Lecture 3: Lie groups

Misha Verbitsky

IMPA, sala 236, 17:00

March 25, 2024

Matrix exponent and Lie groups

DEFINITION: Exponent of an endomorphism A is $e^A := \sum_{n=0}^{\infty} \frac{A^n}{n!}$. Logarithm of an endomorphism 1 + A is $\log(1 + A) := \sum_{n=1}^{\infty} -(-1)^n \frac{A^n}{n!}$.

EXERCISE: Prove that exponent is inverse to logarithm in a neighbourhood of 0.

EXERCISE: Prove that if $A, B \in End(V)$ commute, one has $e^{A+B} = e^A e^B$.

EXERCISE: Find an example when $A, B \in \text{End}(V)$ do not commute, and $e^{A+B} \neq e^A e^B$.

EXERCISE: Prove that **exponent is invertible in a sufficiently small neighbourhood of 0** (use the inverse map theorem).

DEFINITION: Let $W \subset End(V)$ be a subspace obtained by logarithms of all elements in a neighbourhood of zero of a subgroup $G \subset GL(V)$. A group $G \subset GL(V)$ is called a Lie subgroup of GL(V), or a matrix Lie group, if it is closed and equal to e^W in a neighbourhood of unity. In this case W is called its Lie algebra.

REMARK: It is possible to show that any closed subgroup of GL(V) is a matrix group. However, for many practical purposes this can be assumed.

Lie groups: first examples

EXAMPLE: From (local) invertibility of exponent it follows that in a neighbourhood of Id_V we have $GL(V) = e^W$, for some W = End(V) (prove it).

EXERCISE: Prove that det $e^A = e^{\operatorname{Tr} A}$, where $\operatorname{Tr} A$ is a trace of A.

EXAMPLE: Let SL(V) be the group of all matrices with determinant 1, and $End_0(V)$ the space of all matrices with trace 0. Then $e^{End_0(V)} = SL(V)$ (prove it). This implies that SL(V) is also a Lie group.

Lie groups as submanifolds

DEFINITION: A subset $M \subset \mathbb{R}^n$ is an *m*-dimensional smooth submanifold if for each $x \in M$ there exists an open in \mathbb{R}^n neighbourhood $U \ni x$ and a diffeomorphism from U to an open ball $B \subset \mathbb{R}^n$ which maps $U \cap M$ to an intersection $B \cap \mathbb{R}^m$ of B and an *m*-dimensional linear subspace.

PROPOSITION: Let $G \subset End(V)$ be a matrix subgroup in GL(V). Then *G* is a submanifold.

Proof. Step 1: From inverse function theorem, it follows that $A \longrightarrow e^A$ is a diffeomorphism on a neighbourhood of 0 mapping the Lie algebra W of G to G.

Step 2: For any $g \in G$, consider the map $x \longrightarrow ge^x$. This map defines a diffeomorphism between a neighbourhood of 0 in End(V) and a neighbourhood gU of g, mapping W to $gU \subset G$.

Orthogonal group as a Lie group

DEFINITION: Let V be a vector space equipped with a non-degenerate bilinear symmetric form h. Then the group of all endomorphisms of V preserving h and orientation is called **the special orthogonal group**, denoted by SO(V,h).

DEFINITION: Consider the space of all $A \in End(V)$ which satisfy h(Ax, y) = -h(x, Ay). This space is called **the space of antisymmetric matrices** and denoted $\mathfrak{so}(V, h)$.

REMARK: Clearly, $\mathfrak{so}(V,h) = \{A \in \text{End}(V) \mid A^t = -A\}.$

THEOREM: SO(V,h) is a Lie group, and $\mathfrak{so}(V,h)$ its Lie algebra.

Proof. Step 1:

$$0 = \frac{d}{dt}h(e^{tA}v, e^{tA}w) = h(Ae^{tA}v, e^{tA}w) + h(e^{tA}v, Ae^{tA}w).$$

If h is e^{tA} -invariant, this gives 0 = h(Av, w) + h(v, Aw), hence A is antisymmetric.

Orthogonal group as a Lie group (2)

THEOREM: SO(V,h) is a Lie group, and $\mathfrak{so}(V,h)$ its Lie algebra.

