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Torsion

REMARK: “Connection on a manifold M” denotes a connection on the
bundle TM or AYM. Such a connection induces a connection on all its
tensor powers TM® @ ALM®J as in Lecture 17.
DEFINITION: Let V be a connection on AlM,

AL Y Alpr o AL
The torsion of V is a map Ty : A'M — A2M defined as V o Alt —d, where
Alt : ALM @ ATM —3 A2M is exterior multiplication.

REMARK:
Ty (fn) =Alt(fVn +df @ n) —d(fn)
:f[AIt(Vn) - dn] +df An—df A= fTy(n).

Therefore Iy is linear.
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Torsion and commutator of vector fields

REMARK: Cartan formula gives

Ty(m(X,Y) =Vx(m)(Y) = Vy(n)(X) —dn(X,Y)
=Vx(m ) = Vy(n)(X) —n(X,Y]) — Liex(n(Y)) + Liey (n(X)).

On the other hand, Vx(n)(Y) = Liex(n(Y)) — n(Vx(Y)). Comparing the
equations, we obtain

Tv(m(X,Y) = n(Vx(Y) — Vy(X) - [X, Y])-

Torsion is often defined as a map A?TM — TM using the formula
Vx(Y) - Vy(X) - [X,Y].

We have just proved

CLAIM: The tensor V(YY) — Vy(X) — [X,Y] is dual to the torsion map
VoAlt—d: A'M — A?M defined above.
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Flat affine manifolds

DEFINITION: Affine map from R" to R™ is a composition of a linear map
and a parallel translation.

DEFINITION: A flat affine manifold is a manifold M equipped with an
atlas {U;} such that all transition maps are affine. In this case, U; are called
affine charts.

REMARK: Let M be a flat affine manifold, U an affine chart. Consider
the basis in ALU given by the coordinate 1-forms drq,....,dxrn. Any affine map
puts dx; to a linear combination of coordinate 1-forms, hence the subsheaf
in ALM sheaf generated by dx; is locally constant. Riemann-Hilbert corre-
spondence gives a natural flat connection V: A1M — A1M @ A1 M such
that V(dz;) = 0.

THEOREM: Let M be a flat affine manifold, and V a flat connection on M
constructed above. Then V is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.
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Flat affine manifolds and torsion-free connections

THEOREM: Let M be a flat affine manifold, and V a flat connection on M
constructed above. Then V is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.

Proof. Step 1: Consider a bundle B over M trivialized by a frame b1, ...,bn.
Then there exists a unique connection V such that V(b;) = 0. Indeed,

V(S fibi) = L dfi @b

Step 2: An affine structure gives a torsion-free flat connection as follows.
Let 1, ...,z De flat affine coordinates on U C M. Then dzq,...,dzy is a frame
trivializing AU, and we can define a connection V such that V(dz;) = 0 as
in Step 1. Any affine transform maps the form dz; to a linear combination of
dx;. Therefore, for any other set of coordinates yq,...,yn defining the same
affine structure, one has V(dy;) = 0. This implies that V is independent on
the choice of coordinates. It is flat because VQ(de'Z-) = 0 and torsion-free

because AIt(V (X fide;) = S df; Ada; = d (S fida;) .
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Flat affine manifolds and torsion-free connections (2)

THEOREM: Let M be a flat affine manifold, and V a flat connection on T'M
constructed above. Then V is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.

Step 3: It remains to show that every torsion-free, flat connection V on
M is obtained this way. By Riemann-Hilbert correspondence (Lecture 17)
in @ neighbourhood of each point there exists a frame bq,...,bn € ALM such
that V(b;) = 0. Since Alt(Vb;) = db; = 0, each form b; is closed. Poincaré
lemma implies that b, = dx;. Since the forms dx; are linearly independent,
the derivative of the map s(m) := (x1(m),...,xzn(m)) is invertible. Then &«
is locally a diffeomorphism to R"™, and z; are coordinates. Clearly, V is a
connection constructed from these coordinates as in Step 2. We obtained an
atlas on M such that V(dz;) = O for each coordinate function z;. It remains
only to show that this atlas defines a flat affine structure.

Step 4: Clearly, V (Z?zl fz-d:ci) = 0 if and only if all f; are constant. The tran-
sition functions between coordinates map m = (z1,...,xn) 10 y; = X1 @;(m)
such that V(dy;) = 0. Expressing each dy; as dy; = > fi;dr; and us-
ing 0 =V (Z?zl fijdxi) = df;;, ® dx;, we obtain that all functions f;; (partial
derivatives of the transition functions ;(m)) are constant. A function with
constant partial derivatives is always affine, hence the transition functions
between charts are affine. m
6
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Newlander-Nirenberg theorem in dimension 1
T he following theorem will be proven later today

THEOREM 1: Let (M,I) be a 1-dimensional almost complex manifold.
Then M locally admits a torsion-free, flat connection V such that
V() =0.

