Complex manifolds of dimension 1

lecture 10: Riemann mapping theorem

Misha Verbitsky

IMPA, sala 232

January 29, 2020

M. Verbitsky

Uniform convergence for Lipschitz maps (reminder)

DEFINITION: A sequence of maps $f_i : M \longrightarrow N$ between metric spaces **uniformly converges** (or **converges uniformly on compacts**) to $f : M \longrightarrow N$ if for any compact $K \subset M$, we have $\lim_{i \to \infty} \sup_{x \in K} d(f_i(x), f(x)) = 0$.

Claim 1: Suppose that a sequence $f_i : M \longrightarrow N$ of 1-Lipschitz maps converges to f pointwise in a countable dense subset $M' \subset M$. Then f_i converges to f uniformly on compacts.

Proof: Let $K \subset M$ be a compact set, and $N_{\varepsilon} \subset M'$ a finite subset such that K is a union of ε -balls centered in N_{ε} (such N_{ε} is called **an** ε -net). Then there exists N such that $\sup_{x \in N_{\varepsilon}} d(f_{N+i}(x), f(x)) < \varepsilon$ for all $i \ge 0$. Since f_i are 1-Lipschitz, this implies that

 $\sup_{y \in K} d(f_{N+i}(y), f(y)) \leqslant$ $\leqslant d(f_{N+i}(x), f(x)) + (d(f_{N+i}(x), f_{N+i}(y)) + d(f(x), f(y)) \leqslant 3\varepsilon,$

where $x \in N_{\varepsilon}$ is chosen in such a way that $d(x,y) < \varepsilon$.

COROLLARY 1: The space of Lipschitz maps is closed in the topology of pointwise convergence. Moreover, pointwise convergence of Lipschitz maps implies uniform convergence on compacts.

Arzela-Ascoli theorem for Lipschitz maps

DEFINITION: Let M, N be metric spaces. A subset $B \subset N$ is **bounded** if it is contained in a ball. A family $\{f_{\alpha}\}$ of functions $f_{\alpha} : M \longrightarrow N$ is called **uniformly bounded on compacts** if for any compact subset $K \subset M$, there is a bounded subset $C_K \subset N$ such that $f_{\alpha}(K) \subset C_K$ for any element f_{α} of the family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let $\mathcal{F} := \{f_{\alpha}\}$ be an infinite set of 1-Lipschitz maps $f_{\alpha} : M \longrightarrow \mathbb{C}$, uniformly bounded on compacts. Assume that M has countable base of open sets and can be obtained as a countable union of compact subsets. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly on compacts.

REMARK: The limit f is clearly also 1-Lipschitz.

REMARK: It was proven in Lecture 9.

Arzela-Ascoli theorem for Lipschitz maps (a second proof)

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let $\mathcal{F} := \{f_{\alpha}\}$ be an infinite set of 1-Lipschitz maps $f_{\alpha} : M \longrightarrow \mathbb{C}$, uniformly bounded on compacts. Assume that M has countable base of open sets and can be obtained as a countable union of compact subsets. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly on compacts.

Proof. Step 1: Using the diagonal argument, we can assume that M is compact, and all maps $f_{\alpha} : M \longrightarrow \mathbb{C}$ map M into a compact subset $N \subset \mathbb{C}$. It remains to show that the space of Lipschitz maps from M to N is compact with topology of uniform convergence.

Step 2. The space of maps to a compact is compact in topology of pointwise convergence (Tychonoff theorem). However, on Lipschitz maps, pointwise convergence implies uniform convergence (Corollary 1). ■

Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family $\mathcal{F} := \{f_{\alpha}\}$ of holomorphic functions $f_{\alpha} : M \longrightarrow \mathbb{C}$ is called **normal family** if \mathcal{F} is uniformly bounded on compact subsets.

THEOREM: (Montel's theorem)

Let M be a complex manifold with countable base, and \mathcal{F} a normal, infinite family of holomorphic functions. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove Montel's theorem on a subset of M where \mathcal{F} is bounded. Therefore, we may assume that all f_{α} map M into a disk Δ .

Step 2: All f_{α} are 1-Lipschitz with respect to Kobayashi metric. Therefore, **Arzela-Ascoli theorem can be applied, giving a uniform limit** $f = \lim f_i$.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy formula. ■

REMARK: The sequence $f = \lim f_i$ converges uniformly with all derivatives, again by Cauchy formula.

Riemann mapping theorem

THEOREM: Let $\Omega \subset \Delta$ be a simply connected, bounded domain. Then Ω is biholomorphic to Δ .