Proof. Step 1:

$$0 = \frac{d}{dt}h(e^{tA}v, e^{tA}w) = h(e^{tA}A(v), e^{tA}w) + h(e^{tA}v, e^{tA}A(w)).$$

If h is e^{tA} -invariant, this gives 0 = h(Av, w) + h(v, Aw), hence A is antisymmetric.

Step 2: Conversely, suppose that *A* is antisymmetric. Then

$$\frac{d}{dt}h(e^{tA}v, e^{tA}w) = h(Ae^{tA}v, e^{tA}w) + h(e^{tA}v, Ae^{tA}Aw) = 0,$$

hence $h(e^{tA}v, e^{tA}w)$ is independent from t and equal to h(v, w).

Classical Lie groups

EXERCISE: Prove that the following groups are Lie groups.

U(n) ("unitary group"): the group of complex linear automorphisms of \mathbb{C}^n preserving a Hermitian form.

SU(n): ("special unitary group"): the group of complex linear automorphisms of \mathbb{C}^n of determinant 1 preserving a Hermitian form.

 $Sp(2n,\mathbb{R})$ ("symplectic group"): the group of linear automorphisms of \mathbb{R}^{2n} preserving a non-degenerate, antisymmetric 2-form.

Properties of matrix groups

LEMMA: Let $G \subset GL(V)$ be a matrix Lie group, equal to e^W in a neighbourhood of 1. Then $W = T_eG \subset End(V) = T_eGL(V)$.

Proof: The exponent map $W \longrightarrow e^W \subset G$ is an isomorphism in a neighbourhood of 0, but **the differential of this map is identity.**

LEMMA: Let G be a connected Lie group. Then G is generated by any neighbourhood of unity.

Proof: A subgroup $H \subset G$ generated by a given neighbourhood of unity $U \ni e$ is open. The map $U \longrightarrow G$ mapping (u, x) to ux is a diffeomorphism from U to a neighbourhood of x hence it is open. Since any orbit Hx of H acting on G is open, it is also closed, and (unless G is disconnected) there is only one such orbit.

Surjective homomorphisms of matrix groups

COROLLARY 1: Let ψ : $G \longrightarrow G'$ be a Lie group homomorphism. Suppose that its differential is surjective. Then Ψ is surjective on a connected component of unity.

Proof: Let $W = T_e G$ and $W' = T_e G'$. Since the differential of Ψ is surjective, Ψ is surjective to some neighbourhood of unity by the inverse function theorem. However, a neighbourhood of unity generates G' by the previous lemma. Therefore, Ψ is surjective.

COROLLARY 2: Let ψ : $G \longrightarrow G'$ be a Lie group homomorphism. Assume that ψ is injective in a neighbourhood of unity, and dim $G = \dim G'$. Then ψ is surjective on a connected component of unity.

Proof: The differential of ψ is an isomorphism (it is an injective map of vector spaces of the same dimension). Now ψ is surjective by Corollary 1.

Group of unitary quaternions

DEFINITION: A quaternion z is called **unitary** if $|z|^2 := z\overline{z} = 1$. The group of unitary quaternions is denoted by $U(1,\mathbb{H})$. This is a group of all **quaternions satisfying** $z^{-1} = \overline{z}$.

CLAIM: Let im $\mathbb{H} := \mathbb{R}^3$ be the space aI + bJ + cK of all imaginary quaternions. The map $x, y \longrightarrow -\operatorname{Re}(xy)$ defines scalar product on im \mathbb{H} .

CLAIM: This scalar product is positive definite.

Proof: Indeed, if z = aI + bJ + cK, $Re(z^2) = -a^2 - b^2 - c^2$.

COROLLARY: Consider the action of $U(1, \mathbb{H})$ on Im H with $h \in U(1, \mathbb{H})$ mapping $z \in \text{Im }\mathbb{H}$ to $hz\overline{h}$. Since $\overline{hz\overline{h}} = h\overline{z}\overline{h}$, this quaternion also imaginary. Also, $|hz\overline{h}|^2 = hz\overline{h}h\overline{z}\overline{h} = h|z|^2\overline{h} = |z|^2$. This implies that $U(1, \mathbb{H})$ acts on the space im \mathbb{H} by isometries.

DEFINITION: Denote the group of all oriented linear isometries of \mathbb{R}^3 by SO(3). This group is called **the group of rotations of** \mathbb{R}^3 .

