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Uniform convergence for Lipschitz maps (reminder)

DEFINITION: A sequence of maps fi : M −→N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f : M −→N

if for any compact K ⊂M , we have lim
i→∞

supx∈K d(fi(x), f(x)) = 0.

Claim 1: Suppose that a sequence fi : M −→N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M ′ ⊂ M . Then fi con-
verges to f uniformly on compacts.

Proof: Let K ⊂ M be a compact set, and Nε ⊂ M ′ a finite subset such that
K is a union of ε-balls centered in Nε (such Nε is called an ε-net). Then
there exists N such that supx∈Nε d(fN+i(x), f(x)) < ε for all i > 0. Since fi
are 1-Lipschitz, this implies that

sup
y∈K

d(fN+i(y), f(y)) 6

6 d(fN+i(x), f(x)) + (d(fN+i(x), fN+i(y)) + d(f(x), f(y)) 6 3ε,

where x ∈ Nε is chosen in such a way that d(x, y) < ε.

COROLLARY 1: The space of Lipschitz maps is closed in the topology of
pointwise convergence. Moreover, pointwise convergence of Lipschitz
maps implies uniform convergence on compacts.
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Arzela-Ascoli theorem for Lipschitz maps

DEFINITION: Let M , N be metric spaces. A subset B ⊂ N is bounded if

it is contained in a ball. A family {fα} of functions fα : M −→N is called

uniformly bounded on compacts if for any compact subset K ⊂ M , there

is a bounded subset CK ⊂ N such that fα(K) ⊂ CK for any element fα of the

family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fα} be an infinite set of 1-Lipschitz maps fα : M −→ C, uniformly

bounded on compacts. Assume that M has countable base of open sets

and can be obtained as a countable union of compact subsets. Then there

is a sequence {fi} ⊂ F which converges to f : M −→ C uniformly on

compacts.

REMARK: The limit f is clearly also 1-Lipschitz.

REMARK: It was proven in Lecture 9.
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Arzela-Ascoli theorem for Lipschitz maps (a second proof)

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fα} be an infinite set of 1-Lipschitz maps fα : M −→ C, uniformly

bounded on compacts. Assume that M has countable base of open sets

and can be obtained as a countable union of compact subsets. Then there

is a sequence {fi} ⊂ F which converges to f : M −→ C uniformly on

compacts.

Proof. Step 1: Using the diagonal argument, we can assume that M is

compact, and all maps fα : M −→ C map M into a compact subset

N ⊂ C. It remains to show that the space of Lipschitz maps from M to N is

compact with topology of uniform convergence.

Step 2. The space of maps to a compact is compact in topology of point-

wise convergence (Tychonoff theorem). However, on Lipschitz maps,

pointwise convergence implies uniform convergence (Corollary 1).
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Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family F := {fα} of holo-
morphic functions fα : M −→ C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)
Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {fi} ⊂ F which
converges to f : M −→ C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel’s theorem on a subset of M where F is bounded. Therefore, we may
assume that all fα map M into a disk ∆.

Step 2: All fα are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f = lim fi.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula.

REMARK: The sequence f = lim fi converges uniformly with all deriva-
tives, again by Cauchy formula.
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Riemann mapping theorem

THEOREM: Let Ω ⊂∆ be a simply connected, bounded domain. Then Ω

is biholomorphic to ∆.

Idea of a proof: We consider the Kobayashi metric on Ω and ∆, and let F
be the set of all injective holomorphic maps Ω−→∆. Consider x ∈ Ω, and

let f be a map with |dfx| maximal in the sense of Kobayashi metric in the

closure of F. Such f exists by Montel’s theorem. We prove that f is a

bijective isometry, and hence biholomorphic.
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Functions which take distinct values on a boundary of a disk

LEMMA: Let u, v be non-constant holomorphic functions on a disk ∆,

continuously extended to its boundary, and ut(z) = u(tz), vt(z) = u(tz),

where t ∈]0,1]. Then for some s, t ∈]0,1], us(z) 6= vt(z) for all z ∈ ∂∆.

Proof. Step 1: Consider the function z −→ u(z) − v(z). Unless u = v, this

function has finitely many zeros on a compact disk. Choose s = t in such a

way that the boundary of a circle of radius t with center in 0 avoids all these

zeros. Then ut(z) 6= vt(z) on z ∈ ∂∆.

Step 2: Now, if u = v, we replace u by ur, for some r ∈]0,1]. Unless u = const,

this is a different holomorphic function. Now we can apply the previous

argument, obtaining functions urt and vt which satisfy urt(z) 6= vt(z) for all

z ∈ ∂∆.
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The set of injective holomorphic maps is closed

PROPOSITION: Let H be the set of holomorphic maps f : Ω1 −→Ω2

between Riemann surfaces, equipped with uniform topology, and H0 its subset

consisting of injective maps and constant maps. Then H0 is closed in H.

Proof: Let fi be a sequence of injective maps converging to f : Ω1 −→Ω2

which is not injective. Then f(a) = f(b) for some a 6= b in Ω1. Choose open

disks A and B containing a and b. Using the previous lemma, we may shrink A

and B, and identify A and B in such a way that the functions g and h obtained

by restricting f to ∂A = ∂B are non-equal everywhere on the boundary. Then

Proposition is implied by the following lemma.

