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Complex structure on a vector space

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

Trivial observations:

1. The eigenvalues αi of I are ±
√
−1 . Indeed, α2

i = −1.

2. V admits an I-invariant, positive definite scalar product (“metric”)

g. Take any metric g0, and let g := g0 + I(g0).

3. I is orthogonal for such g.

Indeed, g(Ix, Iy) = g0(x, y) + g0(Ix, Iy) = g(x, y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.
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Comples structure operator in coordinates

This implies that in an appropriate basis in V ⊗R C, the complex structure
operator is diagonal, as follows:



√
−1 √

−1
.. . √

−1

0

0

−
√
−1

−
√
−1

.. .
−
√
−1


We also obtain its normal form in a real basis:

0 −1
1 0

0 −1
1 0

.. .
. . .

0 −1
1 0
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The Hodge decomposition

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: The Hodge decomposition uniquely determines the complex

structure operator. Moreover, any decomposition V ⊗R C := V 1,0 ⊕ V 0,1

such that V 0,1 = V 1,0 determines the complex structure operator (prove

this as an exercise).
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Complex manifolds

DEFINITION: A holomorphic function on Cn is a smooth function f :

Cn −→ C such that its differential df is complex linear, that is, df ∈ Λ1,0(Cn).

DEFINITION: A map f : Cn −→ Cm is holomorphic if all its coordinate

components are holomorphic.

DEFINITION: A complex manifold is a manifold equipped with an atlas

with charts identified with open subsets of Cn and transition maps holomor-

phic.
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Complex manifolds and almost complex manifolds

DEFINITION: An almost complex structure on a smooth manifold is an
endomorphism I : TM −→ TM of it tangent bundle which satisfies I2 =
− IdTM .

DEFINITION: Standard almost complex structure is I(d/dxi) = d/dyi,
I(d/dyi) = −d/dxi on Cn with complex coordinates zi = xi +

√
−1 yi.

DEFINITION: A map Ψ : (M, I)−→ (N, J) from an almost complex man-
ifold to an almost complex manifold is called holomorphic if its differential
commutes with the almost complex structure.

DEFINITION: A complex-valued function f ∈ C∞M on an almost complex
manifold is holomorphic if df belongs to Λ1,0(M), where

Λ1(M)⊗R C = Λ1,0(M)⊕ Λ0,1(M)

is the Hodge decomposition of the cotangent bundle.

REMARK: For standard almost complex structures, this is the same as
the coordinate components of Ψ being holomorphic functions. Indeed,
a function f : (M, I)−→ (C, I) is holomorphic if and only if its differential
df satisfies df(Iv) =

√
−1 df(v).
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of Cn, in such a way that the almost complex structure I is induced
by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof. Step 1: The complex coordinates define the Hodge decomposition
Λ1(M)⊗R C = Λ1,0(M)⊕ Λ0,1(M), because Λ1,0(M) is generated by differ-
entials of holomorphic functions, and Λ0,1(M) is its complex conjugate.
Step 2: Conversely, the Hodge decomposition determines the ring of holo-
morphic functions, because f ∈ C∞C (M) is holomorphic if and only if df ∈
Λ1,0(M). Now, for any two sets of holomorphic coordinate functions, the
transition map is clearly holomorphic, hence the Hodge decomposition de-
fines a class of atlaces with holomorphic transition functions.

THEOREM: Let (M, I) be an almost complex manifold, dimRM = 2. Then
I is integrable.

Proof: Later in this course. This is one of the central theorems in these
lectures. For a while, we will assume this statement without a proof.

7



2024: Riemann surfaces, lecture 1 M. Verbitsky

Riemannian manifolds

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x, y ∈ M , and any path γ : [a, b]−→M connecting
x and y, consider the length of γ defined as L(γ) =

∫
γ |
dγ
dt |dt, where |dγdt | =

h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.

8



2024: Riemann surfaces, lecture 1 M. Verbitsky

Hermitian structures

DEFINITION: A Riemannia metric h on an almost complex manifold is called

Hermitian if h(x, y) = h(Ix, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,

a Hermitian metric h can be obtained as h = g+ I(g), where I(g)(x, y) =

g(I(x), I(y)).

REMARK: Let I be a complex structure operator on a real vector space V ,

and g a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy) is skew-

symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) = −ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form

on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other

two.
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Conformal structure

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.

Proof: Later today.

REMARK: The last statement is clear from the definition, and true in any

dimension (prove it).

To prove that any two Hermitian metrics are conformally equivalent, we need

to consider the standard U(1)-action on a complex vector space.
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Stereographic projection

Stereographic projection is a light projection from the south pole to a plane

tangent to the north pole.

Stereographic projection is conformal (prove it!)
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Stereographic projection (2)

The stereographic projection with Tissot’s indicatrix of deformation.
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Cylindrical projection

Cylindrical projection is not conformal. However, it is volume-preserving.
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Standard U(1)-action

DEFINITION: Let (V, I) be a real vector space equipped with a complex

structure, U(1) the group of unit complex numbers, U(1) = e
√
−1 πt, t ∈ R.

Define the action of U(1) on V as follows: ρ(t) = etI. This is called the

standard U(1)-action on a complex vector space. To prove that this

formula defines an action if U(1) = R/2πZ, it suffices to show that e2πI = 1,

which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V, I, h) be a Hermitian vector space, and ρ : U(1)−→GL(V )

the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that d
dt(h(ρ(t)x, ρ(t)x) = 0. However, d

dte
tI(x)

∣∣∣t=t0 =

I(et0I(x)), hence

d

dt
(h(ρ(t)x, ρ(t)x) = h(I(ρ(t)x), ρ(t)x) + h(ρ(t)x, I(ρ(t)x)) = 2ω(x, x) = 0.
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Hermitian metrics in dimR = 2.

COROLLARY: Let h, h′ be Hermitian metrics on a space (V, I) of real

dimension 2. Then h and h′ are proportional.

Proof: h and h′ are constant on any U(1)-orbit. Multiplying h′ by a constant,

we may assume that h = h′ on a U(1)-orbit U(1)x. Then h = h′ everywhere,

because for each non-zero vector v ∈ V , tv ∈ U(1)x for some t ∈ R, giving

h(v, v) = t−2h(tv, tv) = t−2h′(tv, tv) = h′(v, v).

DEFINITION: Given two Hermitian forms h, h′ on (V, I), with dimR V = 2,

we denote by h′
h a constant t such that h′ = th.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent.

Proof: h′ = h′
hh.

EXERCISE: Prove that Riemannian structure on M is uniquely defined

by its conformal class and its Riemannian volume form.
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Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let ν be the conformal class of its Hermitian metric (it is unique
as shown above). Then ν determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture ν. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: ρ : U(1)−→GL(TM). Rescaling h does not change
this action, hence it is determined by ν. Now, define I as ρ(

√
−1 ); then

I2 = ρ(−1) = − Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with h and with ν.

DEFINITION: A Riemann surface is a complex manifold of dimension 1,
or (equivalently) an oriented 2-manifold equipped with a conformal structure.

EXERCISE: Prove that a continuous map from one Riemann surface
to another is holomorphic if and only if it preserves the conformal
structure.
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