Home assignment 3: Lie groups

Rules: This is a class assignment for this week. Please bring your solutions (written) next Monday. We will have a class discussion the Wednesday after.

Definition 3.1. A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

Exercise 3.1. Prove that $SL(n, \mathbb{R})$ is a Lie group. Prove that it is connected.

Exercise 3.2. Prove that the special unitary group SU(n) acts transitively on the projective space $\mathbb{C}P^{n-1}$. Find the stabilizer $\operatorname{St}_x(SU(n))$ of a point $x \in \mathbb{C}P^{n-1}$. Prove that it is connected, or find a counterexample.

Definition 3.2. Let W be an n-dimensional complex vector space equipped with a complex-linear non-degenerate quadratic form s. Consider **the complex orthogonal group** $O(n, \mathbb{C})$ of all matrices $A \in GL(W)$ preserving s. A subspace $V \subset W$ is called **isotropic** if $s|_W = 0$. It is called **maximally isotropic**, or **Lagrangian**, if dim V = [n/2].

Exercise 3.3. Prove that $SO(n, \mathbb{C}) := O(n, \mathbb{C}) \cap SL(n, \mathbb{C})$ is a Lie group which has index 2 in $O(n, \mathbb{C})$. Prove that it is connected.

Exercise 3.4. Let X be the space of all maximally isotropic suspaces in W ("the maximally isotropic Grassmannian").

- a. Prove that $O(n, \mathbb{C})$ acts on X transitively.
- b. Prove that X is disconnected for n = 2.
- c. Prove that it is connected for $n \ge 3$, or find a counterexample.