Home assignment 5: Convergence for Lipschitz maps

Rules: This is a class assignment for this week. Please bring your solutions (written) next Monday. We will have a class discussion the Wednesday after.

Remark 5.1. For all metric spaces in this assignment, we assume that they admit a countable dense set (that is, are "second countable").

Definition 5.1. A path in a metric space M is a continuous map $\gamma : [0, 1] \longrightarrow M$ **Length** of a path is $\sup_{0=x_1 < x_2 < ... < x_n = 1 \in [0,1]} \sum_{i=1}^{n-1} d(\gamma(x_i), \gamma(x_{i+1})).$

Exercise 5.1. Let $\gamma : [0,1] \longrightarrow \mathbb{R}^2$ be a path of length 1, with $d(\gamma(0), \gamma(1)) > 1 - \varepsilon^2$. Prove that the image of γ is contained in a rectangle of size $\varepsilon \times (1 + \varepsilon)$.

Exercise 5.2. Let $\gamma : [0,1] \longrightarrow \mathbb{R}^2$ be a path of finite length. Prove that the image of γ has measure 0.

Hint. Use the previous exercise.

Definition 5.2. Let M be a metric space, and Map(X, M) the set of all continuous maps from a set X to M. Define the metric on Map(X, M) using $d(f_1, f_2) = \sup_{x \in X} d(f_1(x), f_2(x))$. The corresponding topology is called **the uniform topology** on Map(X, M).

Exercise 5.3. Prove that the length of a path is continuous in the uniform topology on Map[([0,1], M) on the space $Map_C([0,1], M)$ of C-Lipschitz paths, or find a counterexample.

Exercise 5.4. Let M be a manifold with a marked point m, and $Map((S^1, 0), (M, m))$ the space of maps putting $0 \in S^1$ to $m \in M$, where M is a manifold. We equip $Map((S^1, 0), (M, m))$ with the uniform topology. Denote by W the set of connected components of $Map((S^1, 0), (M, m))$. Construct a bijective equivalence between W and the fundamental group $\pi_1(M, m)$.

Definition 5.3. Let M be a topological space, and $U \subset M$ an open subset. Given $x \in X$, we define a subset $S_{x,U} \subset \operatorname{Map}(X, M)$ as the set of all maps putting x to U. Tychonoff topology, also called topology of pointwise convergence, is topology where open subsets are obtained by finite intersections and all unions of $S_{x,U}$ for all possible x and U.

Exercise 5.5. Let $\{f_i\} \in \text{Map}(X, M)$ be a sequence of maps, with M being a topological space. Prove that $\{f_i\}$ converges to f in Tychonoff topology if and only if for each $x \in X$ one has $\lim_i f_i(x) = f(x)$.

Exercise 5.6. Construct a sequence of functions $\{f_i \in C^{\infty}([0,1])\}$ which satisfy $\int_0^1 |f_i(t)| dt = 1$ and converge pointwise to 0.

Issued 15.04.2024