LEMMA: Let R be the set of all pairs of distinct, non-constant holomorphic

functions g, h : ∆−→ C continuously extended to the boundary such that

h(x) = g(x) for some x ∈ ∆, but h(x) 6= g(x) everywhere on the boundary.

Then R is open in uniform topology.
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The set of non-injective, non-constant maps is open

LEMMA: Let R be the set of all pairs of distinct, non-constant holomorphic

functions g, h : ∆−→ C continuously extended to the boundary such that

h(x) = g(x) for some x ∈ ∆, but h(x) 6= g(x) everywhere on the boundary.

Then R is open in uniform topology.

Proof. Step 1: Consider the function (h−g)′
h−g on ∆. This function has a

simple pole in all the points where h = g. Moreover, nh,g := 1
π
√
−1

∫
∂∆ dz

is equal to the number of points x ∈ ∆ such that h(x) = g(x) (taken with

multiplicities, which are always positive integers).

Step 2: Since the integral is continuous in unform topology, this number

is locally constant on the space of pairs such h, g : ∆−→ C. Therefore,

the set R of all h, g with nh,g 6= 0 is open.
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Coverings (reminder)

DEFINITION: A topological space X is locally path connected if for each

x ∈ X and each neighbourhood U 3 x, there exists a smaller neighbourhood

W 3 x which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,

and M̃ −→M a covering map. Then for each continuous map X −→M ,

there exists a lifting X −→ M̃ making the following diagram commutative.

M̃

X -

-

M
?
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Homotopy lifting principle (reminder)

EXAMPLE: The map x−→ x2 is a covering from C∗ := C\0 to itself (prove
it).

THEOREM: (homotopy lifting principle)
Let X be a simply connected, locally path connected topological space, and
M̃ −→M a covering map. Then for each continuous map X −→M , there
exists a lifting X −→ M̃ making the following diagram commutative.

X - M̃

M
?

-

COROLLARY: Let ϕ : Ω−→ C∗ be a holomorphic map from a simply
connected domain Ω. Then there exists a holomorphic map ϕ1 : Ω−→ C∗
such that for all z ∈∆, ϕ(z) = ϕ1(z)2.

Proof: We apply homotopy lifting principle to X = Ω, M = M̃ = C∗, and
M̃ −→M mapping x to x2.

REMARK: We denote ϕ1(z) by
√
ϕ(z), for obvious reasons.

11



Riemann surfaces, lecture 10 M. Verbitsky

Poincaré metric and the map x−→ x2

CLAIM: Consider a non-bijective holomorphic map ϕ : ∆−→∆ from Poincare

disk to itself. Then |dϕ| < 1 at each point, where dϕ is a norm of an operator

dϕ : Tx∆−→ Tϕ(x)∆ taken with respect to the Poincare metric.

Proof: Let ϕ : ∆−→∆ be a holomorphic map which satisfies |dϕ| = 1 at

x ∈ ∆. Replacing ϕ by γ1 ◦ ϕ ◦ γ2 if necessary, where γi are biholomorphic

isometries of ∆, we may assume that x = 0 and ϕ(x) = 0. By Schwartz

lemma, for such ϕ, relation |dϕ(0)| = 1 implies that ϕ is a linear biholomorphic

map.

REMARK: We will apply this claim only to the function x
ϕ−→ x2. However,

even for this function it takes some work, because an explicit proof needs

and explicit form of Poincaré metric on a disk, which we did not have.
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Poincaré metric and
√
ϕ

Corollary 2: Let ϕ : ∆−→∆\0 be a holomorphic function, and
√
ϕ a

holomorphic function defined above. Let |dϕ|(x) denote the norm of the

operator dϕ at x ∈ ∆ computed with respect to the Poincare metric on ∆.

Then |dϕ|(x) < |d√ϕ|(x) for any x ∈∆.

Proof: Let ψ(x) = x2. By the claim above, |dψ|(x) < 1 for all x ∈ ∆ (here

the norm is taken with respect to Poincaré metric). Using the chain rule,

we obtain that dϕ = dψ ◦ d√ϕ. which gives |dϕ|(x) = |dψ|(√ϕ(x))|d√ϕ|(x),

hence

|d√ϕ|(x) =
|dϕ|(x)|

|dψ|(√ϕ(x))
> |dϕ|(x).
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Riemann mapping theorem

THEOREM: Let Ω ⊂∆ be a simply connected domain. Then Ω is biholo-

morphic to ∆.

Proof. Step 1: Consider the Kobayashi metric on Ω and ∆, and let F be

the set of all injective holomorphic maps Ω−→∆. Consider x ∈ Ω, and let

f be a map with |df |(x) maximal in the sense of Kobayashi metric. Such f

exists by Montel’s theorem. Since f lies in the closure of F, and the set

of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective:

z /∈ f(Ω). Taking a composition of f and an isometry of the Poincare disk

does not affect |df |(x), hence we may assume that z = 0. Then the function√
f is a well defined holomorphic map from Ω to ∆. By Corollary 2,

|d
√
f |(x) > |df |(x), which is impossible, because it |df |(x) is maximal.
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