Riemann surfaces, lecture 14 M. Verbitsky

Complex manifolds of dimension 1

lecture 14: Flow of diffeomorphisms

Misha Verbitsky

IMPA, sala 232

February 14, 2020



Riemann surfaces, lecture 14 M. Verbitsky

Vector fields and derivations

DEFINITION: Let M be a smooth manifold, and X : C°°M — C°°M an
operator. We call X a vector field if in each coordinate system x4, ...,zn ON
M, the map X can be written as X(f) = Zaicid—gf-

DEFINITION: A map X from a ring to itself is called a derivation it it
satisfies the Leibnitz rule: X(fg) = ¢X(f) + fX(g). Further on, we shall
mostly consider derivations X : C°M — C°°M. Such derivations are tacitly
assumed to be R-linear.

DEFINITION: Support Supp(f) of a continuous function f is the clo-
sure of the set of all points where it is not equal to 0. An operator X :
C°M — C°°M is local if it maps a function with support in K to a function
with support in K, for each K C M.

REMARK: Clearly, all vector fields are local derivations.
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Derivations are local
THEOREM: Any derivation X : C®°M — C°°M is local.

Proof. Step 1: Let K, L C M be non-intersecting closed sets, f be a function
with support in K, and g a function satisfying ¢g|;, = 1 and Supp(g) N K = 0.
Then 0 = X(fg) = gX(f) + fX(g). Restricted to L, this gives X(f)|; = 0,
because g|;, =1 and f|; = 0.

Step 2: Let us prove now that Supp(X(f)) C K = Supp(f). Let x ¢ K. We
need to show that x ¢ Supp(X(f)).

Choosing an appropriate coordinate system on M\K, we find a function g
such that Supp(g) € M\K and g = 1 in a neighbourhood V of x. Then
X(f)ly =0 by Step 1. This implies that = ¢ Supp(X(f)). =
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Hadamard’s Lemma

LEMMA: (Hadamard’s Lemma)
Let f be a smooth function on R"™, and x; the coordinate functions. Then
f(x) = f(0) + X1 x;9;(x), for some smooth g; €¢ C°°R".

Proof: Let t € R™. Consider a function h(t) € C*®°R", h(t) = f(tx). Using the
chain rule, we get % = Z%f(tw):ci, obtaining

df (tw)

f@) — 10) = [ Mo = e P

COROLLARY: Let mg be an ideal of all smooth functions on R™ vanishing
in 0. Then mp is generated by coordinate functions. =

COROLLARY: Let f be a smooth function on R" satisfying f(x) = 0 and
df|Tx(M) = 0. Then f & m%

Proof: f(z) =Y x;9;(x), where all g; vanish in 0. =

EXERCISE 1: Let X : C®M — C*®M be a derivation, and f € m2. Prove
that X(f) € ms.
4
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Polynomial vector fields and derivations

LEMMA 1: Let k be any field, k[zq,...,zn] the ring of polynomials, and
A D kl[z1,...,zn] any ring. Then any k-linear derivation X : k[zq1,....,2n] — A
Is expressed as X (F) = Zaif—a{., where o; = X (x;).

Proof: A derivation X on R|xq,...,zy] is determined by Leibnitz formula and
X(x1),...,X(xzn). On monomials the Leibnitz formula gives

X(a:clllang...x%n) = alX(xl)wcil_lng...:B%n + aQX(xQ)xiLlng_l...x%” + .
anX (on)ap2 L ganl

Therefore, for any polynomial F € R[z1,...,zn], We have X(F) = Zai%v
where o; = X(CIZZ) |
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Vector fields and derivations

THEOREM 1: Any derivation X : C°M — C°°M is a vector field on
M.

Proof. Step 1: Since derivations are local, it suffices to prove this state-
ment on R".

Step 2: For polynomial functions F' € R[z1,...,zn], we have X(F) = Zai%,
where o; = X (x;) (Lemma 1). Therefore, X‘R[CCl,---,mn] is a vector field.

Step 3: Given a derivation 9, write §g := Zai%, where «a; = §(x;). To finish
Theorem 1, it suffices to show that 67 := 0 — dg = 0. This would follow if
we prove that all derivations 91 vanishing on all polynomial functions
vanish.

