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Connections

DEFINITION: Recall that a connection on a bundle B is an operator V :
B — B® A M satisfying V(fb) = b® df + fV(b), where f — df is de Rham
differential. When X is a vector field, we denote by Vx(b) € B the term
(V(b), X).

REMARK: A connection V on B gives a connection B* l*> ALM ® B* on

the dual bundle, by the formula
d({b, 8)) = (Vb,B) + (b, V*[)

These connections are usually denoted by the same letter V.

REMARK: For any tensor bundle 81 (= B*®B*®..0QB*" B®B®..® B a
connection on B defines a connection on B; using the Leibniz formula:

V(b1 ®bp) =V (b1) ®bo+ b1 @ V(b2).
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Curvature

Let V: B—B® AlM be a connection on a vector bundle B. We extend
V to an operator

B Y Al(M)®B 5 A2(M)®B -5 AS(M)® B - ..
using the Leibnitz identity V(n ®b) = dn @b+ (—1)"n A Vb.

REMARK: This operation is well defined, because

V(n® fb) = dn® fo+ (1) AV(fb) =
dn @ fo+ (=1)mAdf @b+ fnAVb=4d(fn) @b+ fnAVb=V(fn®D)

REMARK: Sometimes A2(M) ® B — A3(M) ® B is denoted dy.

DEFINITION: The operator V2: B —s B® A2(M) is called the curvature
of V.

REMARK: The algebra of differential forms with coefficients in End B

acts on A*M® B via n®a(n’'®b) = nAn'®@a(b), where a € End(B), n,n’ € AN*M,

and b € B. This is the formula expressing the action of V2 on A*M ® B.
3
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Curvature and commutators

CLAIM: Let X,Y € TM be vector fields, (B,V) a bundle with connection,
and b € B its section. Consider the operator

@*B(X, Y, b) = VxVyb—VyVxb— V[X,Y]b

Then ©%(X,Y,b) is linear in all three arguments.

Proof. Step 1: The term @E(X, Y, fb) has 3 components: one which is
C>°-linear in f, one which takes first derivative and one which takes
the second derivative. The first derivative part is

Liey fVxb+ Liex fVyb— Liey fVxb—Liex fVyb— Lie[X,Y] fb=— Lie[X,Y] fb,

the second derivative part is Liex Liey(f)b — Liey Liex(f)b = Lie[x y f, they
cancel. Therefore, ©%(X,Y,b) is C°°-linear in b.

Step 2: Since [X, fY] = Liex fY + f[X,Y], we have Vx ry1b = fV[xy]b+
Liex fVyb.

Step 4: The term ©%(X, fY,b) has two components, f-linear and the com-
ponent with first derivatives in f. Step 2 implies that the component with

derivative of first order is Liex fVyb — Liex fVyb=0. =
4
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Curvature and commutators (2)

REMARK:
@*B(X, Y, b) = VxVyb—VyVxb— V[X,Y]b

IS another definition of the curvature. The following theorem shows that
it iIs equivalent to the usual definition.

THEOREM: Consider @*B C TMITMKRSB — B as a 2-form with coefficients
in End(B). Then ©% = @5, where ©5 = V2 is the usual curvature.

Proof. Step 1: Since ©3(X,Y), ©p(X,Y) are linear in X,Y, it would suffice
to prove this equality for coordinate vector fields X, Y.

Step 2: Consider the operator ix : A'M ® B— A*"1M ® B of convolution
with a vector field X. Writing V = d 4+ A, where A € AlM ® End B, we
obtain Vy = Liex +A(X), which gives [Vx,iy] = [Liey,7y] = 0 when XY
are coordinate vector fields.

Step 3:
V2(b)(X,Y) = (ixiy —ixiy)V2(h) =iy VyxVb—ixVyVb=VxVyb— VyV xb.
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Parallel transport along the connection

REMARK: When M = [0,qa] is an interval, any bundle B on M is trivial. Let
bi,...,bp be a basis in B. Then V can be written as

Vaydt (Z fibz’> =2 fzb + > iV abi

1

with the last term linear on f.

THEOREM: Let B be a vector bundle with connection over R. Then for
each x € R and each vector b, € B|; there exists a unique section b € B
such that Vb =0, b|; = b;.

