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Torsion

REMARK: “Connection on a manifold M” denotes a connection on the

bundle TM or Λ1M . Such a connection induces a connection on all its

tensor powers TM⊗i ⊗ Λ1M⊗j as in Lecture 17.

DEFINITION: Let ∇ be a connection on Λ1M ,

Λ1 ∇−→ Λ1M ⊗ Λ1M.

The torsion of ∇ is a map T∇ : Λ1M −→ Λ2M defined as ∇ ◦ Alt−d, where

Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication.

REMARK:

T∇(fη) = Alt(f∇η + df ⊗ η)− d(fη)

=f

[
Alt(∇η)− dη

]
+ df ∧ η − df ∧ η = fT∇(η).

Therefore T∇ is linear.
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Torsion and commutator of vector fields

REMARK: Cartan formula gives

T∇(η)(X,Y ) =∇X(η)(Y )−∇Y (η)(X)− dη(X,Y )

=∇X(η)(Y )−∇Y (η)(X)− η([X,Y ])− LieX(η(Y )) + LieY (η(X)).

On the other hand, ∇X(η)(Y ) = LieX(η(Y )) − η(∇X(Y )). Comparing the

equations, we obtain

T∇(η)(X,Y ) = η

(
∇X(Y )−∇Y (X)− [X,Y ]

)
.

Torsion is often defined as a map Λ2TM −→ TM using the formula

∇X(Y )−∇Y (X)− [X,Y ].

We have just proved

CLAIM: The tensor ∇X(Y )−∇Y (X)− [X,Y ] is dual to the torsion map

∇ ◦Alt−d : Λ1M −→ Λ2M defined above.
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Flat affine manifolds

DEFINITION: Affine map from Rn to Rm is a composition of a linear map

and a parallel translation.

DEFINITION: A flat affine manifold is a manifold M equipped with an

atlas {Ui} such that all transition maps are affine. In this case, Ui are called

affine charts.

REMARK: Let M be a flat affine manifold, U an affine chart. Consider

the basis in Λ1U given by the coordinate 1-forms dx1, ..., dxn. Any affine map

puts dxi to a linear combination of coordinate 1-forms, hence the subsheaf

in Λ1M sheaf generated by dxi is locally constant. Riemann-Hilbert corre-

spondence gives a natural flat connection ∇ : Λ1M −→ Λ1M ⊗Λ1M such

that ∇(dxi) = 0.

THEOREM: Let M be a flat affine manifold, and ∇ a flat connection on M

constructed above. Then ∇ is torsion-free. Moreover, every torsion-free

flat connection is obtained from a flat affine structure this way.
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Flat affine manifolds and torsion-free connections

THEOREM: Let M be a flat affine manifold, and ∇ a flat connection on M

constructed above. Then ∇ is torsion-free. Moreover, every torsion-free

flat connection is obtained from a flat affine structure this way.

Proof. Step 1: Consider a bundle B over M trivialized by a frame b1, ..., bn.

Then there exists a unique connection ∇ such that ∇(bi) = 0. Indeed,

∇
(∑n

i=1 fibi
)

=
∑
dfi ⊗ bi.

Step 2: An affine structure gives a torsion-free flat connection as follows.

Let x1, ..., xn be flat affine coordinates on U ⊂M . Then dx1, ..., dxn is a frame

trivializing Λ1U , and we can define a connection ∇ such that ∇(dxi) = 0 as

in Step 1. Any affine transform maps the form dxi to a linear combination of

dxi. Therefore, for any other set of coordinates y1, ..., yn defining the same

affine structure, one has ∇(dyi) = 0. This implies that ∇ is independent on

the choice of coordinates. It is flat because ∇2(dxi) = 0 and torsion-free

because Alt(∇
(∑n

i=1 fidxi
)

=
∑
dfi ∧ dxi = d

(∑n
i=1 fidxi

)
.
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Flat affine manifolds and torsion-free connections (2)

THEOREM: Let M be a flat affine manifold, and ∇ a flat connection on TM
constructed above. Then ∇ is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.

