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Uniform convergence for Lipschitz maps (reminder)

DEFINITION: A sequence of maps f; : M — N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f: M — N
if for any compact K C M, we have lim sup,cx d(fi(x), f(z)) = 0.
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Claim 1: Suppose that a sequence f; : M — N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M’ C M. Then f; con-
verges to f uniformly on compacts.

Proof: Let K C M be a compact set, and N: C M’ a finite subset such that
K is a union of e-balls centered in N: (such N¢ is called an e-net). Then
there exists N such that sup,cn. d(fn4i(x), f(z)) < e for all « > 0. Since f;
are 1-Lipschitz, this implies that

Sup d(fn+i(y), f(y)) <

(IS
< d(fn+i(z), f(@)) + (d(fn+i(2), In4i(y)) +d(f(2), f(y)) < 3e,

where x € N: is chosen in such a way that d(z,y) <e. =

COROLLARY 1: The space of Lipschitz maps is closed in the topology of
pointwise convergence. Moreover, pointwise convergence of Lipschitz
maps implies uniform convergence on compacts.
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Arzela- Ascoli theorem for Lipschitz maps

DEFINITION: Let M, N be metric spaces. A subset B C N is bounded if
it is contained in a ball. A family {fq} of functions fo : M — N is called
uniformly bounded on compacts if for any compact subset K C M, there
is @ bounded subset Cx C N such that fo(K) C Ck for any element f, of the
family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite set of 1-Lipschitz maps fo : M — C, uniformly
bounded on compacts. Assume that M has countable base of open sets
and can be obtained as a countable union of compact subsets. Then there
Is a sequence {f;} C F which converges to f: M — C uniformly on
compacts.

REMARK: The limit f is clearly also 1-Lipschitz.

REMARK: It was proven in Lecture 9.
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Arzela-Ascoli theorem for Lipschitz maps (a second proof)

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite set of 1-Lipschitz maps fo: M — C, uniformly
bounded on compacts. Assume that M has countable base of open sets
and can be obtained as a countable union of compact subsets. Then there
Is a sequence {f;} C F which converges to f: M — C uniformly on
compacts.

Proof. Step 1: Using the diagonal argument, we can assume that M is
compact, and all maps fo, . M —C map M into a compact subset
N C C. It remains to show that the space of Lipschitz maps from M to N is
compact with topology of uniform convergence.

Step 2. The space of maps to a compact is compact in topology of point-
wise convergence (Tychonoff theorem). However, on Lipschitz maps,
pointwise convergence implies uniform convergence (Corollary 1). =
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Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family F := {fa} of holo-
morphic functions fo, : M — C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)

Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {f;} C 7 which
converges to f: M — C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel's theorem on a subset of M where F is bounded. Therefore, we may
assume that all f, map M into a disk A.

Step 2: All fo are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f =1lim f;.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula. m

REMARK: The sequence f = |lim f; converdges uniformly with all deriva-

tives, again by Cauchy formula.
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Riemann mapping theorem

THEOREM: Let 2 C A be a simply connected, bounded domain. Then <2
IS biholomorphic to A.

Idea of a proof: We consider the Kobayashi metric on €2 and A, and let F
be the set of all injective holomorphic maps €2 — A. Consider z € 2, and
let f be a map with |df;|] maximal in the sense of Kobayashi metric in the
closure of F. Such f exists by Montel’s theorem. We prove that f is a
bijective isometry, and hence biholomorphic.
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Functions which take distinct values on a boundary of a disk

LEMMA: Let u, v be non-constant holomorphic functions on a disk A,
continuously extended to its boundary, and wui(z) = u(tz), v(z) = u(tz),
where t €]0,1]. Then for some s,t €]0, 1], us(z) & v (2) for all z € OA.

Proof. Step 1: Consider the function z — u(z) — v(2). Unless u = v, this
function has finitely many zeros on a compact disk. Choose s =t in such a
way that the boundary of a circle of radius ¢t with center in O avoids all these

zeros. Then u:(z) #= v (z) on z € OA.

Step 2: Now, if u = v, we replace u by u,, for some r €]0, 1]. Unless u = const,
this is a different holomorphic function. Now we can apply the previous
argument, obtaining functions wu,; and v; which satisfy wu,t(z) # v(z) for all
zEOA. m
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T he set of injective holomorphic maps is closed

PROPOSITION: Let H be the set of holomorphic maps f : 21 — €2
between Riemann surfaces, equipped with uniform topology, and Hg its subset
consisting of injective maps and constant maps. Then Hg is closed in H.

