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Vector fields and derivations

DEFINITION: Let M be a smooth manifold, and X : C∞M −→ C∞M an

operator. We call X a vector field if in each coordinate system x1, ..., xn on

M , the map X can be written as X(f) =
∑
αi

df
dxi

.

DEFINITION: A map X from a ring to itself is called a derivation it it

satisfies the Leibnitz rule: X(fg) = gX(f) + fX(g). Further on, we shall

mostly consider derivations X : C∞M −→ C∞M . Such derivations are tacitly

assumed to be R-linear.

DEFINITION: Support Supp(f) of a continuous function f is the clo-

sure of the set of all points where it is not equal to 0. An operator X :

C∞M −→ C∞M is local if it maps a function with support in K to a function

with support in K, for each K ⊂M .

REMARK: Clearly, all vector fields are local derivations.
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Derivations are local

THEOREM: Any derivation X : C∞M −→ C∞M is local.

Proof. Step 1: Let K,L ⊂M be non-intersecting closed sets, f be a function

with support in K, and g a function satisfying g|L = 1 and Supp(g) ∩K = ∅.
Then 0 = X(fg) = gX(f) + fX(g). Restricted to L, this gives X(f)|L = 0,

because g|L = 1 and f |L = 0.

Step 2: Let us prove now that Supp(X(f)) ⊂ K = Supp(f). Let x /∈ K. We

need to show that x /∈ Supp(X(f)).

Choosing an appropriate coordinate system on M\K, we find a function g

such that Supp(g) ⊂ M\K and g = 1 in a neighbourhood V of x. Then

X(f)|V = 0 by Step 1. This implies that x /∈ Supp(X(f)).
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Hadamard’s Lemma

LEMMA: (Hadamard’s Lemma)
Let f be a smooth function on Rn, and xi the coordinate functions. Then
f(x) = f(0) +

∑n
i=1 xigi(x), for some smooth gi ∈ C∞Rn.

Proof: Let t ∈ Rn. Consider a function h(t) ∈ C∞Rn, h(t) = f(tx). Using the
chain rule, we get dh

dt =
∑ d
dxi
f(tx)xi, obtaining

f(x)− f(0) =
∫ 1

0

dh

dt
dt =

∑
i

xi

∫ 1

0

df(tx)

dxi
(tx)dt.

COROLLARY: Let m0 be an ideal of all smooth functions on Rn vanishing
in 0. Then m0 is generated by coordinate functions.

COROLLARY: Let f be a smooth function on Rn satisfying f(x) = 0 and
df
∣∣∣Tx(M) = 0. Then f ∈ m2

x.

Proof: f(x) =
∑n
i=1 xigi(x), where all gi vanish in 0.

EXERCISE 1: Let X : C∞M −→ C∞M be a derivation, and f ∈ m2
x. Prove

that X(f) ∈ mx.
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Polynomial vector fields and derivations

LEMMA 1: Let k be any field, k[x1, ..., xn] the ring of polynomials, and

A ⊃ k[x1, ..., xn] any ring. Then any k-linear derivation X : k[x1, ..., xn]−→A

is expressed as X(F ) =
∑
αi

df
dxi

, where αi = X(xi).

Proof: A derivation X on R[x1, ..., xn] is determined by Leibnitz formula and

X(x1), ..., X(xn). On monomials the Leibnitz formula gives

X(xa1
1 x

a2
2 ...xann ) = a1X(x1)xa1−1

1 x
a2
2 ...xann + a2X(x2)xa1

1 x
a2−1
2 ...xann + ...

+ anX(xn)xa1
1 x

a2−1
2 ...xan−1

n .

Therefore, for any polynomial F ∈ R[x1, ..., xn], we have X(F ) =
∑
αi
dF
dxi

,

where αi = X(xi).
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Vector fields and derivations

THEOREM 1: Any derivation X : C∞M −→ C∞M is a vector field on

M.

Proof. Step 1: Since derivations are local, it suffices to prove this state-

ment on Rn.

Step 2: For polynomial functions F ∈ R[x1, ..., xn], we have X(F ) =
∑
αi
dF
dxi

,

where αi = X(xi) (Lemma 1). Therefore, X
∣∣∣R[x1,...,xn] is a vector field.

Step 3: Given a derivation δ, write δ0 :=
∑
αi

df
dxi

, where αi = δ(xi). To finish
Theorem 1, it suffices to show that δ1 := δ − δ0 = 0. This would follow if

we prove that all derivations δ1 vanishing on all polynomial functions

vanish.

