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Homotopy lifting principle (reminder)

DEFINITION: A topological space X is locally path connected if for each

x ∈ X and each neighbourhood U 3 x, there exists a smaller neighbourhood

W 3 x which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,

and M̃ −→M a covering map. Then for each continuous map X −→M ,

there exists a lifting X −→ M̃ making the following diagram commutative.

M̃

X -

-

M
?
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Coverings and subgroups of π1(M)

THEOREM: For each subgroup Γ ⊂ π1(M) there exists a unique, up to
isomorphism, connected covering MΓ −→M such that π1(MΓ) = Γ.

THEOREM: If, in addition, Γ ⊂ π1(M) is a normal subgroup, the group
G = π1(M)/Γ acts on MΓ by automorphisms commuting with projection
to M (“automorphisms of the covering”), freely and transitively on the fibers
of the projection MΓ −→M , and give M = MΓ/G.

COROLLARY: The fundamental group π1(M) acts on the universal cov-
ering M̃ by homeomorphisms which commute with the projection to M

and give M = M̃/π1(M).

THEOREM: Let M be connected, locally path connected, locally simply
connected topological space. Fix p ∈ M . Then the category of the cov-
erings of M is naturally equivalent with the category of sets with the
action of π1(M), and the equivalence takes a covering M̃ −→M to the set
π−1(p).

COROLLARY: Let M be a space with commutative π1(M), and M̃ its
universal cover. Then for any connected covering M1 −→M, the covering
M1 is obtained as M1 = M̃/Γ, where Γ ⊂ π1(M) is a subgroup.
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Deformation retracts

DEFINITION: Retraction of a topological space X to Y ⊂ X is a continuous

map X −→ Y which is identity on Y ⊂ X. Deformation retraction of a

topological space X to Y ⊂ X is a continuous map ϕt : X × [0,1]−→X such

that ϕ1 = IdX and ϕ0 is retration of X to Y .

EXERCISE: Prove that π1(X) = π1(Y ) when Y is a deformation retract

of X.

DEFINITION: A topological space X is contractible if a point p ∈ X is its

deformation retract.

EXERCISE: Let p ∈ X be a deformation retract of X, prove that any other

point q ∈ X is also a deformation retract.

EXERCISE: Prove that a contractible space X satisfies π1(X) = 0.

EXERCISE: Let Y ⊂ X be a deformation retract of X. Prove that any

map Z −→X is homotopy equivalent to Z −→ Y ⊂ X.
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Points of ramification

DEFINITION: Let ϕ : X −→ Y be a holomorphic map of complex manifolds,
not constant on each connected component of X. Any point x ∈ X where
dϕ = 0 is called a ramification point of ϕ. Ramification index of the
point x is the number of preimages of y′ ∈ Y , for y′ in a sufficiently small
neighbourhood of y = ϕ(x).

THEOREM 1: Let Y , Y be compact Riemannian surfaces, ϕ : X −→ Y a
holomorphic map, and x ∈ X a ramification point. Then there is a neigh-
bourhood of x ∈ X biholomorphic to a disk ∆, such that the map ϕ|∆ is
equivalent to ϕ(x) = xn, where n is the ramification index.

Proof. Step 1: Let W ⊂ Y be a sufficiently small simply connected neigh-
bourhood of y ∈ Y , and U 3 x a connected component of its preimage in
X. Choosing W sufficiently small, we may assume that U lies in a coordinate
chart. The zeros of dϕ are isolated. Shrinking W if nessesarily, we may as-
sume that dϕ is nowhere zero on U\x, and U\x ϕ−→ W\y is a covering. We
identify W with a disk ∆. By homotopy lifting principle, the homothety map
λ−→ rλ of W , r ∈ [0,1] can be lifted to U uniquely. This means that x is a
homotopy retract of U, and π1(U) = 0. Riemann mapping theorem implies
that U is isomorphic to a disk.
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Points of ramification (2)

THEOREM 1: Let Y , Y be compact Riemannian surfaces, ϕ : X −→ Y a

holomorphic map, and x ∈ X a ramification point. Then there is a neigh-

bourhood of x ∈ X biholomorphic to a disk ∆, such that the map ϕ|∆ is

equivalent to ϕ(x) = xn, where n is the ramification index.

Proof. Step 1: Let W ⊂ Y be a sufficiently small simply connected neigh-

bourhood of y ∈ Y , and U 3 x a connected component of its preimage in X.

[...] Choose U,W in such a way that that x is a homotopy retract of U , and

π1(U) = 0. Riemann mapping theorem implies that U is isomorphic to

a disk.

Step 2: Passing to the universal covering Ũ\x = W̃\y, we obtain an holo-

morphic action of Z = π1(Ũ\x) on W̃\y such that W\y = W̃\y/Z and U\y =

W̃\y/nZ. Therefore, Z/nZ acts on U\x, freely and transitively on the fibers of

the projection U\x ϕ−→ W\y. This action is extended to 0 by homotopy lifting

principle. Then W = U/(Z/n). However, any action of the cyclic group

Z/n on ∆ is conjugate to the rotations by {εin}, where εn is a primitive

root of unity of degree n. The corresponding quotient map is equivalent to

ϕ(x) = xn.
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Hyperelliptic curves and hyperelliptic equations

REMARK: Let M
Ψ−→ N be a C∞-map of compact smooth oriented mani-

folds. Recall that degree of Ψ is number of preimages of a regular value n,

counted with orientation. Recall that the number of preimages is inde-

pendent from the choice of a regular value n ∈ N, and the degree is a

homotopy invariant.

