. A family {fα} of functions fα : M −→N is called
uniformly bounded on compacts if for any compact subset K ⊂ M , there
is a bounded subset CK ⊂ N such that fα(K) ⊂ CK for any element fα of the
family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)
Let F := {fα} be an infinite set of 1-Lipschitz maps fα : M −→ C, uniformly
bounded on compacts. Assume that M has countable base of open sets
and can be obtained as a countable union of compact subsets. Then there
is a sequence {fi} ⊂ F which converges to f : M −→ C uniformly on
compacts.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: Suppose we can prove Arzela-Ascoli when M is compact.
Then we can choose a sequence of compact subsets Ki ⊂ M , find subse-
quences in F converging on each Ki, and use the diagonal method to find
a subsequence converging on all Ki. Therefore, we can assume that M is
compact.
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Arzela-Ascoli theorem for Lipschitz maps (2)

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fα} be an infinite set of 1-Lipschitz maps fα : M −→ C, uniformly

bounded on compacts. Assume that M has countable base of open sets

and can be obtained as a countable union of compact subsets. Then there

is a sequence {fi} ⊂ F which converges to f : M −→ C uniformly on

compacts.

Proof. Step 1: We can assume that M is compact, and all maps

fα : M −→ C map M into a compact subset N ⊂ C.

Step 2. By definition of pointwise convergence, for any finite set S ⊂ M ,

there exists a subsequence fi of F which converges to f ∈ Map(S,N) in S.

Using diagonal method, we choose a subsequence fi of F which converges

to f ∈ Map(M ′, N) pointwise in a dense countable set M ′ ⊂ M . Then fi
converges to f uniformly by Claim 1.
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