Lecture 2: Space forms

Misha Verbitsky

IMPA, sala 236, 17:00

March 18, 2024

Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A bilinear symmetric form (or any tensor) Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant bilinear symmetric form (or any tensor) on T_xM , where M = G/H is a homogeneous space. For any $y \in M$ obtained as y = g(x), consider the form Φ_y on T_yM obtained as $\Phi_y := g^*(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ is h-invariant, the tensor Φ_y is independent from the choice of g.

We proved

THEOREM: Let M = G/H be a homogeneous space and $x \in M$ a point. Then the *G*-invariant bilinear forms (or tensors) on M = G/H are in bijective correspondence with isotropy invariant bilinear forms (tensors) on the vector space T_xM .

Space forms

DEFINITION: Simply connected space form is a homogeneous Riemannian manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of affine isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

The Riemannian metric is defined in the next slide.

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique up to a constant multiplier *G*-invariant symmetric 2-form: the standard Euclidean metric.

Proof. Step 1: Let g, g' be two metrics. Clearly, it suffices to show that the functions $x \longrightarrow g(x)$ and $x \longrightarrow g'(x)$ are proportional. Fix a vector v on a unit sphere. Replacing g' by $\frac{g(v)}{g'(v)}g'$ if necessary, we can assume that g = g' on a sphere. Indeed, a sphere is an orbit of SO(n), and g, g' are SO(n)-invariant.

Step 2: Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx for appropriate $x \in S^{n-1}$, $\lambda \in \mathbb{R}$.

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

Hermitian and conformal structures (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: A Riemannian metric h on an almost complex manifold is called Hermitian if h(x,y) = h(Ix, Iy).

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on *M* is a class of conformal equivalence of Riemannian metrics.

CLAIM: Let *I* be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then *h* and *h'* are conformally equivalent. Conversely, any metric conformally equivalent to Hermitian is Hermitian.

Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let *M* be a 2-dimensional oriented manifold. Given a complex structure *I*, let ν be the conformal class of its Hermitian metric (it is unique as shown above). Then ν determines *I* uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal structure ν . Since M is oriented, the group SO(2) = U(1) acts in its tangent bundle in a natural way: $\rho : U(1) \longrightarrow GL(TM)$. Rescaling h does not change this action, hence it is determined by ν . Now, define I as $\rho(\sqrt{-1})$; then $I^2 = \rho(-1) = -\text{Id}$. Since U(1) acts by isometries, this almost complex structure is compatible with h and with ν .

DEFINITION: A Riemann surface is a complex manifold of dimension 1, or (equivalently) an oriented 2-manifold equipped with a conformal structure.

Poincaré-Koebe uniformization theorem

DEFINITION: A **Riemannian manifold of constant curvature** is a Riemannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let *M* be a Riemann surface. Then *M* admits a complete metric of constant curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X by a discrete group of isometries $\Gamma \subset Iso(X)$.

COROLLARY: Any simply connected Riemann surface is conformally equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later lectures.