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Points of ramification (different proof)

DEFINITION: Let ϕ : X −→ Y be a holomorphic map of complex manifolds,

not constant on each connected component of X. Any point x ∈ X where

dϕ = 0 is called a ramification point of ϕ. Ramification index of the

point x is the number of preimages of y′ ∈ Y , for y′ in a sufficiently small

neighbourhood of y = ϕ(x).

THEOREM 1: Let X, Y be compact Riemannian surfaces, ϕ : X −→ Y a

holomorphic map, and x ∈ X a ramification point. Then there is a neigh-

bourhood of x ∈ X biholomorphic to a disk ∆, such that the map ϕ|∆ is

equivalent to ϕ(x) = xn, where n is the ramification index.

Proof: Take neighbourhoods U 3 x, V 3 ϕ(x) which are biholomorphic to

a disk, with ϕ(U) ⊂ V . Write the Taylor decomposition for ϕ in 0: ϕ(x) =

anxn + an+1x
n+1 + ... = xnu(x), where an 6= 0. where u(x) = an + an+1x +

an+1x
2 + ... Since u(x) is invertible, one can choose a branch v(x) := n

√
u(x)

in a neighbourhood of 0. Then ϕ(x) = zn, where z = xv(x).
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Hyperelliptic curves and hyperelliptic equations (reminder)

REMARK: Let M
Ψ−→ N be a C∞-map of compact smooth oriented mani-

folds. Recall that degree of Ψ is number of preimages of a regular value n,
counted with orientation. Recall that the number of preimages is inde-
pendent from the choice of a regular value n ∈ N, and the degree is a
homotopy invariant.

DEFINITION: Hyperelliptic curve S is a compact Riemann surface admit-
ting a holomorphic map S −→ CP1 of degree 2 and with 2n ramification points
of degree 2.

DEFINITION: Hyperelliptic equation is an equation P (t, y) = y2 + F (t) =
0, where F ∈ C[t] is a polynomial with no multiple roots.

DEFINITION: Let P (t, y) = y2 + F (t) = 0 be a hyperelliptic equation.
Homogeneous hyperelliptic equation is P (x, y, z) = y2zn−2 +znF (x/z) = 0,
where n = degF .

REMARK: The set of solutions of P (x, y, z) = 0 is singular, but an algebraic
variety of dimension 1 has a natural desingularization, called normalization.
Define the involution τ(x, y, z) = (x,−y, z). Clearly, τ(S) = S. The involution
τ is extended to the desingularization S, giving S/τ = CP1 because CP1 is
the only smooth holomorpic compactification of C as we have seen already.
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Hyperbolic polyhedral manifolds (reminder)

DEFINITION: A polyhedral manifold of dimension 2 is a piecewise smooth

manifold obtained by gluing polygons along edges.

DEFINITION: Let {Pi} be a set of polygons on the same hyperbolic plane,

and M be a polyhedral manifold obtained by gluing these polygons. Assume

that all edges which are glued have the same length, and we glue the edges

of the same length. Then M is called a hyperbolic polyhedral manifold.

We consider M as a metric space, with the path metric induced from Pi.

CLAIM: Let M be a hyperbolic polyhedral manifold. Then for each point

x ∈M which is not a vertex, x has a neighbourhood which is isometric to

an open set of a hyperbolic plane.

Proof: For interior points of M this is clear. When x belongs to an edge, it

is obtained by gluing two polygons along isometric edges, hence the neigh-

bourhood is locally isometric to the union of the same polygons in H2 aligned

along the edge.
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Hyperbolic polyhedral manifolds: interior angles of vertices (reminder)

DEFINITION: Let v ∈ M be a vertex in a hyperbolic polyhedral manifold.
Interior angle of v in M is sum of the adjacent angles of all polygons adjacent
to v.

EXAMPLE 1: Let M −→∆ be a ramified n-tuple cover of the Policate disk,
given by solutions of yn = x. We can lift split ∆ to polygons and lift the
hyperbolic metric to M , obtaining M as a union of n times as many polygons
glued along the same edges. Then the interior angle of the ramification
point is 2πn.

EXAMPLE 2: Let ∆−→M be a ramified n-tuple cover, obtained as a
quotient M = ∆/G, where G = Z/nZ. Split ∆ onto fundamental domains of
G, shaped like angles adjacent to 0. Then the quotient ∆/G gives an angle
with its opposite sides glued. It is a hyperbolic polyhedral manifold with
interior angle 2π

n at its ramification point.