DEFINITION: Hyperelliptic curve S is a compact Riemann surface admit-

ting a holomorphic map S −→ CP1 of degree 2 and with 2n ramification points

of degree 2.

DEFINITION: Hyperelliptic equation is an equation P (t, y) = y2 + F (t) =

0, where F ∈ C[t] is a polynomial with no multiple roots.

REMARK: Clearly, the natural projection (t, y)−→ t maps the set S0 of

solutions of P (t, y) = 0 to C with 2n ramification points of degree 2. Also,

S0 is smooth (check this). The complex manifold S0 is equipped with an

involution τ(t, y) = (t,−y) exchanging the roots, and S0/τ = C.
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Hyperelliptic curves and desingularization

DEFINITION: Let P (t, y) = y2 + F (t) = 0 be a hyperelliptic equation.

Homogeneous hyperelliptic equation is P (x, y, z) = y2zn−2 +znF (x/z) = 0,

where n = degF .

REMARK: The set of solutions of P (x, y, z) = 0 is singular, but an algebraic

variety of dimension 1 has a natural desingularization, called normalization.

The involution τ is extended to the desingularization S, giving S/τ = CP1

because CP1 is the only smooth holomorpic compactification of C as we have

seen already.
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Hyperbolic polyhedral manifolds

DEFINITION: A polyhedral manifold of dimension 2 is a piecewise smooth

manifold obtained by gluing polygons along edges.

DEFINITION: Let {Pi} be a set of polygons on the same hyperbolic plane,

and M be a polyhedral manifold obtained by gluing these polygons. Assume

that all edges which are glued have the same length, and we glue the edges

of the same length. Then M is called a hyperbolic polyhedral manifold.

We consider M as a metric space, with the path metric induced from Pi.

CLAIM: Let M be a hyperbolic polyhedral manifold. Then for each point

x ∈M which is not a vertex, x has a neighbourhood which is isometric to

an open set of a hyperbolic plane.

Proof: For interior points of M this is clear. When x belongs to an edge, it

is obtained by gluing two polygons along isometric edges, hence the neigh-

bourhood is locally isometric to the union of the same polygons in H2 aligned

along the edge.
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Hyperbolic polyhedral manifolds: interior angles of vertices

DEFINITION: Let v ∈ M be a vertex in a hyperbolic polyhedral manifold.
Interior angle of v in M is sum of the adjacent angles of all polygons adjacent
to v.

EXAMPLE 1: Let M −→∆ be a ramified n-tuple cover of the Policate disk,
given by solutions of yn = x. We can lift split ∆ to polygons and lift the
hyperbolic metric to M , obtaining M as a union of n times as many polygons
glued along the same edges. Then the interior angle of the ramification
point is 2πn.

EXAMPLE 2: Let ∆−→M be a ramified n-tuple cover, obtained as a
quotient M = ∆/G, where G = Z/nZ. Split ∆ onto fundamental domains of
G, shaped like angles adjacent to 0. Then the quotient ∆/G gives an angle
with its opposite sides glued. It is a hyperbolic polyhedral manifold with
interior angle 2π

n at its ramification point.

EXAMPLE 3: Let D be a diameter bisecting a disk ∆, and passing through
the origin 0 and P ⊂ ∆ one of the halves. The (unique) edge of P is split
onto two half-geodesics E+ and E− by the origin. Gluing E+ and E−, we
obtain a hyperbolic polyhedral manifold with a single vertex and the
interior angle π.
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Sphere with n points of angle π

EXAMPLE: Let P be a bounded convex polygon in H2, α the sum of its
angles, and ai, i = 1, ...,m median points on its edges Ei. Each ai splits Ei in
two equal intervals. We glue them as in Example 3, and glue all vertices of
P together. This gives a sphere M with hyperbolic polyhedral metric,
one vertex ν with angle α (obtained by gluing all vertices of P together) and
m vertices with angle π corresponding to ai ∈ Ei.

REMARK: Assume that α = 2π, that is, M is isometric to a hyperbolic
sphere around ν. We equip M with a complex structure compatible with
the hyperbolic metric outside of its singularities. A neighbourhood of each
singularity is isometrically identified with a neighbourhood of 0 in ∆/G, where
G = Z/2Z. We put a complex structure on ∆/G as in Example 2. This puts
a structure of a complex manifold on M.

THEOREM: (Alexandre Ananin)
Let M be the hyperbolic polyhedral manifold obtained from the polyhedron
P as above. Assume that m = n is even, and α = 2π. Then M admits a
double cover M1, ramified at all ai, which is locally isometric to H2.

Proof in the next lecture.

REMARK: Clearly, M1 is hyperelliptic.
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