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Categories

DEFINITION: A category C is a collection of data called “objects” and
“morphisms between objects” which satisfies the axioms below.

DATA.

Objects: A class ©O6(C) of objects of C.

Morphisms: For each X,Y € ©6(C), one has a set Nlo:(X,Y) of mor-
phisms from X to Y.

Composition of morphisms: For each ¢ € Mou(X,Y), v € Mo (Y, Z)
there exists the composition oy € Mo (X, Z)

Identity morphism: For each A € O6(C) there exists a morphism Id4 €
Mor(A,A).

AXIOMS.
Associativity of composition: ¢ o (¢5 0 ¢3) = (1 0 ¥5) o Y3.
Properties of identity morphism: For each ¢ € Mo:(X,Y), one has
Idyop = p = poldy
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Categories (2)

DEFINITION: Let X,Y € O6(C) — objects of C. A morphism ¢ € NMo:(X,Y)
is called an isomorphism if there exists ¢ € Moz (Y, X) such that poy =1Idy
and ¥ o = Idy. In this case, the objects X and Y are called isomorphic.

Examples of categories:

Category of sets: its morphisms are arbitrary maps.

Category of vector spaces: its morphisms are linear maps.
Categories of rings, groups, fields: morphisms are homomorphisms.
Category of topological spaces: morphisms are continuous maps.
Category of smooth manifolds: morphisms are smooth maps.
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Functors

DEFINITION: Let ©¢1,C> be two categories. A covariant functor from ¢4
to @5 is the following set of data.

1. A map F: O6(C1) — O6(C»).

2. A map F : Mo(X,Y)— Moc(F(X),F(Y)) defined for any pair of
objects X,Y € O6(Cq).

These data define a functor if they are compatible with compositions, that
is, satisfy F'(¢) o F(vv) = F(po1) for any o € Moe(X,Y) and v € Moc(Y, Z),
and map identity morphism to identity morphism.
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Example of functors

A ‘“natural operation” on mathematical objects is usually a functor.
Examples:

1. Amap X — 2X from the set X to the set of all subsets of X is a functor
from the category Sets of sets to itself.

2. A map M — M? mapping a topological space to its product with itself is
a functor on topological spaces.

3. Amap V. — V&V is a functor on vector spaces; sameforamapV — VQV
orV —-(VopV)V.

4. Identity functor from any category to itself.

5. A map from topological spaces to &efs, putting a topological space to the
set of its connected components.

EXERCISE: Prove that it i1s a functor.
5
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Equivalence of functors

DEFINITION: Let X,Y € ©O6(C) be objects of a category C. A mprphism
o € NMor(X,Y) is called an isomorphism if there exists ¢ € Moz (Y, X) such
that ooy = Idy and Yoy = Idy. In this case X and Y are called isomorphic.

DEFINITION: Two functors F,G . C1 — C» are called equivalent if for any
X € O6(C1) we are given an isomorphism Wy : F(X) — G(X), in such a way
that for any ¢ € NMo:(X,Y), one has F(p)o Wy = Wy o G(p).

REMARK: Such commutation relations are usually expressed by commu-
tative diagrams. For example, the condition F(p) o Wy = Wx o G(p) is
expressed by a commutative diagram

Fx) 29 peyy

wx| vy

ax) £9% qm)
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Equivalence of categories

DEFINITION: A functor F': ¢1 — (5 is called equivalence of categories
if there exists a functor G : ¢G>, — 71 such that the compositions G o F' and
G o F' are equivaleent to the identity functors Ide,, Ide,.

REMARK: It is possible to show that this is equivalent to the following
conditions: F defines a bijection on the set of isomorphism classes of
objects of ¢; and (>, and a bijection

Mor(X,Y) — Moe(F(X),F(Y)).
for each X,Y € O6(Cq).
REMARK: From the point of view of category theory, equivalent cate-

gories are two instances of the same category (even if the cardinality of
corresponding sets of objects is different).
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Locally constant sheaves (reminder)

DEFINITION: Let & be a sheaf on M which takes a connected non-empty
open subset U C M to a vector space or abelian group V. Extend & to all
open sets using the gluing axiom. Then % is called the constant sheaf,
denoted V.

EXERCISE: Prove that the constant sheaf V,; exists, and is unique up
to isomorphism.

EXERCISE: Let W be an open set in M, and Sy, its set of connected
components. Prove that V(W) = VISwl,

DEFINITION: A locally constant sheaf is a sheaf which is locally isomor-
phic to a constant sheaf.

EXAMPLE: Let m: M’ — M be a covering. Given U C M, let S;; be the set
of connected components of #~1(U), and set F(U) = VIwl, We are going to
define the restriction map r as follows. For an open subset W C U, consider

the map Sy — Sy induced by the natural embedding =~ 1(W) N (D).
For each direct sum component V, C vI5ul corresponding to v € imy, let
ru © Vy — V) be identity. For a component V, C vISul corresponding to
u ¢ imy, we set ry, = 0. Then r = @yues,Tu @ Duesy ¥V — Buwes,, V- This
defines a locally constant sheaf on M (prove it).