EXAMPLE 3: Let D be a diameter bisecting a disk ∆, and passing through
the origin 0 and P ⊂ ∆ one of the halves. The (unique) edge of P is split
onto two half-geodesics E+ and E− by the origin. Gluing E+ and E−, we
obtain a hyperbolic polyhedral manifold with a single vertex and the
interior angle π.
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Sphere with n points of angle π (reminder)

EXAMPLE: Let P be a bounded convex polygon in H2, α the sum of its
angles, and ai, i = 1, ..., n median points on its edges Ei. Each ai splits Ei in
two equal intervals. We glue them as in Example 3, and glue all vertices of
P together. This gives a sphere M with hyperbolic polyhedral metric,
one vertex ν with angle α (obtained by gluing all vertices of P together) and
n vertices with angle π corresponding to ai ∈ Ei.

REMARK: Assume that α = 2π, that is, M is isometric to a hyperbolic disk
in a neighbourhood of ν. We equip M with a complex structure compatible
with the hyperbolic metric outside of its singularities. A neighbourhood of
each singularity is isometrically identified with a neighbourhood of 0 in ∆/G,
where G = Z/2Z. We put a complex structure on ∆/G as in Example 2. This
puts a structure of a complex manifold on M.

THEOREM: (Alexandre Ananin)
Let M be the hyperbolic polyhedral manifold obtained from the polygon P
with n vertices as above. Assume that n is even, and α = 2π. Then M
admits a double cover M1, ramified at all ai, which is locally isometric
to H2.
Proof: later today.

REMARK: Clearly, M1 is hyperelliptic.
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Voronoi partitions

DEFINITION: Let M be a metric space, and S ⊂M a finite subset. Voronoi

cell associated with xi ∈ S is {z ∈ M | d(z, xi) 6 d(z, xi)∀j 6= i}. Voronoi

partition is partition of M onto its Voronoi cells.

Voronoi partition
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Fundamental domains and polygons

DEFINITION: Let Γ be a discrete group acting on a manifold M , and U ⊂M
an open subset with piecewise smooth boundary. Assume that for any non-

trivial γ ∈ Γ one has U ∩ γ(U) = ∅ and Γ · U = M , where U is closure of U .

Then U is called a fundamental domain of the action of Γ.

THEOREM: Let Γ be a discrete group acting on a hyperbolic plane H2 by

isometries. Then Γ has a polyhedral fundamental domain P . If, moreover,

H2/Γ has finite volume, ∂P has at most finitely many points on Abs.

Proof: Clearly, Vol(P ) = Vol(H2/Γ). This takes care of the last assertion,

because polygons with infinitely many points on Abs have infinite volume

To obtain P , take a point s ∈ H, and let P be the Voronoi cell associated

with the set Γ · s.
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Discrete subgroups in SO+(1,2)

LEMMA: Let Γ ⊂ SO+(1,2) be a discrete subgroup, and S ⊂ H2 the set of

points with non-trivial stabilizer. Then S is discrete, and the stabilizer of

each point finite.

Proof. Step 1: Since the center and the angle uniquely defines an elliptic

isometry of H2, infinitely many angles of rotation around a given point give

a non-discrete subset of SO+(1,2) = Iso(H2). This is why the stabilizer

StΓ(x) of each point x is finite.

Step 2: Let now xi be a sequence of fixed points converging to x ∈ H2. If

the order of StΓ(xi) goes to infinity, the limit point of the set
⋃
iStΓ(xi)

contains all rotations around x, hence Γ cannot be discrete. If the order

of StΓ(xi) is bounded, we can replace {xi} by a subsequence of points such

that StΓ(xi) has order n for n ∈ Z>2 fixed. Then the limit set of
⋃
iStΓ(xi)

contains an elliptic rotation of order n around x, a contradiction.

9



Riemann surfaces, lecture 13 M. Verbitsky

Group quotients and polyhedral hyperbolic manifolds

THEOREM: Let Γ ⊂ SO+(1,2) be a discrete subgroup, and H2/Γ the quo-

tient. Then H2/Γ is isometric to a polyhedral hyperbolic manifold.

Proof. Step 1: First, we prove that the quotient H2/Γ is a manifold.

Indeed, outside of the set of fixed points, the action of Γ is properly discon-

tinuous, and the quotient is smooth. For each fixed point p, it contains a

neighbourhood where StΓ(p) acts as a finite order rotation group Z/nZ on a

disk, and the quotient is smooth by Theorem 1.