Proof: Let f; be a sequence of injective maps converging to f : €21 — €25
which is not injective. Then f(a) = f(b) for some a = b in 27. Choose open
disks A and B containing a and b. Using the previous lemma, we may shrink A
and B, and identify A and B in such a way that the functions g and h obtained
by restricting f to 0A = 0B are non-equal everywhere on the boundary. Then
Proposition is implied by the following lemma.

LEMMA: Let R be the set of all pairs of distinct, non-constant holomorphic
functions g,h : A — C continuously extended to the boundary such that
h(x) = g(x) for some z € A, but h(x) # g(x) everywhere on the boundary.
Then R is open in uniform topology.
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The set of non-injective, non-constant maps is open

LEMMA: Let R be the set of all pairs of distinct, non-constant holomorphic
functions g,h : A — C continuously extended to the boundary such that
h(x) = g(x) for some z € A, but h(x) # g(x) everywhere on the boundary.
Then R is open in uniform topology.

Proof. Step 1: Consider the function (};l%%)l on A. This function has a

#f d
/1 00 4%
is equal to the number of points z € A such that h(x) = g(x) (taken with

multiplicities, which are always positive integers).

simple pole in all the points where h = g. Moreover, Np.g =

Step 2: Since the integral is continuous in unform topology, this number
IS locally constant on the space of pairs such h,g: A — C. Therefore,
the set R of all h,g with ny , 7 0 is open. =
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Coverings (reminder)

DEFINITION: A topological space X is locally path connected if for each
x € X and each neighbourhood U > x, there exists a smaller neighbourhood
W > x which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,
and M — M a covering map. Then for each continuous map X — M,
there exists a lifting X — M making the following diagram commutative.




Riemann surfaces, lecture 10 M. Verbitsky

Homotopy lifting principle (reminder)

EXAMPLE: The map z 22 is a covering from C* := C\0 to itself (prove
it).

THEOREM: (homotopy lifting principle)
Let X be a simply connected, locally path connected topological space, and

M — M a covering map. Then for each continuous map X — M, there
exists a lifting X — M making the following diagram commutative.
X M

COROLLARY: Let ¢ : ©2—C* be a holomorphic map from a simply
connected domain £2. Then there exists a holomorphic map ¢ : 2 — C~*
such that for all z € A, o(2) = ¢1(2)%.

Proof: We apply homotopy lifting principle to X = Q, M = M = C*, and
M —s M mapping = to z2. =

REMARK: We denote ¢1(z) by /p(z), for obvious reasons.
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Poincaré metric and the map =z — 22

CLAIM: Consider a non-bijective holomorphic map ¢ : A — A from Poincare
disk to itself. Then |dy| < 1 at each point, where dy is a norm of an operator
do . Tz A —>Tg0(x)A taken with respect to the Poincare metric.

Proof: Let ¢ : A — A be a holomorphic map which satisfies |[dp| = 1 at
x € A. Replacing ¢ by ~v1 o p oo if necessary, where ~, are biholomorphic
isometries of A, we may assume that z = 0 and ¢p(x) = 0. By Schwartz
lemma, for such ¢, relation |dp(0)| = 1 implies that ¢ is a linear biholomorphic
map. m

REMARK: We will apply this claim only to the function z LNy However,
even for this function it takes some work, because an explicit proof needs
and explicit form of Poincaré metric on a disk, which we did not have.
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Poincare metric and /¢

Corollary 2: Let ¢ : A — A\O be a holomorphic function, and /¢ a
holomorphic function defined above. Let |dp|(x) denote the norm of the
operator dy at x € A computed with respect to the Poincare metric on A.

Then |dy|(x) < |d\/p|(x) for any = € A.

Proof: Let ¢(z) = z2. By the claim above, |d¢|(z) < 1 for all z € A (here
the norm is taken with respect to Poincaré metric). Using the chain rule,
we obtain that dp = dvy o d\/p. which gives |dp|(x) = |dy|(/p(x))|d/p|(x),
hence

| ()
[dy| (/e (x))

dy/ol(z) = > |del(x).
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Riemann mapping theorem

THEOREM: Let €2 C A be a simply connected domain. Then €2 is biholo-
morphic to A.

Proof. Step 1: Consider the Kobayashi metric on €2 and A, and let F be
the set of all injective holomorphic maps 2 — A. Consider z € 2, and let
f be a map with |df|(x) maximal in the sense of Kobayashi metric. Such f
exists by Montel’s theorem. Since f lies in the closure of F, and the set
of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective:
z & f(2). Taking a composition of f and an isometry of the Poincare disk
does not affect |df|(x), hence we may assume that z = 0. Then the function
Vv f is a well defined holomorphic map from 2 to A. By Corollary 2,
|dv/f|(x) > |df|(x), which is impossible, because it |df|(x) is maximal. =
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