Step 4: By Hadamard's lemma, for each x € R"”, one has f € m% modulo linear
functions. Since §; vanishes on linear functions, one has §1(C®°R") = §1(m?2)
for each z € R® (Hadamard's lemma). However, §;(m2) € m, because §; is
a derivation (Exercise 1). Therefore, 61(f) vanishes everywhere for all
feCCR". =

6
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Flow of diffeomorphisms

DEFINITION: Let V: M x [a,b] — M be a smooth map such that for all
t € [a,b] the restriction V; := V‘Mx{t} . M — M is a diffeomorphism. Then
V is called a flow of diffeomorphisms.

CLAIM: Let V; be a flow of dlffeomorphlsms f e C*®M, and Vt (f)(x) :
f(Vi(x)). Consider the map dt\/ﬂt c . C®°M — C°°M, with dtv;;\t <(f)

(Vc_l)*dvt| —.f. Then f— (V 1)* V7 f is a derivation (that is, a vector
field).

Proof: 4V (fg) = Vi#(f)% - Vitg+ LV f-Vi*(g) by the Leibnitz rule, giving

— *d * — *d * — *d *
(Vi Y V() = f- (V) = Vig g (V) V
L

DEFINITION: The vector field %V}Jt:c is called a vector field tangent to
a flow of diffeomorphisms V; at t = c.

DEFINITION: Let v+ be a vector field on M, smoothly depending on the
time parameter t € [a,b], and V : M X [a,b] — M a flow of diffeomorphisms
which satisfies (V; 1)*4V; = v, for each t € [a,b], and Vo = Id. Then V; is
called an exponent of vy.

7
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Automorphisms of the ring of functions

REMARK: Each diffeomorphism ¢ : M — M induces an automorphism of
the ring of smooth functions on M, f— ¢¥*f.

THEOREM: Let M be a manifold. Then any automorphism Vv : C°M — C°°M
IS induced by a diffeomorphism of M.

Proof. Step 1: Given a point x € M, denote by I, the maximal ideal of
x, that is, the ideal of all functions vanishing in x. On a compact manifold,
any maximal ideal is obtained this way. Indeed, if an ideal I C C°°M has no
common zeros, for each y € M there exists fy € I which does not vanish in y.
Denote by Uy the open set where fy, # 0. Then {Uy} is an open cover of M.
Finding a finite subcover, we obtain a finite number of functions f; € I such
that N; Us, = M. Then the function Y f? € I is invertible, hence I = C®*M
IS not a maximal ideal. For non-compact manifolds, points of M are the
same as ideals I C C*°M such that C*°M/I =R (prove it).

Step 2: Identifying points and maximal ideals, we obtaina map v : M — M
induced by W. It remains to show that this map is a diffeomorphism.

3
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Automorphisms of the ring of functions (2)

THEOREM: Let M be a compact manifold. Then any automorphism
V: C°M — C°°M is induced by a diffeomorphism of M.

Step 2: Identifying points and maximal ideals, we obtaina map v : M — M
induced by W. It remains to show that this map is a diffeomorphism.

Step 3: AIll open subsets of M can be obtained as unions of open sets
Us = f~1(R\0), where f € C*M (prove it). However, f(z) = 0 if and only
if fel. Then Uf can be considered as a set of maximal ideals I, such that
f & Iz. Since W maps Uy to Uy (y), the corresponding map ¢ is continuous
on M. This implies that ¢ iIs a homeomorphism.

Step 4: Finallyy, W maps coordinate functions on U C M to coordinate
functions on ¥ ~1(U), hence this homeomorphism is smooth. m
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Solutions of ODE (1)

DEFINITION: Let v+ be a vector field on M, smoothly depending on the
time parameter t € [0,a], and V : M x [0,a] — M a flow of diffeomorphisms
which satisfies (V; 1)*4V; = v, for each t € [0,a], and Vo = Id. Then V; is
called an exponent of vy.

Theorem 1: Let v4 be a vector field on M, smoothly depending on the time

parameter ¢t € [0,a]. Then the exponent of v; is unique. It always exists
when v; has compact support.

10
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Solutions of ODE (2)

Theorem 2: Let v be a vector field on M, smoothly depending on the time
parameter t € [0,a]. Then the exponent of v; Is unique. It always exists
when v; vanish (for all t) outside of a compact set K C M.

Proof: To construct a flow of diffeomorphisms V; = €% it suffices to find
a family of automorphisms V; : C°M — (M smoothly depending on t &
[0,a] such that W;lﬁwt — v¢. This is the same as to solve the ordinary
differential equation

T=u) )

for any given fg. Then W;(fy) := ft clearly satisfies %\Ut(fg) = v W (fo).
To finish the proof, we need to show that a solution of (*) exists and

IS unique, and to prove that WV; defined this way is an automorphism,
that is, satisfies W;(fg) = W:(f)WV+(g).