REMARK: We have just defined a group homomorphism $U(1, \mathbb{H}) \longrightarrow SO(3)$ mapping h, z to $hz\overline{h}$.

Broom Bridge

"Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$I^2 = J^2 = K^2 = IJK = -1$$

and cut it on a stone of this bridge."

William Rowan Hamilton (watched by his wife)

William Rowan Hamilton (1805 - 1865)

Daniel Doyle's sand sculpture of William Rowan Hamilton (watched by his wife) scratching the formula for his quaternions onto Broom Bridge in Cabra.

$U(\mathbb{H}, 1)$ is generated by exponents

LEMMA: The group $U(\mathbb{H}, 1)$ is generated locally by exponents of imaginary quaternions.

Proof: Let *h* be an imaginary quaternion. Then $\frac{d}{dt}(e^{th}, e^{th}) = (he^{th}, e^{th}) + (e^{th}, he^{th}) = 0$ because (h(x), y) = -(x, h(y)) for any imaginary quaternion. Indeed, rescaling *h* if necessary, we may assume that $h^2 = -1$, then $(h(x), y) = (h^2x, hy) = -(x, hy)$. Since $U(\mathbb{H}, 1)$ is a 3-sphere, the map exp : im $\mathbb{H} \longrightarrow U(\mathbb{H}, 1)$ is a local diffeomorphism. Since $U(\mathbb{H}, 1)$ is connected, it is generated by any open neighbourhood of the unity.

$SU(2) = U(\mathbb{H}, 1)$

The left action of $U(\mathbb{H}, 1)$ on $\mathbb{H} = \mathbb{C}^2$ commutes with the right action of the algebra \mathbb{C} on $\mathbb{H} = \mathbb{C}^2$. This defines a homomorphism $U(\mathbb{H}, 1) \longrightarrow U(2)$.

THEOREM: This homomorphism **defines an isomorphism** $U(\mathbb{H}, 1) \cong SU(2)$, where $SU(2) \subset U(2)$ is a subgroup of **special unitary matrices** (unitary matrices with determinant 1).

Proof. Step 1: The group U(2) is 4-dimensional, because it is a fixed point set of an anti-complex involution $A \longrightarrow (A^t)^{-1}$ in a space $GL(2,\mathbb{C})$ of real dimension 8. The group SU(2) is a kernel of the determinant map $U(2) \xrightarrow{\det} U(1)$, hence it is 3-dimensional.

Step 2: The map $U(\mathbb{H}, 1) \longrightarrow U(2)$ is by construction injective. Its image is generated by exponents of imaginary quaternions. The elements of im \mathbb{H} act on $\mathbb{H} = \mathbb{C}^2$ by traceless matrices (prove this). Using the formula $e^{\operatorname{Tr} A} = \det e^A$, we obtain that their exponents have trivial determinant. This gives an injective map $U(\mathbb{H}, 1) \longrightarrow SU(2)$. It is surjective by Corollary 2.

Group of rotations of \mathbb{R}^3

Similar to complex numbers which can be used to describe rotations of \mathbb{R}^2 , quaternions can be used to describe rotations of \mathbb{R}^3 .

THEOREM: Let $U(1,\mathbb{H})$ be the group of unitary quaternions acting on $\mathbb{R}^3 = \operatorname{Im} H$ as above: $h(x) := hx\overline{h}$. Then **the corresponding group homo-morphism defines an isomorphism** $\Psi : U(1,\mathbb{H})/\{\pm 1\} \xrightarrow{\sim} SO(3)$.

Proof. Step 1: First, any quaternion h which lies in the kernel of the homomorpism $U(1, \mathbb{H}) \longrightarrow SO(3)$ commutes with all imaginary quaternions, Such a quaternion must be real (check this). Since |h| = 1, we have $h = \pm 1$. This implies that Ψ is injective.

Step 2: These groups are 3-dimensional. Then Ψ is surjective by Corollary 2.

COROLLARY: The group SO(3) is identified with the real projective space $\mathbb{R}P^3$. **Proof:** Indeed, $U(1,\mathbb{H})$ is identified with a 3-sphere, and $\mathbb{R}P^3 := S^3/\{\pm 1\}$.