Step 3: It remains to show that every torsion-free, flat connection ∇ on
M is obtained this way. By Riemann-Hilbert correspondence (Lecture 17)
in a neighbourhood of each point there exists a frame b1, ..., bn ∈ Λ1M such
that ∇(bi) = 0. Since Alt(∇bi) = dbi = 0, each form bi is closed. Poincaré
lemma implies that bi = dxi. Since the forms dxi are linearly independent,
the derivative of the map κ(m) := (x1(m), ..., xn(m)) is invertible. Then κ
is locally a diffeomorphism to Rn, and xi are coordinates. Clearly, ∇ is a
connection constructed from these coordinates as in Step 2. We obtained an
atlas on M such that ∇(dxi) = 0 for each coordinate function xi. It remains
only to show that this atlas defines a flat affine structure.

Step 4: Clearly, ∇
(∑n

i=1 fidxi
)

= 0 if and only if all fi are constant. The tran-
sition functions between coordinates map m = (x1, ..., xn) to yi =

∑n
i=1ϕi(m)

such that ∇(dyi) = 0. Expressing each dyi as dyi =
∑n
i=1 fijdxi and us-

ing 0 = ∇
(∑n

i=1 fijdxi
)

= dfik ⊗ dxi, we obtain that all functions fij (partial
derivatives of the transition functions ϕi(m)) are constant. A function with
constant partial derivatives is always affine, hence the transition functions
between charts are affine.

6



Riemann surfaces, lecture 18 M. Verbitsky

Newlander-Nirenberg theorem in dimension 1

The following theorem will be proven later today

THEOREM 1: Let (M, I) be a 1-dimensional almost complex manifold.
Then M locally admits a torsion-free, flat connection ∇ such that
∇(I) = 0.

This theorem immediately implies Newlander-Nirenberg in dimension 1.

THEOREM: Let (M, I) be a 1-dimensional almost complex manifold. Then
I is integrable.

Proof. Step 1: Integrability of I means for each m ∈ M there exists a
neighbourhood U with coordinates x, y such that x +

√
−1 y is holomorphic

with respect to I. Equivalently, this means that dx +
√
−1 dy ∈ Λ1,0(M).

Equivalently, this means that dy = I(dx).

Step 2: To obtain such a coordinate system, take any x such that ∇dx = 0
as above. Then ∇(Idx) = 0 because ∇(I) = 0. Since ∇ is torsion-free,
this implies that I(dx) is closed, hence I(dx) = dy for some y. By Step 1,
this implies that the complex coordinate x +

√
−1 y is holomorphic with

respect to I.
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Hodge decomposition on Λ2(M)

Fix an almost complex manifold (M, I). Let Λ1
C(M) := Λ1(M) ⊗R C, and

Λ1
C(M) = Λ1,0(M)⊕ Λ0,1(M) be the Hodge decomposition.

EXERCISE: Prove that the multiplicative map Λ1,0(M) ⊗ Λ0,1(M)
Alt−→

Λ2(M) is injective.

DEFINITION: We denote the image of this map by Λ1,1(M). The Hodge

decomposition on Λ2(M) is written as Λ2
C(M) = Λ2,0(M)⊕Λ1,1(M)⊕Λ0,2(M),

where Λ2,0(M) = Λ1,0(M) ∧ Λ1,0(M) and Λ0,2(M) = Λ0,1(M) ∧ Λ0,1(M)
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Torsion-free connections on Λ1,0(M)

DEFINITION: Let (M, I) be an almost complex manifold, and

∇ : Λ1,0M −→ Λ1M ⊗ Λ1,0M

a connection on Λ1,0. It is called torsion-free if Alt(∇(η)) = dη for any

(0,1)-form η.

CLAIM: Let ∇ : Λ1,0M −→ Λ1M⊗Λ1,0M be a torsion-free connection on Λ1,0

Define a connection on Λ0,1M as ∇X(η) = ∇X(η). This defines a connection

∇̃ on Λ1,0M ⊕ Λ0,1M = Λ1
CM . Then ∇ is torsion-free if and only if ∇̃ is

torsion-free, and, moreover, ∇̃(I) = 0 and any torsion-free connection

on Λ1(M) preserving I is obtained this way.