Proof: This is existence and uniqueness of solutions of an ODE ¢ +A(b) = 0.
|

DEFINITION: Let ~: [0,1] — M be a smooth path in M connecting x and
y, and (B, V) a vector bundle with connection. Restricting (B,V) to ~([0, 1]),
we obtain a bundle with connection on an interval. Solve an equation V(b) =0
for b € B|,Y([071]> and initial condition b|z = b;. This process is called parallel
transport along the path via the connection. The vector by, := b|y is called

vector obtained by parallel transport of b, along ~.
6
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,V) be a vector bundle with connec-
tion over M. For each loop v based in x € M, let V, ¢ : B|z — Blz be
the corresponding parallel transport along the connection. The holonomy
group of (B,V) is a group generated by V%v, for all loops ~. If one takes
all contractible loops instead, V%v generates the local holonomy, or the
restricted holonomy group.

REMARK: Let By = B®"® (B*)®™ be a tensor power of B. The connection
on B gives the connection on Bj. Since parallel transport is compatible with
the tensor product, the holonomy representation, associated with B4, is
the corresponding tensor power of Bj;.

DEFINITION: Let B be a vector bundle, and W a section of its tensor power.
We say that connection V preserves W if V(W) = 0. In this case we also
say that the tensor W is parallel with respect to the connection.
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Flat bundles

REMARK: V(W) = 0 is equivalent to W being a solution of V(W) = 0 on
each path ~. This means that parallel transport preserves WV,

We obtained

COROLLARY: A section of the tensor power of B is parallel if and
only if it is holonomy invariant.

DEFINITION: A bundle is flat if its curvature vanishes.
The following theorem will be proven later today.
THEOREM: Let (B,V) be a vector bundle with connection over a simply

connected manifold. Then B is flat if and only if its holonomy group is
trivial.
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Fiber of a locally free sheaf

DEFINITION: Recall that a vector bundle is a locally free sheaf of modules
over C*°M. A vector bundle is called trivial if it is isomorphic to (C°*°M)™.

DEFINITION: Let 8 be an n-dimensional locally free sheaf of C°°-modules
on M, x € M a point, mpy C C°°M an ideal of £ € M in C>®°M. Define the
fiber of B in © as a quotient B(M)/m®B. A fiber of B is denoted B];.

REMARK: A fiber of a vector bundle of rank n iIs an n-dimensional
vector space.

REMARK: Let 8 = C*M", and b € B|; a point of a fiber, represented by a
germ ¢ € By = COM™, o = (f1,.--, fn). Consider a map W from the set of all
fibers B to M x R"™, mapping (z,¢ = (f1,..., fn)) to (f1(x), ..., frn(x)). Then W
Is bijective. Indeed, B|; = R".
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Total space of a vector bundle

DEFINITION: Let B be an n-dimensional locally free sheaf of C°°-modules.
Denote the set of all vectors in all fibers of B over all points of M by Tot ®.
Let U C M be an open subset of M, with B[y a trivial bundle. Using the local
bijection TotB(U) = U x R"™ we consider topology on Tot® induced by open
subsets in TotB(U) = U x R"™ for all open subsets U C M and all trivializations
of B|yy. Then Tot® is called a total space of a vector bundle 3.

CLAIM: The space Tot®B with this topology is a locally trivial fibration
over M, with fiber R",

REMARK: Let B be a vector bundle on M, and ¢ € B* a section of its dual.
Then ¢ defines a function x — (1, z) on its total space Tot(B) — M, linear
on fibers of w. This gives a bijective correspondence between sections of
B* and functions on Tot(B) linear on fibers.

This gives the following claim

CLAIM: Let B be a vector bundle and Sym*™ B* the direct sum of all sym-
metric tensor powers of B*. Then the ring of sections of Sym™*™ B* is
identified with the ring of all smooth functions on TotB s M which
are polynomial on fibers of 7. m

10
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Polynomial functions on Tot(B)

In Lecture 14, we proved that any derivation of C°R" is uniquely determined
by its restriction to polynomials:

CLAIM: Let D be the space of derivations § : R[zq,...,zn] — C*°R". Then
D is the space of derivations of the ring C°°R"., m

The same argument brings the following

CLAIM 1: Let D be the space of derivations § : Sym* B* — C°°(Tot B).
Then D is the space of derivations of the ring C>*°(Tot B).

Proof: Indeed, any derivation which vanishes on fiberwise polynomial func-
tions vanishes everywhere on C*°(TotB). =

11
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Vector fields on Tot(B)

THEOREM: Let (B,V) be a bundle on M with connection, and X € TM a
vector field. Then there exists a vector field ~~(X) on Tot(B) mapping
a section v € Sym* B* to Vxu.