The group SO(4)

Consider the following scalar product on $\mathbb{H} = \mathbb{R}^4$: $g(x, y) = \operatorname{Re}(x\overline{y})$. Obviously from its definition, this form is positive definite. Let $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ act on \mathbb{H} as follows: $h_1, h_2, z \longrightarrow h_1 z \overline{h}_2$, with $z \in \mathbb{H}$ and $h_1, h_2 \in U(1, \mathbb{H})$. Clearly, $|h_1 z \overline{h}_2|^2 = h_1 z \overline{h}_2 h_2 \overline{z} \overline{h}_1 = h_1 z \overline{z} \overline{h}_1 = z \overline{z}$, hence **the group** $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ **acts on** $\mathbb{H} = \mathbb{R}^4$ by isometries. The group ker Ψ contains a pair $(-1, -1) \subset$ $U(1, \mathbb{H}) \times U(1, \mathbb{H})$. We denote the group generated by (-1, -1) as $\{\pm 1\} \subset$ $U(1, \mathbb{H}) \times U(1, \mathbb{H})$.

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms of \mathbb{R}^4 , and let Ψ : $U(1,\mathbb{H}) \times U(1,\mathbb{H})/\{\pm 1\} \longrightarrow SO(4)$ be the group homomorphism constructed above, $h_1, h_2(x) = h_1 x \overline{h_2}$. Then Ψ is an isomorphism. In particular, SO(4) is diffeomorphic to $S^3 \times S^3/\{\pm 1\}$.

Proof. Step 1: Again, let $(h_1, h_2) \in \ker \Psi$. Since $\Psi(h_1, h_2)(1) = 1$, this gives $h_2 = \overline{h}_1 = h_1^{-1}$. However, $h_1 z h_1^{-1} = z$ means that h_1 commutes with z, which implies that h_1 commutes with all quaternions, hence it is real. Then $h_1 = \pm 1$. This proves injectivity of Ψ .

Step 2: The group SO(4) is 6-dimensional (prove it), and $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ is also 6-dimensional. Then Ψ is surjective by Corollary 2.

PU(2) = SO(3)

DEFINITION: Let $U(2) \subset GL(2, \mathbb{C})$ be the group of unitary matrices, and PU(2) its quotient by the group U(1) of diagonal matrices. It is called **projective unitary group**.

REMARK: PU(2) is a quotient of SU(2) by its center – Id (prove it). The group U(2) acts on $\mathbb{C}P^1$, its action is factorized through PU(2), and all non-trivial $g \in PU(2)$ act on $\mathbb{C}P^1$ non-trivially (prove it).

THEOREM: PU(2) is isomorphic to SO(3), the isotropy group of its action on $\mathbb{C}P^1$ is U(1), and the U(2)-invariant metric on $\mathbb{C}P^1$ is isometric to the standard Riemannian metric on S^2 .

Proof: As shown above, $PU(2) = \frac{SU(2)}{\pm 1}$, and $SO(3) = \frac{U(1,\mathbb{H})}{\pm 1}$. On the other hand, $SU(2) = U(1,\mathbb{H})$.

An element $a \in SU(2)$ fixing a line $x \in \mathbb{C}P^1$ acts on its orthogonal complement by rotations. Since det a = 1, the angle of this rotation uniquely determines the angle of rotation of a on the line x. Therefore, the isotropy group of SU(2)-action on $\mathbb{C}P^1$ is S^1 . For PU(2) it is $S^1/\{\pm 1\} = S^1$.

Finally, there exists only one, up to a constant, SO(3) = PU(2)-invariant metric on $\frac{SO(3)}{SO(2)} = S^2$.

Lie algebra

REMARK: Since the commutator of left-invariant vector fields is leftinvariant, commutator is well defined on the space of left invariant vector fields A. Commutator is a bilinear, antisymmetric operation $A \times A \longrightarrow A$ which satisfies the Jacobi identity:

[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]

DEFINITION: A Lie algebra is a vector space A equipped with a bilinear, antisymmetric operation $A \times A \longrightarrow A$ which satisfies the Jacobi identity.

THEOREM: (The main theorem of Lie theory) A simply connected Lie group **is uniquely determined by its Lie algebra.** Every finite-dimensional Lie algebra **is obtained as a Lie algebra of a simply connected Lie group**.