Proof: It is clear from construction that ∇̃ is torsion-free and preserves the

Hodge decomposition, hence satisfies ∇̃(I) = 0. On the other hand, restric-

tion of any torsion-free connection ∇̃ to Λ1,0M is torsion-free, and can be

used to recover the connection on Λ1M because Re(Λ1,0M) = Λ1M .
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Hodge decomposition and connections

REMARK: Let (B,∇) be a complex bundle with connection. We decompose

∇ : B −→B⊗Λ1(M) onto a sum of its Hodge components, ∇ = ∇1,0 +∇0,1,

where ∇1,0 : B −→B ⊗ Λ1,0(M) and ∇0,1 : B −→B ⊗ Λ0,1(M).

REMARK: Let ∇ be a torsion-free connection on an almost complex manifold

(M, I) such that ∇(I) = 0, and let d0,1 : Λ1,0 −→ Λ1,1(M) be the Hodge

component of de Rham differential. Since ∇ is torsion-free, the following

diagram is commutative

Λ1,0 ∇0,1
- Λ1,0(M)⊗ Λ0,1(M)

Λ1,1(M)

Alt

?

d 0,1

-

Since Λ1,0(M)⊗Λ0,1(M)
Alt−→ Λ1,1(M) is an isomorphism, the Hodge com-

ponent ∇0,1 : Λ1,0M −→ Λ1,0⊗Λ0,1(M) is uniquely determined by a com-

plex structure.
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Existence of torsion-free connections

COROLLARY: Let ∇1 and ∇2 be torsion-free connections on a 1-dimensional
almost complex manifold (M, I) such that ∇(I) = 0. Then ∇1−∇2|Λ1,0 is a
linear map A : Λ1,0M −→ Λ1,0M ⊗ Λ1,0M. Conversely, for any linear map
A : Λ1,0M −→ Λ1,0M ⊗ Λ1,0M, the connection ∇1 +A is torsion-free.

Proof: The first statement is immediately implied by the previous corol-
lary. The second statement is clear, because the multiplication Λ1,0M ⊗
Λ1,0(M)−→ Λ2,0(M) vanishes. Indeed, Λ1,0M is 1-dimensional, hence Λ2,0(M) =
0.

COROLLARY: Let (M, I) be a 1-dimensional almost complex manifold,
and ∇ : Λ1,0M −→ Λ1(M) ⊗ Λ1,0M a connection. Consider the map d0,1 :
Λ1,0M −→ Λ0,1(M) ⊗ Λ1,0M = Λ1,1M as above. This defines a connection
∇0,1 ⊕ d0,1 which is torsion-free.

Proof: By the same argument as above, the relation Alt(∇(η)) = dη is
equivalent to Alt(∇0,1(η)) = d0,1η for any η ∈ Λ1,0M.

COROLLARY: Let ∇ : Λ1,0M −→ Λ1(M) ⊗ Λ1,0M be a torsion-free con-
nection on Λ1,0M , and A : Λ1,0M −→ Λ1,0M ⊗ Λ1,0M a linear map. Then
the curvature of the torsion-free connection ∇ + A can be expressed as
(∇+A)2 = [d0,1, A].
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Existence of torsion-free, flat connections

Notice that the bundles Λ1,0M and Λ1,0M ⊗Λ1,0M are 1-dimensional. There-
fore, Hom(Λ1,0M,Λ1,0M ⊗ Λ1,0M) = Λ1,0M and we can consider A as a
(1,0)-form. Under this identification the map A−→ [d0,1, A] is expressed as
A−→ d0,1(A). This gives the following corollary,

COROLLARY: Let (M, I) be an almost complex manifold of dimension
1. Assume that the map d0,1 : Λ1,0M −→ Λ2M is surjective. Then (M, I)
admits a torsion-free flat connection.