Step 4: By Hadamard’s lemma, for each x ∈ Rn, one has f ∈ m2
x modulo linear

functions. Since δ1 vanishes on linear functions, one has δ1(C∞Rn) = δ1(m2
x)

for each x ∈ Rn (Hadamard’s lemma). However, δ1(m2
x) ∈ mx because δ1 is

a derivation (Exercise 1). Therefore, δ1(f) vanishes everywhere for all

f ∈ C∞Rn.
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Flow of diffeomorphisms

DEFINITION: Let V : M × [a, b]−→M be a smooth map such that for all
t ∈ [a, b] the restriction Vt := V

∣∣∣M×{t} : M −→M is a diffeomorphism. Then
V is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=
f(Vt(x)). Consider the map d

dtVt|t=c : C∞M −→ C∞M , with d
dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

Proof: d
dtV
∗
t (fg) = V ∗t (f) ddt · V

∗
t g + d

dtV
∗
t f · V ∗t (g) by the Leibnitz rule, giving

(V −1
t )∗

d

dt
V ∗t (fg) = f · (V −1

t )∗
d

dt
V ∗t g + g · (V −1

t )∗
d

dt
V ∗t f.

DEFINITION: The vector field d
dtVt|t=c is called a vector field tangent to

a flow of diffeomorphisms Vt at t = c.

DEFINITION: Let vt be a vector field on M , smoothly depending on the
time parameter t ∈ [a, b], and V : M × [a, b]−→M a flow of diffeomorphisms
which satisfies (V −1

t )∗ ddtVt = vt for each t ∈ [a, b], and V0 = Id. Then Vt is
called an exponent of vt.
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Automorphisms of the ring of functions

REMARK: Each diffeomorphism ψ : M −→M induces an automorphism of

the ring of smooth functions on M , f 7→ ψ∗f .

THEOREM: Let M be a manifold. Then any automorphism Ψ : C∞M −→ C∞M
is induced by a diffeomorphism of M.

Proof. Step 1: Given a point x ∈ M , denote by Ix the maximal ideal of

x, that is, the ideal of all functions vanishing in x. On a compact manifold,

any maximal ideal is obtained this way. Indeed, if an ideal I ⊂ C∞M has no

common zeros, for each y ∈M there exists fy ∈ I which does not vanish in y.

Denote by Uy the open set where fy 6= 0. Then {Uy} is an open cover of M .

Finding a finite subcover, we obtain a finite number of functions fi ∈ I such

that
⋂
iUfi = M . Then the function

∑
f2
i ∈ I is invertible, hence I = C∞M

is not a maximal ideal. For non-compact manifolds, points of M are the

same as ideals I ⊂ C∞M such that C∞M/I = R (prove it).

Step 2: Identifying points and maximal ideals, we obtain a map ψ : M −→M

induced by Ψ. It remains to show that this map is a diffeomorphism.
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Automorphisms of the ring of functions (2)

THEOREM: Let M be a compact manifold. Then any automorphism

Ψ : C∞M −→ C∞M is induced by a diffeomorphism of M.

Step 2: Identifying points and maximal ideals, we obtain a map ψ : M −→M

induced by Ψ. It remains to show that this map is a diffeomorphism.

Step 3: All open subsets of M can be obtained as unions of open sets

Uf := f−1(R\0), where f ∈ C∞M (prove it). However, f(x) = 0 if and only

if f ∈ Ix. Then Uf can be considered as a set of maximal ideals Ix such that

f /∈ Ix. Since Ψ maps Uf to UΨ(f), the corresponding map ψ is continuous

on M . This implies that ψ is a homeomorphism.

Step 4: Finally, Ψ maps coordinate functions on U ⊂ M to coordinate

functions on ψ−1(U), hence this homeomorphism is smooth.
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Solutions of ODE (1)

DEFINITION: Let vt be a vector field on M , smoothly depending on the

time parameter t ∈ [0, a], and V : M × [0, a]−→M a flow of diffeomorphisms

which satisfies (V −1
t )∗ ddtVt = vt for each t ∈ [0, a], and V0 = Id. Then Vt is

called an exponent of vt.