This theorem immediately implies Newlander-Nirenberg in dimension 1.

THEOREM: Let (M, 1) be a 1-dimensional almost complex manifold. Then
I 1s integrable.

Proof. Step 1: Integrability of I means for each m &€ M there exists a
neighbourhood U with coordinates z,y such that z + +/—1 vy is holomorphic
with respect to I. Equivalently, this means that dz + =1 dy € ALO(M).
Equivalently, this means that dy = I(dx).

Step 2: To obtain such a coordinate system, take any x such that Vdx =0
as above. Then V(Idx) = 0 because V(I) = 0. Since V is torsion-free,
this implies that I(dz) is closed, hence I(dx) = dy for some y. By Step 1,
this implies that the complex coordinate =z + v/—1 y is holomorphic with
respect to /. =

.



Riemann surfaces, lecture 18 M. Verbitsky

Hodge decomposition on A2(M)

Fix an almost complex manifold (M,I). Let /\é(M) = AL(M) ®r C, and
AL (M) = ALO(M) & ABL(M) be the Hodge decomposition.

EXERCISE: Prove that the multiplicative map ALO(M) @ AO1(ar) A

A2(M) is injective.

DEFINITION: We denote the image of this map by ALb(M). The Hodge
decomposition on A2(M) is written as AZ2(M) = A20(M)aALL(M)eA®2 (M),
where AZ20(M) = ALO(AM) A ALO(M) and A92(M) = ASL (M) A AL (M)
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Torsion-free connections on ALO(M)

DEFINITION: Let (M,I) be an almost complex manifold, and

V: ALY AT o ALON

a connection on ALO. It is called torsion-free if Alt(V(n)) = dn for any
(0,1)-form n.

CLAIM: Let V: ALOM — ALM@ALOM be a torsion-free connection on ALO
Define a connection on A%1M as V() = Vx(n). This defines a connection
Von AYOM @ AQ1M = ALM. Then V is torsion-free if and only if V is
torsion-free, and, moreover, V(I) = 0 and any torsion-free connection
on AL1(M) preserving I is obtained this way.

Proof: It is clear from construction that V is torsion-free and preserves the
Hodge decomposition, hence satisfies V(I) = 0. On the other hand, restric-
tion of any torsion-free connection V to ALOMNT s torsion-free, and can be
used to recover the connection on A1M because Re(AOM) =AlM. =
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Hodge decomposition and connections

REMARK: Let (B,V) be a complex bundle with connection. We decompose
V: B— BRALY (M) onto a sum of its Hodge components, V = v1.0 4+ v0.1,
where V1.0: B—3 B ALO(M) and VO1: B— Be AGL(M).

REMARK: Let V be a torsion-free connection on an almost complex manifold
(M,I) such that V(I) = 0, and let d%1 : ALO — ALL(M) be the Hodge
component of de Rham differential. Since V is torsion-free, the following
diagram is commutative

10 VO a0 0.1
AN AP (M) @ N>+ (M)
@0
¢ Alt
AL

Since ALO(M) @ AO1 (M) A% ALI(Ar) is an isomorphism, the Hodge com-

ponent Vo1 : ALOpr — 5 ALOADL(AN) is uniquely determined by a com-

plex structure.
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Existence of torsion-free connections

COROLLARY: Let V1 and V5 be torsion-free connections on a 1-dimensional
almost complex manifold (M, I) such that V() = 0. Then V; —V2|/\1’O Is a
linear map A : A0y — ALOAMr @ ALOM. Conversely, for any linear map
A ANLONM — ALOM @ ALOA, the connection V4 + A is torsion-free.

Proof: The first statement is immediately implied by the previous corol-
lary. The second statement is clear, because the multiplication ALOps 0%
ALO(M) — A20(M) vanishes. Indeed, A1OM is 1-dimensional, hence A29(M)
O. m

COROLLARY: Let (M,I) be a 1-dimensional almost complex manifold,
and V : ALONM — AY(M) @ ALOM a connection. Consider the map 491 :
ALONM — ADL (M) @ ALOM = ALLIM as above. This defines a connection
V91l @ 491 which is torsion-free.