Idea of a proof: We consider the Kobayashi metric on Ω and Δ , and let \mathcal{F} be the set of all injective holomorphic maps $\Omega \longrightarrow \Delta$. Consider $x \in \Omega$, and let f be a map with $|df_x|$ maximal in the sense of Kobayashi metric in the closure of \mathcal{F} . Such f exists by Montel's theorem. We prove that f is a bijective isometry, and hence biholomorphic.

Functions which take distinct values on a boundary of a disk

LEMMA: Let u, v be non-constant holomorphic functions on a disk Δ , continuously extended to its boundary, and $u_t(z) = u(tz), v_t(z) = u(tz)$, where $t \in]0,1]$. Then for some $s, t \in]0,1]$, $u_s(z) \neq v_t(z)$ for all $z \in \partial \Delta$.

Proof. Step 1: Consider the function $z \rightarrow u(z) - v(z)$. Unless u = v, this function has finitely many zeros on a compact disk. Choose s = t in such a way that the boundary of a circle of radius t with center in 0 avoids all these zeros. Then $u_t(z) \neq v_t(z)$ on $z \in \partial \Delta$.

Step 2: Now, if u = v, we replace u by u_r , for some $r \in]0, 1]$. Unless u = const, **this is a different holomorphic function.** Now we can apply the previous argument, obtaining functions u_{rt} and v_t which satisfy $u_{rt}(z) \neq v_t(z)$ for all $z \in \partial \Delta$.

The set of injective holomorphic maps is closed

PROPOSITION: Let \mathcal{H} be the set of holomorphic maps $f : \Omega_1 \longrightarrow \Omega_2$ between Riemann surfaces, equipped with uniform topology, and \mathcal{H}_0 its subset consisting of injective maps and constant maps. Then \mathcal{H}_0 is closed in \mathcal{H} .

Proof: Let f_i be a sequence of injective maps converging to $f: \Omega_1 \rightarrow \Omega_2$ which is not injective. Then f(a) = f(b) for some $a \neq b$ in Ω_1 . Choose open disks A and B containing a and b. Using the previous lemma, we may shrink Aand B, and identify A and B in such a way that the functions g and h obtained by restricting f to $\partial A = \partial B$ are non-equal everywhere on the boundary. Then Proposition is implied by the following lemma.

LEMMA: Let \mathcal{R} be the set of all pairs of distinct, non-constant holomorphic functions g, h: $\Delta \longrightarrow \mathbb{C}$ continuously extended to the boundary such that h(x) = g(x) for some $x \in \Delta$, but $h(x) \neq g(x)$ everywhere on the boundary. **Then** \mathcal{R} **is open in uniform topology.**

The set of non-injective, non-constant maps is open

LEMMA: Let \mathcal{R} be the set of all pairs of distinct, non-constant holomorphic functions $g, h : \Delta \longrightarrow \mathbb{C}$ continuously extended to the boundary such that h(x) = g(x) for some $x \in \Delta$, but $h(x) \neq g(x)$ everywhere on the boundary. **Then** \mathcal{R} is open in uniform topology.

Proof. Step 1: Consider the function $\frac{(h-g)'}{h-g}$ on Δ . This function has a simple pole in all the points where h = g. Moreover, $n_{h,g} := \frac{1}{\pi\sqrt{-1}} \int_{\partial\Delta} dz$ is equal to the number of points $x \in \Delta$ such that h(x) = g(x) (taken with multiplicities, which are always positive integers).

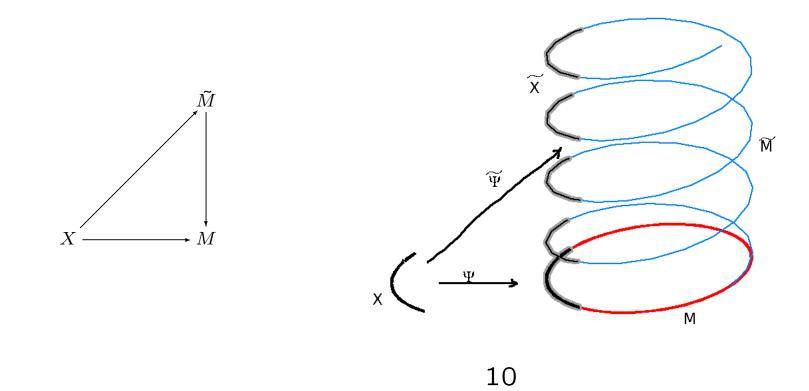
Step 2: Since the integral is continuous in unform topology, **this number** is locally constant on the space of pairs such $h, g : \Delta \longrightarrow \mathbb{C}$. Therefore, the set \mathcal{R} of all h, g with $n_{h,g} \neq 0$ is open.