Step 2: Let Γ·x be an orbit of Γ in H2. The Voronoi partition gives a polygonal

fundamental domain P for the Γ-action. The space H2/Γ is obtained by gluing

the appropriate edges of P and then taking a quotient by appropriate finite

groups stabilizing different points in P . Let StΓ(P ) be the stabilizer of P in Γ.

Then H2/Γ is a quotient of a polyhedral hyperbolic manifold by StΓ(P ).
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Group quotients and polyhedral hyperbolic manifolds (2)

THEOREM: Let Γ ⊂ SO+(1,2) be a discrete subgroup, and H2/Γ the quo-
tient. Then H2/Γ is isometric to a polyhedral hyperbolic manifold.

Proof. Step 1: First, we prove that the quotient H2/Γ is a manifold.

Step 2: Let Γ · x be an orbit of Γ in H2. The Voronoi partition gives a
polygonal fundamental domain P for the Γ action. Then H2/Γ is a quotient
of a polyhedral hyperbolic manifold by StΓ(P ).

Step 3: It remains to show that such a quotient is always a polyhedral
hyperbolic manifold. Since Γ is discrete, the set of its fixed points is discrete,
and the order of rotation is finite. For each interior point x ∈ P with finite
stabilizer, its stabilizer group acts on the set Γ · x, hence it acts on P by
isometries. Then we can cut P into isometric pieces, replacing P by a smaller
fundamental domain with no fixed points in interior.

Since P is (strictly) convex, none of the vertices is fixed by a non-trivial
element γ ∈ StΓ(P ). The only point which can be fixed by γ is the median
m of the edge, but an isometry of the Voronoi tiling preserving m has order
2 and acts by rotations, hence cannot fix P . This means that StΓ(P ) = 0
when there are no interior points of P preserved by γ ∈ Γ
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Semi-regular tilings

DEFINITION: A tiling of H2 is a partition of H2 onto polygons with finite

volume. A tiling is regular if the group Γ of isometries preserving tilings

acts transitively on vertices, edges and faces of the partition. A tiling T is

semi-regular if Γ acts on the set of faces of T with finitely many orbits.

REMARK: Tilings is good a way to produce hyperbolic manifolds and Rie-

mannian surfaces from a hyperbolic plane. Indeed, for any semi-regular tiling,

T , the quotient space H2/Γ has finite volume. Moreover, H2/Γ is compact

if all polygons in T have no vertices in Abs (prove it).

EXERCISE: Let T be a regular tiling of H2, and Γ the group of isometries

of H2 preserving T . Prove that any face of T is a fundamental domain

for Γ.
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Regular tiling of H2 by right-angle pentagons

Regular tiling of H2 by right-angle pentagons
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Semi-regular tiling of H2

Semi-regular tiling of H2 by octagons and triangles
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Fundamental domains and tilings

REMARK: Bounded polygon in H2 is a polygon P such that P has no

points in Abs, or, equivalently, such that the closure of P in H2 is compact.

CLAIM: Let T be a semi-regular tiling of H2 by bounded polygons. Then the

group Γ of isometries of H2 preserving T acts on H2 with a fundamental

domain which is a bounded polygon.

Proof: Let Γ · x be an orbit of x ∈ H2, and Vx the corresponding Voronoi

domain. It would suffice to show that the closure of Vx is compact. Let

Bx(R) ⊂ H2 be a a disc of radius R with center in x which contains a rep-

resentative of each Γ-orbit on the tiles of T . There are finitely many orbits,

and all tiles are compact, hence such a disk always exists. Then for every

y ∈ H2, there exists γ ∈ Γ such that γ(y) ∈ Bx(R). Then d(y, γ−1(x)) 6 R,

hence either y ∈ Bx(R) or y /∈ Vx. We proved that Vx ⊂ Bx(R), hence the

Voronoi polygon is compact.

COROLLARY: Let Γ be a group of isometries of a semi-regular tiling. Then

the quotient H2/Γ is a compact polyhedral hyperbolic manifold, hence is

a compact Riemann surface.
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Cocompact subgroups of PSL(2,R) without torsion

DEFINITION: A discrete subgroup Γ ⊂ PSL(2,R) is cocompact if H2/Γ is
compact.

THEOREM: (a part of Poincaré uniformization theorem)
Let S be a compact Riemannian surface of genus > 1. Then S = H2/Γ for
Γ ⊂ PSL(2,R) freely acting on H2.