Proof: By the same argument as above, the relation Alt(V(n)) = dn is
equivalent to AIt(V9%1(n)) = d%1y for any n ¢ A1LOM. =

COROLLARY: Let V : ALOM — AL(M) @ ALOM be a torsion-free con-
nection on ALOAM, and A : ALOM —s ALOMN @ ALOM 2 linear map. Then
the curvature of the torsion-free connection V + A can be expressed as
(V+A)2=1[d%1 A]. =

11
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Existence of torsion-free, flat connections

Notice that the bundles A}OM and ALOAM @ ALOM are 1-dimensional. There-
fore, Hom(ALOM, ALOM @ ALOM) = ALOM and we can consider A as a
(1,0)-form. Under this identification the map A — [do’l,A] IS expressed as
A — d91(A). This gives the following corollary,

COROLLARY: Let (M,I) be an almost complex manifold of dimension
1. Assume that the map d%1 : ALONM — A2M is surjective. Then (M, 1)
admits a torsion-free flat connection.

Proof: Choose a torsion-free connection V, and let d%1(A4) = V2. Then
V — A is torsion-free and flat. =

T herefore, the following theorem finishes the proof of Newlander-Nirenberg
in dimension 1.

THEOREM: Let (M,I) be an almost complex manifold of dimension 1.
Then every point has a neighbourhood U such that %1 : ALOU — A2U
IS surjective to a space of 2-forms which can be extended continuously
to the boundary of U.

REMARK: This result is a special case of the “Grothendieck-Dolbeault-
Poincaré lemma’”.
12
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Elliptic operators of second order

DEFINITION: Let M be an oriented n-manifold, and D : C°°M — C°°M
be a differential operator of second order, written in local coordinates as
D(f) = i az-j%d{;j + bl + ¢, where the form a; is positive definite.
Then D is called an elliptic operator of second order.

EXERCISE: Check that this definition is independent from the choice
of coordinates.

I will use the following theorem without a proof
THEOREM: Let D: M — C°°M be an elliptic operator of second order
on M. Then every point x € M has a neighbourhood U with compact closure

and smooth boundary such that D is surjective to a space of 2-forms
which can be extended continuously to the boundary of U.

13
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Lie derivatives (reminder)

DEFINITION: Let X € TM, and ix : AY (M) — A*~1(M) denote the con-
volution map iz (n)(-,...,-) = n(X, -, ...,-).

DEFINITION: Let X be a vector field, et* the corresponding diffeomorphism
flow, and & any tensor. Denote by Liex(®) the tensor %|tzo(etX)*(CD). This
operation is called the Lie derivative.

REMARK: Clearly, for any function f, the derivative X(f) is equal to
LieX f

CLAIM: For any vector fields X,Y € TM one has LiexyY = [X,Y].
CLAIM: (Cartan’s magic formula) Lieyxy = dix + i xd.

CLAIM: [LieX,iy] = iLieXY = i[X,Y]'

14
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Pluri-Laplacian on an almost complex 1-manifold

DEFINITION: Let (M,I) be an almost complex manifold. The pluri-
Laplacian is a map f — dd°f, where d° = IdI—1. It takes a function and
maps it to a 2-form.

CLAIM: Let X be a vector field and Y = I(X). Then

iXiy(ddCf) = —’ixiydfdf = —ix Liey Idf + iXdiyfdf =
— iy x1Idf + Liey ixIdf + ixdiyIdf = — Lieyx y1 f + (Liey)?f + (Liex)*f.

DEFINITION: Let M be a real 2-manifold, and w € A2(M) a volume form.
Since A2(M) is a line bundle, all its sections are proportional, and for any
@ € N2(M), one has ¢ = fw. We write this as f = £.

COROLLARY: Let (M,I) be an almost complex 2-manifold, and w € A2(M)

a volume form. Then the operator f — %L/ s elliptic.

Proof: The operator f — (Liey)?f 4+ (Liex)?f is clearly elliptic, and the
correction term Liejx yq f is first order. m
15
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Pluri-Laplacian and solutions of equation d%1(n) =
To finish the proof of Newlander-Nirenberg it remains to prove the theorem

THEOREM: Let (M,I) be an almost complex manifold of dimension 1.
Then every point has a neighbourhood U such that d%1: ALOU — A2p
IS surjective to a space of 2-forms which can be extended continuously
to the boundary of U.

Proof: Clearly, in complex dimension 1, the Hodge decomposition gives
a0 4+ 491 = 4. Therefore, a0 = d+\/2_—1dc and 491 = d_\/z_—ldc. Then
dd¢ = 2,/=1d%1d}0. The operator dd¢: C°U —s A2U is locally surjective
because it is elliptic (see above). Then d%1: ALOU — A2U is also locally
surjective. =
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