Proof: Let u,v € Sym* B*, and uv € Sym™* B* their product. Then Vz(uv) =
uVzv + vVzu because V(b1 ® br) = V(b1) ® bp + b1 ® V(by). Therefore,
Tv(X)(u) ;= Vz(u) is a derivation of the ring of functions on Tot(B) which
are polynomial on fibers. By Claim 1, any such derivation can be uniquely
extended to a vector field on Tot(B). =

DEFINITION: Let (B,V) be a bundle with connection on M. The cor-

responding Ehresmann connection on Tot(B) is the distribution Ey C
T Tot(B) obtained as v (T M).

12
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Vector fields on Tot(B) and parallel sections

CLAIM 2: Let (B,V) be a bundle with connection, and = : Tot(B) — M
the standard projection, and T Tot(B) = ker D= is the vertical tangent space
(Lecture 14).

(i) Then TTotB = Ey @& Tx Tot(B), where Ey is the Ehresmann
connection.

(ii) Moreover, a section f of B is parallel if an only if its image
f(M) C Tot(B) is tangent to Ey.

Proof: The second assertion is clear from the definition: a section b is
tangent to Ey if it is preserved by all vector fields a« = 7v(X) generating
Ev. In this case Lies(b) = 0, where b is a function on Tot(B*) defined by b.
However, Lieq(b) = V x(b) where Vx(b) is a function on Tot(B*) associated
with V x(b). Therefore, Lieg(b) =0 < V(b)) = 0.

To prove (i), we notice that D7r|Ev . Fy — T'M is an isomorphism at every
point of TotB. Indeed, these bundles have the same rank, and for each
v(X) € Ey, this vector field acts on functions pulled back from M as Liey,
hence DW’EV IS injective. =

13
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T he Lasso lemma

DEFINITION: A lasso is a loop of the following form:

,,/

The round part is called a working part of a loop.
REMARK: (“The Lasso Lemma’”) Let {U;} be a covering of a manifold,

and v a loop. Then any contractible loop v is a product of several lasso,
with working part of each inside some U,.

14
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Bundles with trivial holonomy

THEOREM: Let (B,V) be a vector bundle with connection over a simply
connected manifold. Then B is flat if and only if its holonomy group is
trivial.

Proof: Let B be a flat bundle on M, and X,Y € T'M commuting vector fields.
Then Vy : B— B commutes with Vy. Then the Ehresmann connection
bundle Ey is generated by commuting vector fields v (X), mv(Y), ..., hence
it is involutive. By Frobenius theorem, every point b € Tot(B) is contained
in a leaf of the corresponding foliation, tangent to Ey. By Claim 2, such a
leaf is a parallel section of B. Therefore, the holonomy of V around any
sufficiently small loop is trivial. Since m1(M) = 0, any contractible loop L
can be represented by a composition of lasso with sufficiently small working
part. All of them have trivial holonomy, hence L has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then Tot(B) = M X Bz
because each point is contained in a unique parallel section, hence the bundle
Ev is involutive. Then [Vx,Vy] = 0 for any commuting X,Y € TM, and the
curvature vanishes. m

Corollary 1: Let B be a flat vector bundle on a simply connected, connected
manifold M. Then for each x € M and each b € B|;, there exists a unique
parallel section of B passing through 6. =

15
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Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is
naturally equivalent to the category of vector bundles on M equipped
with flat connection.

Proof. Step 1: Consider a constant sheaf Ry, on M. This is a sheaf of
rings, and any locally constant sheaf is a sheaf of Ry,-modules.

Let V be a locally constant sheaf, and B = V@RM C°°M . Since V is locally
constant, the sheaf B is a locally free sheaf of C°°-modules, that is, a vector
bundle. Let U C M be an open set such that V| is constant. If vq,...,vp iS
a basis in V(U), all sections of B(U) have a form Y '*_; f;v;, where f; € C*°U.
Define the connection V by V (Z?=1 fz'vz') = > df; ® v;. This connection is flat

because d2 = 0. It is independent from the choice of v; because v; is defined
canonically up to a matrix with constant coefficients. We have constructed
a functor from locally constant sheaves to flat vector bundiles.

Step 2: Let now (B,V) be a flat bundle over M. The functor to locally
constant sheaves takes U C M and maps it to the space of parallel sections
of B over U. This defines a sheaf B(U). For any simply connected U, and
any x € M, the space B(U) is identified with a vector space B|, (Corollary
1), hence B(U) is locally constant. Clearly, B = B ®g,, C°M, hence this
construction gives an inverse functor to V— Vg, C*M. =
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