Home assignment 6: Isometries of \mathbb{H}^{2}.

Rules: This is a class assignment for this week. Please bring your solutions (written) next Monday. We will have a class discussion the Wednesday after.

Definition 6.1. Order of $A \in G L(n)$ is the smallest positive integer such that $A^{k}=\mathrm{Id}$.
Exercise 6.1. Let A be an element of finite order k in $G L(2, \mathbb{Z})$. Prove that $k=$ $2,3,4,6$.

Exercise 6.2. Let $A \subset S L(3, \mathbb{Z})$ be an element of finite order k in $S L(3, \mathbb{Z})$. Prove that $k=2,3,4,6$.

Exercise 6.3. Find an element of order 5 in $G L(4, \mathbb{Z})$, or prove that it does not exist.
Remark 6.1. Let $V=\mathbb{R}^{3}$ be a vector space with quadratic form q of signature (1,2), $V^{+}:=\{v \in V \mid q(v)>0\}$, and $\mathbb{P} V^{+}$its projectivisation. Then $\mathbb{P} V^{+}=S O^{+}(1,2) / S O(1)$, giving $\mathbb{P} V^{+}=\mathbb{H}^{2}$; this is one of the standard models of a hyperbolic plane. The absolute is projectivization of the set of all isotropic lines; it is identified with the boundary of $\mathbb{P} V^{+}$in $\mathbb{P} V$.

Definition 6.2. Let $l \subset V$ be a line, that is, a 1 -dimensional subspace. The property $q(x, x)<0$ for a non-zero $x \in l$ is written as $q(l, l)<0$. A line l with $q(l, l)<0$ is called negative line, a line with $q(l, l)>0$ is called positive line.

Remark 6.2. Negative lines bijectively correspond to geodesics in $\mathbb{P} V^{+}=\mathbb{H}^{2}$ (Lecture 8): an orthogonal complement to a negative line is a 2 -dimensional plane l^{\perp}, its projectivization intersected with $\mathbb{P} V^{+}=\mathbb{H}^{2}$ is a geodesic.

Exercise 6.4. Let γ_{1}, γ_{2} be geodesics on a hyperbolic plane, and l_{1}, l_{2} the corresponding negative lines.
a. Prove that l_{1} is orthogonal to l_{2} if and only if γ_{1} is orthogonal to γ_{2}.
b. Prove γ_{1} intersects γ_{2} if and only if the 2 -plane $\left\langle l_{1}, l_{2}\right\rangle$ generated by l_{1}, l_{2} has signature $(0,2)$.
c. Prove that γ_{1} and γ_{2} passes through the same point on the absolute if and only if the 2-plane generated by l_{1}, l_{2} has degenerate scalar product.
d. Prove that the angle between γ_{1} and γ_{2} divides $\frac{2 \pi}{k}$ if and only if the angle between l_{1}, l_{2} in $\left\langle l_{1}, l_{2}\right\rangle$ divides $\frac{2 \pi}{k}$.
e. Prove that the angle between γ_{1} and γ_{2} is equal to the angle between l_{1}, l_{2} in $\left\langle l_{1}, l_{2}\right\rangle$.

Remark 6.3. Recall that $h \in S O^{+}(1,2)$ is called hyperbolic if it has an eigenvalue α with $|\alpha|>1$.

Exercise 6.5. Let q be a quadratic form of signature $(1,2)$ on \mathbb{R}^{3} with integer coefficients, $h \in S O^{+}(1,2)$ a hyperbolic matrix with integer coefficients, and $P_{h}(t)$ its characteristic polynomial. Prove that $P_{h}(t)$ has precisely 1 rational root.