Proof: Choose a torsion-free connection ∇, and let d0,1(A) = ∇2. Then
∇−A is torsion-free and flat.

Therefore, the following theorem finishes the proof of Newlander-Nirenberg
in dimension 1.

THEOREM: Let (M, I) be an almost complex manifold of dimension 1.
Then every point has a neighbourhood U such that d0,1 : Λ1,0U −→ Λ2U
is surjective to a space of 2-forms which can be extended continuously
to the boundary of U.

REMARK: This result is a special case of the “Grothendieck-Dolbeault-
Poincaré lemma”.
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Elliptic operators of second order

DEFINITION: Let M be an oriented n-manifold, and D : C∞M −→ C∞M
be a differential operator of second order, written in local coordinates as

D(f) =
∑
i,j aij

d2f
dxidxj

+
∑
i bi

df
dxi

+ c, where the form aij is positive definite.

Then D is called an elliptic operator of second order.

EXERCISE: Check that this definition is independent from the choice

of coordinates.

I will use the following theorem without a proof

THEOREM: Let D : C∞M −→ C∞M be an elliptic operator of second order

on M . Then every point x ∈M has a neighbourhood U with compact closure

and smooth boundary such that D is surjective to a space of 2-forms

which can be extended continuously to the boundary of U.
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Lie derivatives (reminder)

DEFINITION: Let X ∈ TM , and iX : Λi(M)−→ Λi−1(M) denote the con-

volution map ix(η)(·, ..., ·) = η(X, ·, ..., ·).

DEFINITION: Let X be a vector field, etX the corresponding diffeomorphism

flow, and Φ any tensor. Denote by LieX(Φ) the tensor d
dt|t=0(etX)∗(Φ). This

operation is called the Lie derivative.

REMARK: Clearly, for any function f , the derivative X(f) is equal to

LieX f.

CLAIM: For any vector fields X,Y ∈ TM one has LieX Y = [X,Y ].

CLAIM: (Cartan’s magic formula) LieX = diX + iXd.

CLAIM: [LieX , iY ] = iLieX Y = i[X,Y ].
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Pluri-Laplacian on an almost complex 1-manifold

DEFINITION: Let (M, I) be an almost complex manifold. The pluri-

Laplacian is a map f −→ ddcf , where dc = IdI−1. It takes a function and

maps it to a 2-form.

CLAIM: Let X be a vector field and Y = I(X). Then

iXiY (ddcf) = −iXiY dIdf = −iX LieY Idf + iXdiY Idf =

− i[Y,X]Idf + LieY iXIdf + iXdiY Idf = −LieI[X,Y ] f + (LieY )2f + (LieX)2f.

DEFINITION: Let M be a real 2-manifold, and ω ∈ Λ2(M) a volume form.

Since Λ2(M) is a line bundle, all its sections are proportional, and for any

ϕ ∈ Λ2(M), one has ϕ = fω. We write this as f = ϕ
ω.

COROLLARY: Let (M, I) be an almost complex 2-manifold, and ω ∈ Λ2(M)

a volume form. Then the operator f −→ ddcf
ω is elliptic.

Proof: The operator f −→ (LieY )2f + (LieX)2f is clearly elliptic, and the

correction term LieI[X,Y ] f is first order.
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Pluri-Laplacian and solutions of equation d0,1(η) = v

To finish the proof of Newlander-Nirenberg it remains to prove the theorem

THEOREM: Let (M, I) be an almost complex manifold of dimension 1.

Then every point has a neighbourhood U such that d0,1 : Λ1,0U −→ Λ2U

is surjective to a space of 2-forms which can be extended continuously

to the boundary of U.

Proof: Clearly, in complex dimension 1, the Hodge decomposition gives

d1,0 + d0,1 = d. Therefore, d1,0 = d+
√
−1 dc

2 and d0,1 = d−
√
−1 dc

2 . Then

ddc = 2
√
−1 d0,1d1,0. The operator ddc : C∞U −→ Λ2U is locally surjective

because it is elliptic (see above). Then d0,1 : Λ1,0U −→ Λ2U is also locally

surjective.
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