Proof will be given later in these lectures, if time permits.

THEOREM: Let Γ ⊂ PSL(2,R) be a discrete group. The action of Γ on H2

is free if and only if it does not contain elliptic elements. If, moreover,
Γ is cocompact, all its non-trivial elements are hyperbolic.

Proof: The first assertion is clear, because elliptic elements have fixed
points on H2, hyperbolic and parabolic act without fixed points.

To prove the second, let γ ∈ Γ = π1(S). Then corresponding class in π1(S)
can be represented by a closed geodesic s ⊂ S (prove it). Let s̃ ⊂ H2 be
its preimage. Since s̃ contains x and γ(x), the action of γ preserves the
geodesic s̃, hence γ is hyperbolic.
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The proof of Ananin Theorem

EXAMPLE: Let P be a bounded convex polygon in H2, α the sum of its
angles, and ai, i = 1, ..., n median points on its edges Ei. Each ai splits Ei in
two equal intervals. We glue them as in Example 3, and glue all vertices of
P together. This gives a sphere M with hyperbolic polyhedral metric,
one vertex ν with angle α (obtained by gluing all vertices of P together) and
n vertices with angle π corresponding to ai ∈ Ei.

REMARK: Assume that α = 2π, that is, M is isometric to a hyperbolic
sphere around ν. We equip M with a complex structure compatible with
the hyperbolic metric outside of its singularities. A neighbourhood of each
singularity is isometrically identified with a neighbourhood of 0 in ∆/G, where
G = Z/2Z.

THEOREM: (Alexandre Ananin)
Let M be the hyperbolic polyhedral manifold obtained from the polyhedron
P as above. Assume that m = n is even, and α = 2π. Then M admits a
double cover M1, ramified at all ai, which is locally isometric to H2.

Strategy of a proof: We tile the hyperbolic plane H2 by copies of P . We
show that the group Γ of oriented isometries of this tiling has a subgroup Γ2
of index 2, freely acting on H2, such that H2/Γ = M , and H2/Γ2 is its ramified
covering with ramification in a1, ..., an.
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The proof of Ananin Theorem (2)

Proof. Step 1: Fix an isometric embedding P ↪→ H2. Let Γ be the group

of isometries generated by central symmetries (that is, rotations with angle

π) around a1, ..., an. Then the images of P tile H2 in such a way that P is

a fundamental domain of Γ. Indeed, Γ · P covers the whole H (it is open

and closed). However, rotating around the edge adjacent to a given vertex

of P , we go through a full circle after adding all interior angles one by one.

Since the sum of interior angles of P is 2π, we arrive back to P , hence the

images of P intersect with P only on the edge. We proved that P is a

fundamental domain of Γ, which is the isometry group of the tiling of H2 by

copies of P .

Ananin tiling of a Euclidean plane by quadrangles
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The proof of Ananin Theorem (3)

THEOREM: (Alexandre Ananin)

Let M be the hyperbolic polyhedral manifold obtained from the polyhedron

P as above. Assume that n is even, and α = 2π. Then M admits a double

cover M1, ramified at all ai, which is locally isometric to H2.

Proof. Step 1: Fix an isometric embedding P ↪→ H2. Let Γ be the group

of isometries generated by central symmetries around a1, ..., an. Then the

images of P tile H2 in such a way that P is a fundamental domain of

Γ.

Step 2: Now we prove that H2/Γ = M. Indeed, Γ acts freely on P , and

its action is non-free only in a1, ..., an, which are fixed points of appropriate

central symmetries. These central symmetries identify two opposite halves of

each edge, hence H2/Γ is obtained by gluing half of each edge of P with the

opposite half.
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The proof of Ananin Theorem (4)

Step 3: It remains to construct an index 2 subgroup Γ2 ⊂ Γ freely

acting on H2. We color the vertices of the tiling constructed above in colors

red and green in such a way that connected vertices have different colors.

This is possible if P has even number of vertices.

Ananin tiling of a Euclidean plane with colored vertices

The central symmetries τj generating Γ exchange red and green vertices. Let

Γ2 ⊂ Γ be a subgroup generated by products of even number of τj. Clearly,

Γ2 is a subgroup of all elements γ ∈ Γ preserving colors of the vertices. Any

element of Γ has to most 1 fixed point in the middle of an edge of a tile,

hence Γ2 acts on H2 freely.
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