8
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Etalé space of a sheaf

DEFINITION: Let F be a sheaf on M, and U,V D x be two open set
containing x € M. Two sections f € F(U), g € F(V) are called equivalent in
x if there exists an open set W > x such that W Cc UNV and flyw =g|lw- A
germ of a sheaf & In x is a class of equivalence of sections of & in all open
sets U > x under this equivalence relation. The stalk of a sheaf ¥ in z is the
space F; of all germs in x.

DEFINITION: Let E(5) be the set of all stalks of a sheaf # in all points
xc M. Agerm f € Jyp is called a limit of a sequence of germs f; €¢ Jp,
if lim; m; = m and there exists a section f of & over U 3 z such that almost
all f, are germs of f. The étalé topology on E(F) is defined as follows: a
subset K C E(%) is closed in étalé topology if it contains all its limit points.

REMARK: Usually E(%) is non-HausdorfF,
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Etalé space of a constant sheaf

CLAIM: Let 5 = V,; be a constant sheaf on a manifold, and x € M a
connected subset. Then the space of germs of & in x is equal to V.

Proof: Since & is constant, the set of its sections on any connected open
set is equal to V. This gives a natural map r;, ;= F(U) — V: we restrict
f e FU) to a connected component Uy of U containing x, and obtain an
element of V. Clearly, two sections f,g are equivalent in K if and only if
r=(f) = rz(g). This identifies V with the set of equivalence classes of sections
in r. m

Corollary 1: Let &5 = V,; be a constant sheaf on a manifold. Then the
étalé space E(5) of 7 is identified with V disconnected copies of M.

Proof: Indeed, a sequence f; € %y, converges to f if lim;m; = m and rp, (f;) =
rm(f) for almost all i. =m

10
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Local systems

DEFINITION: Category of coverings of M is category C with ©6(C) all
coverings and morphisms continuous maps of coverings compatible with pro-
jections to M.

DEFINITION: Let w77 : My — M, 7 . M>— M be continuous maps.
Fibered product My x s M» is the subset of M1 x M» defined as My X Mo =
{(x,y) € M1 x My | wi(x) =mo(y)}, with induced topology.

EXERCISE: Prove that a fibered product of coverings is a covering.

DEFINITION: An abelian group structure on a covering 1 : M{ — M
IS @ morphism of coverings u : My X M1 — My together with a morphism
e. M — My from a trivial covering to M such that u defines a structure of
an abelian group on the set wl_l(ac) for each x € M, with e(z) a unit in this
group.

REMARK: If, in addition, we have a group homomorphism R* — Aut; (M7, Mq)
which equips each Wl_l(:v) with a structure of a vector space, we obtain a
structure of a vector space on a covering.

DEFINITION: A local system is a covering with a structure of an abelian
group or a vector space.
11
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Etalé space of a locally constant sheaf

THEOREM: Let ¥ =V,,; be a locally constant sheaf on a manifold. Then
its étalé space FE (%) is a covering of M.

Proof: Immediately follows from Corollary 1. m

THEOREM: Category of locally constant sheaves is equivalent to the
category of local systems.

Proof: Let F be a locally constant sheaf, and E(%) its etale space. Then
E(%F) is a covering of M. The structure of vector space on germs defines
the structure of vector space on E(%). This gives a functor from locally
constant sheaves to local systems.

Conversely, let 7 : M7 — M be a local system, and F(U) be the space of the
sections of 7~ 1(U) &5 U. Then F(U) is a vector space. The correspondence
U — F(U) gives a sheaf, which is clearly locally constant. =

12



Riemann surfaces, lecture 16 M. Verbitsky

Connections

Notation: Let M be a smooth manifold, T'M its tangent bundle, A'M the
bundle of differential -forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is an operator V
B — B® A M satisfying V(fb) = b df + fV(b), where f — df is de Rham
differential. When X is a vector field, we denote by Vx(b) € B the term
(V(b), X).

REMARK: When M = [0, a] is an interval, any bunlde B on M is trivial. Let
bi,...,bp be a basis in B. Then V can be written as

df;
Vaydt (Z fibz'> =) P > fiVajarbi

1

with the last term linear on f. Therefore, the equation V;,;(b) = 0 is a first
order ODE, and it has a unique solution for any initial value bg = b({o}.

13



Riemann surfaces, lecture 16 M. Verbitsky

Curvature

DEFINITION: Let V: B— B® ALM be a connection on a vector bundle
B. We extend V to an operator

vV S A M) eV S A2 eV S AS(M) eV s

using the Leibnitz identity V(n ® b) = dn + (=1)"yp A Vb. Then the operator
V2: B— B® A?(M) is called the curvature of V.

REMARK: V2(fb) = d2fb+ df AVb—df AVb+ fV2b, hence the curvature
Is a C°°M-linear operator. We shall consider the curvature B as a 2-
form with values in EndB. Then V2 := ©5 € A°M ® End B, where an
End(B)-valued form acts on A*M ® B as above.

DEFINITION: A connection is flat if its curvature vanishes.

14
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Riemann-Hilbert correspondence
THEOREM: Let M be a connected manifold, ¢1 the category of representa-
tions of m1(M), and C» the category of local systems. Then the categories

C1 and C> are naturally equivalent.

THEOREM: The categories ¢; and C, are naturally equivalent to the
category of vector bundles on M equipped with flat connection.

EXERCISE: Try to prove these two theorems. If unable, try to google
“Riemann-Hilbert correspondence” and ‘“local system’ .
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