DEFINITION: Adjoint representation of a Lie group is the action of G on its Lie algebra T_eG obtained from the adjoint action of G on itself, $g(x) = gxg^{-1}$.

REMARK: Any matrix Lie group $G \subset GL(V)$, is generated by exponents of its Lie algebra Lie(G), and locally in a neighbourhood of zero the exponent map exp : Lie(G) \rightarrow G is a diffeomorphism.

Left-invariant vector fields

REMARK: A group acts on itself in three different ways: there is **left action** g(x) = gx, **right action** $g(x) = xg^{-1}$, and **adjoint action** $g(x) = gxg^{-1}$,

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-invariant vector fields.

REMARK: Since the group acts on itself freely and transitively, left-invariant vector fields on G are identified T_eG . Indeed, any vector $x \in T_eG$ can be extended to a left-invariant vector field in a unique way.

REMARK: The same is true for any left-invariant tensor on G: it can be obtained in a unique way from a tensor on a vector space T_eG .

Homotopy lifting principle

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space, and $\tilde{M} \longrightarrow M$ a covering map. Then for each continuous map $X \longrightarrow M$, there exists a lifting $X \longrightarrow \tilde{M}$ making the following diagram commutative.

Universal covering of a Lie group

THEOREM: Let G be a connected Lie group, and \tilde{G} its universal covering. Then \tilde{G} has a unique structure of a Lie group, such that the covering map $\pi : \tilde{G} \longrightarrow G$ is a homomorphism.

Proof: The multiplication map $\tilde{G} \longrightarrow \tilde{G} \xrightarrow{\tilde{\mu}} \tilde{G}$ is a lifting of the composition of π and multiplication $\tilde{G} \times \tilde{G} \xrightarrow{\pi \times \pi} G \times G \xrightarrow{\mu} G$ mapping the unity $\tilde{e} \times \tilde{e}$ to \tilde{e} . Similarly, the inverse map $\tilde{a} : \tilde{G} \longrightarrow \tilde{G}$ is a lifting of the inverse $a : G \longrightarrow G$ mapping \tilde{e} to \tilde{e}

Uniqueness and group identities on \tilde{G} both follow from the uniqueness of the homotopy lifting. \blacksquare

Classification of 1-dimensional Lie groups

Exercise 1: Prove that any non-trivial discrete subgroup of \mathbb{R} is cyclic (isomorphic to \mathbb{Z}).

THEOREM: Any 1-dimensional connected Lie group G is isomorphic to S^1 or \mathbb{R} .

Proof. Step 1: Any 1-dimensional manifold is diffeomorphic to S^1 or \mathbb{R} . By Exercise 1 it suffices to prove that any simply connected, connected 1-dimensional Lie group is isomorphic to \mathbb{R} .

Classification of 1-dimensional Lie groups (2)

THEOREM: Any 1-dimensional connected Lie group G is isomorphic to S^1 or \mathbb{R} .

Step 2: Since G is simply connected, it is diffeomorphic to \mathbb{R} . Let $v \in T_eG$ be a non-zero tangent vector, $\vec{v} \in TG$ the corresponding left-invariant vector field, and $E : \mathbb{R} \longrightarrow G$ a solution of the ODE

$$\frac{d}{dt}E(t) = \vec{v}. \quad (*)$$

mapping 0 to e. A solution of (*), considered as a map from \mathbb{R} to $G = \mathbb{R}$, exists and is uniquely determined by P(0) by the uniqueness and existence of solutions of ODE. Since the left action L_g of G on itself preserves \vec{v} , it maps solutions of (*) to solutions of (*). Let g = E(s). Then $t \longrightarrow L_{g^{-1}}E(s+t)$ is a solution of (*) which maps 0 to $E(s)^{-1}E(s) = e$, hence $L_{g^{-1}}E(s+t) = E(t)$ and E(s+t) = E(s)E(t). Therefore, the map $E : \mathbb{R} \longrightarrow G$ is a group homomorphism.

Step 3: Differential of *E* is non-degenerate, hence *E* is locally a diffeomorphism; since *G* is connected, *G* is generated by a neighbourhood of 0, hence *E* is surjective. If *E* is not injective, its kernel is discrete, but then ker $E = \mathbb{Z}$, and *G* is a circle. Therefore, *E* is invertible.