Theorem 1: Let vt be a vector field on M , smoothly depending on the time

parameter t ∈ [0, a]. Then the exponent of vt is unique. It always exists

when vt has compact support.
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Solutions of ODE (2)

Theorem 2: Let vt be a vector field on M , smoothly depending on the time

parameter t ∈ [0, a]. Then the exponent of vt is unique. It always exists

when vt vanish (for all t) outside of a compact set K ⊂M .

Proof: To construct a flow of diffeomorphisms Vt = evt it suffices to find

a family of automorphisms Ψt : C∞M −→ C∞M smoothly depending on t ∈
[0, a] such that Ψ−1

t
d
dtΨt = vt. This is the same as to solve the ordinary

differential equation

dft

dt
= vt(ft) (∗)

for any given f0. Then Ψt(f0) := ft clearly satisfies d
dtΨt(f0) = vtΨt(f0).

To finish the proof, we need to show that a solution of (*) exists and

is unique, and to prove that Ψt defined this way is an automorphism,

that is, satisfies Ψt(fg) = Ψt(f)Ψt(g).
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Existence and uniqueness of solutions of ODE

THEOREM: Let vt be a vector field on a manifold M . Consider the differ-

ential equation
dxt
dt = vt(xt), (∗)

where xt ∈ M , and t ∈ [0, a]. Suppose that vt has compact support. Then

(*) has a unique solution for each initial value x0.

Proof: Existence and uniqueness of solutions of (*) follows from Peano and

Picard-Lindelöf theorem. Recall that a function µ : Rn −→ Rm is Lipschitz

if |µ(x) − µ(y)| < C|x − y| for all x, y. Let D be an open subset of R × Rn,

f ∈ C∞D, and

dft

dt
= v(t, f(t)) (∗∗)

a continuous first-order differential equation defined on D. (Peano) Then for

every initial value f0 there exists a solution of (**) defined on a small in-

terval [0, ε]. Moreover (Picard-Lindelöf) the solution is unique if v is Lip-

schitz. Notice that v is Lipschitz on any compact set if it is smooth. Finally,

if there are functions α, β : [0,∞[−→ [0,∞[ such that |vt(x)| < α(t)|x|+ β(t),

the solution exists globally for all t ∈ [0,∞[.
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Derivations and automorphisms

To finish Theorem 2, it would suffice to show that the map f0
Ψt−→ ft ob-

tained as a solution of dft
dt = vt(ft) is multiplicative: Ψt(fg) = Ψt(f)Ψt(g).

From the definition of Ψt it follows

d

dt
Ψt(fg) = vt(ft)gt + ftv(gt)

and

d

dt

(
Ψt(f)Ψt(g)

)
= vt(ft)gt + ftv(gt)

Therefore, both Ψt(fg) and Ψt(f)Ψt(g) are solition of a differential equation
d
dt(χt) = vt(χt) with the same initial value χ0 = fg. They are equal by
uniqueness of solutions.

The same argument proves the following lemma.

LEMMA: Let v, v′ be commuting vector fields. Then the corresponding
diffeomorphisms commute. Moreover, Vt(v′) = v′, where Vt is the diffeo-
morphism flow associated with v.

Proof: Indeed, exponents of commuting linear operators commute.
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Distributions

DEFINITION: Distribution on a manifold is a sub-bundle B ⊂ TM

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-

tive, if its Frobenuus form vanishes.
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Smooth submersions

DEFINITION: Let π : M −→M ′ be a smooth map of manifolds. This map
is called submersion if at each point of M the differential Dπ is surjective,
and immersion if it is injective.

CLAIM: Let π : M −→M ′ be a submersion. Then each m ∈ M has a
neighbourhood U ∼= V ×W , where V,W are smooth and π|U is a projection
of V ×W = U ⊂M to W ⊂M ′ along V .

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: (“Ehresmann’s fibration theorem”)
Let π : M −→M ′ be a smooth submersion of compact manifolds. Prove that
π is a locally trivial fibration.

DEFINITION: Vertical tangent space TπM ⊂ TM of a submersion π :
M −→M ′ is the kernel of Dπ.

CLAIM: Let π : M −→M ′ be a submersion and TπM ⊂ TM the vertical
tangent space. Then TπM is an involutive subbundle.

Proof: Dπ([X,Y ]) = [Dπ(X), Dπ(Y )] = 0 for any X,Y ∈ kerDπ.
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Frobenius theorem (statement)

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

REMARK: The implication “B = TπM” ⇒ “Frobenius form vanishes”

was proven above.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.
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