Home assignment 2: quadratic forms

Rules: This is a class assignment for this week. Please bring your solutions (written) next Monday. We will have a class discussion the Wednesday after.

Exercise 2.1. Let q be a quadratic form of signature $(1,1)$ on \mathbb{R}^{2} with integer coefficients. Prove that there is always a non-trivial rational pair $v=(a, b) \in \mathbb{R}^{2}$ such that $q(v)=0$, or find a counterexample.

Definition 2.1. The group $O(p, q)$ is the group of linear isometries of the $(p+q)$-dimensional vector space with scalar product of signature (p, q), and $S O(p, q) \subset O(p, q)$ is the group of isometries preserving the orientation. We use the notation $S O^{+}(p, q)$ for the connected component of $S O(p, q)$.

Exercise 2.2. Prove that $O(1,1)$ has 4 connected components, and $S O(1,1)$ has 2 connected components.

Exercise 2.3. Prove that $O(p, q)$ has 4 connected components, when $p, q>0$, and $S O(p, q)$ has 2 connected components.

Hint. Use the previous exercise.
Exercise 2.4. Let q be a quadratic form of signature $(1,2)$ on \mathbb{R}^{3} with integral coefficients. Prove that there is always a non-trivial rational triple $u=(a, b, c) \in$ \mathbb{R}^{3} such that $q(u)=0$, or find a counterexample.

Definition 2.2. Let $V=\mathbb{R}^{3}$ be vector space with quadratic form q of signature $(1,2)$. A line ${ }^{1} l$ in V is called positive if $q(x, x)>0$ for some $x \in l$, negative if $q(x, x)<0$ for some $x \in l$, and isotropic if $q(x, x)=0$ for all $x \in l$. Let $\alpha \in S O^{+}(1,2)$ be a non-trivial element. It is called elliptic if it preserves a positive line $l \in V$, hyperbolic if it preserves a negative line and has infinite order, and parabolic if all lines preserved by α are isotropic.

Exercise 2.5. Let q be a quadratic form of signature $(1,2)$ on \mathbb{R}^{3} with integral coefficients, $h \in S O^{+}(1,2)$ a hyperbolic isometry with integral coefficients, and $P_{h}(t)$ its characteristic polynomial. Prove that $P_{h}(t)$ has precisely 1 rational root.

Exercise 2.6. Let $f: \partial \Delta \longrightarrow \mathbb{C}$ be a continuous function. Prove that f can be extended to a holomorphic function on Δ, or find a counterexample.

[^0]
[^0]: ${ }^{1}$ Here, "line" means a 1-dimensional vector subspace.