Coverings (reminder)

DEFINITION: A topological space X is **locally path connected** if for each $x \in X$ and each neighbourhood $U \ni x$, there exists a smaller neighbourhood $W \ni x$ which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space, and $\tilde{M} \longrightarrow M$ a covering map. Then for each continuous map $X \longrightarrow M$, there exists a lifting $X \longrightarrow \tilde{M}$ making the following diagram commutative.

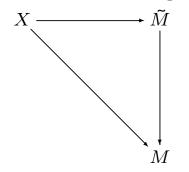


Homotopy lifting principle (reminder)

EXAMPLE: The map $x \to x^2$ is a covering from $\mathbb{C}^* := \mathbb{C} \setminus 0$ to itself (prove it).

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space, and $\tilde{M} \longrightarrow M$ a covering map. Then for each continuous map $X \longrightarrow M$, there exists a lifting $X \longrightarrow \tilde{M}$ making the following diagram commutative.



COROLLARY: Let $\varphi : \Omega \longrightarrow \mathbb{C}^*$ be a holomorphic map from a simply connected domain Ω . Then there exists a holomorphic map $\varphi_1 : \Omega \longrightarrow \mathbb{C}^*$ such that for all $z \in \Delta$, $\varphi(z) = \varphi_1(z)^2$.

Proof: We apply homotopy lifting principle to $X = \Omega$, $M = \tilde{M} = \mathbb{C}^*$, and $\tilde{M} \longrightarrow M$ mapping x to x^2 .

REMARK: We denote $\varphi_1(z)$ by $\sqrt{\varphi(z)}$, for obvious reasons. 11

Poincaré metric and the map $x \longrightarrow x^2$

CLAIM: Consider a non-bijective holomorphic map $\varphi : \Delta \longrightarrow \Delta$ from Poincare disk to itself. Then $|d\varphi| < 1$ at each point, where $d\varphi$ is a norm of an operator $d\varphi : T_x \Delta \longrightarrow T_{\varphi(x)} \Delta$ taken with respect to the Poincare metric.

Proof: Let $\varphi : \Delta \longrightarrow \Delta$ be a holomorphic map which satisfies $|d\varphi| = 1$ at $x \in \Delta$. Replacing φ by $\gamma_1 \circ \varphi \circ \gamma_2$ if necessary, where γ_i are biholomorphic isometries of Δ , we may assume that x = 0 and $\varphi(x) = 0$. By Schwartz lemma, for such φ , relation $|d\varphi(0)| = 1$ implies that φ is a linear biholomorphic map.

REMARK: We will apply this claim only to the function $x \xrightarrow{\varphi} x^2$. However, **even for this function it takes some work,** because an explicit proof needs and explicit form of Poincaré metric on a disk, which we did not have.

Poincaré metric and $\sqrt{\varphi}$

Corollary 2: Let $\varphi : \Delta \longrightarrow \Delta \setminus 0$ be a holomorphic function, and $\sqrt{\varphi}$ a holomorphic function defined above. Let $|d\varphi|(x)$ denote the norm of the operator $d\varphi$ at $x \in \Delta$ computed with respect to the Poincare metric on Δ . **Then** $|d\varphi|(x) < |d\sqrt{\varphi}|(x)$ for any $x \in \Delta$.

Proof: Let $\psi(x) = x^2$. By the claim above, $|d\psi|(x) < 1$ for all $x \in \Delta$ (here **the norm is taken with respect to Poincaré metric**). Using the chain rule, we obtain that $d\varphi = d\psi \circ d\sqrt{\varphi}$. which gives $|d\varphi|(x) = |d\psi|(\sqrt{\varphi}(x))|d\sqrt{\varphi}|(x)$, hence

$$d\sqrt{\varphi}|(x) = \frac{|d\varphi|(x)|}{|d\psi|(\sqrt{\varphi}(x))} > |d\varphi|(x).$$

Riemann mapping theorem

THEOREM: Let $\Omega \subset \Delta$ be a simply connected domain. Then Ω is biholomorphic to Δ .

Proof. Step 1: Consider the Kobayashi metric on Ω and Δ , and let \mathcal{F} be the set of all injective holomorphic maps $\Omega \longrightarrow \Delta$. Consider $x \in \Omega$, and let f be a map with |df|(x) maximal in the sense of Kobayashi metric. Such f exists by Montel's theorem. Since f lies in the closure of \mathcal{F} , and the set of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective: $z \notin f(\Omega)$. Taking a composition of f and an isometry of the Poincare disk does not affect |df|(x), hence we may assume that z = 0. Then the function \sqrt{f} is a well defined holomorphic map from Ω to Δ . By Corollary 2, $|d\sqrt{f}|(x) > |df|(x)$, which is impossible, because it |df|(x) is maximal.