11
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EXistence and uniqueness of solutions of ODE

THEOREM: Let vy be a vector field on a manifold M. Consider the differ-
ential equation

We = vy(xy), (%)
where x; € M, and ¢t € [0,a]. Suppose that v+ has compact support. Then
(*) has a unique solution for each initial value zg.

Proof: Existence and uniqueness of solutions of (*) follows from Peano and
Picard-Lindelof theorem. Recall that a function p : R™ — R™ is Lipschitz
if |u(z) — pu(y)| < Clz —y| for all z,y. Let D be an open subset of R x R”,
feC*®D, and

dft
i v(t, f(t)) ()

a continuous first-order differential equation defined on D. (Peano) Then for
every initial value fy there exists a solution of (**) defined on a small in-
terval [0,c]. Moreover (Picard-Lindelof) the solution is unique if v is Lip-
schitz. Notice that v is Lipschitz on any compact set if it is smooth. Finally,
if there are functions o, 8 : [0,00[ — [0, 00[ such that |v(x)| < a(t)|x] + B(t),
the solution exists globally for all t € [0,c0[. =

12
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Derivations and automorphisms

To finish Theorem 2, it would suffice to show that the map fjg ﬂ> ft+ ob-
tained as a solution of fl—];t = v¢(fy) I1s multiplicative: W.(fg) = V:(f)WV:(g).
From the definition of W; it follows

d
2 Vilfg) = v(f)ge + frv(ge)

and

d

£<\Ut(f)\|jt(g)> = vt(fe)gt + frv(ge)

Therefore, both W;(fg) and W:(f)W;(g) are solition of a differential equation
4 (xt) = v(xt) with the same initial value xg = fg. They are equal by
uniqueness of solutions.

The same argument proves the following lemma.
LEMMA: Let v,v' be commuting vector fields. Then the corresponding
diffeomorphisms commute. Moreover, V;(v") = v/, where V; is the diffeo-

morphism flow associated with v.

Proof: Indeed, exponents of commuting linear operators commmute. m
13
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Distributions
DEFINITION: Distribution on a manifold is a sub-bundle B C T M

REMARK: Let I : TM — TM/B be the projection, and z,y € B some
vector fields. Then [fz,y] = flz,y] — Dy(f)x. This implies that M([z,y]) is
C*°(M)-linear as a function of z and y.

DEFINITION: The map [B,B]— TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C°°(M )-
linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-
tive, if its Frobenuus form vanishes.

14
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Smooth submersions

DEFINITION: Let 7 : M — M’ be a smooth map of manifolds. This map
is called submersion if at each point of M the differential Dm is surjective,
and immersion if it is injective.

CLAIM: Let # : M — M’ be a submersion. Then each m € M has a
neighbourhood U =V x W, where V,W are smooth and x|y is a projection
of VxW=UcCM to W c M along V.

EXERCISE: Deduce this result from the inverse function theorem.

EXERCISE: (“Ehresmann’s fibration theorem”)
Let 7: M — M’ be a smooth submersion of compact manifolds. Prove that
7 is a locally trivial fibration.

DEFINITION: Vertical tangent space 1M C TM of a submersion = :
M — M’ is the kernel of Dr.

CLAIM: Let 71 : M — M’ be a submersion and T,M C TM the vertical
tangent space. Then T;M is an involutive subbundle.

Proof: D;([X,Y]) = [Dx(X),Dr(Y)] =0 for any X, Y € kerD,. =
15
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Frobenius theorem (statement)

Frobenius Theorem: Let B C T'M be a sub-bundle. Then B is involutive
if and only if each point x € M has a neighbourhood U > x and a smooth
submersion U -~ V such that B is its vertical tangent space: B = T, M.

REMARK: The implication “B = T:M" = “Frobenius form vanishes”
was proven above.

DEFINITION: The fibers of m are called leaves, or integral submanifolds
of the distribution B. Globally on M, a leaf of B is a maximal connected
manifold Z — M which is immersed to M and tangent to B at each point.
A distribution for which Frobenius theorem holds is called integrable. If B is
integrable, the set of its leaves is called a foliation. The leaves are manifolds
which are immersed to M, but not necessarily closed.
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