Lecture 3: Lie groups

Misha Verbitsky

IMPA, sala 236, 17:00
March 25, 2024

Matrix exponent and Lie groups

DEFINITION: Exponent of an endomorphism A is $e^{A}:=\sum_{n=Q_{n}}^{\infty} \frac{A^{n}}{n!}$. Logarithm of an endomorphism $1+A$ is $\log (1+A):=\sum_{n=1}^{\infty}-(-1)^{n} \frac{A^{n} n}{n}$.

EXERCISE: Prove that exponent is inverse to logarithm in a neighbourhood of 0 .

EXERCISE: Prove that if $A, B \in \operatorname{End}(V)$ commute, one has $e^{A+B}=e^{A} e^{B}$.
EXERCISE: Find an example when $A, B \in \operatorname{End}(V)$ do not commute, and $e^{A+B} \neq e^{A} e^{B}$.

EXERCISE: Prove that exponent is invertible in a sufficiently small neighbourhood of 0 (use the inverse map theorem).

DEFINITION: Let $W \subset \operatorname{End}(V)$ be a subspace obtained by logarithms of all elements in a neighbourhood of zero of a subgroup $G \subset G L(V)$. A group $G \subset G L(V)$ is called a Lie subgroup of $G L(V)$, or a matrix Lie group, if it is closed and equal to e^{W} in a neighbourhood of unity. In this case W is called its Lie algebra.

REMARK: It is possible to show that any closed subgroup of $G L(V)$ is a matrix group. However, for many practical purposes this can be assumed.

Lie groups: first examples

EXAMPLE: From (local) invertibility of exponent it follows that in a neighbourhood of Id_{V} we have $G L(V)=e^{W}$, for some $W=\operatorname{End}(V)$ (prove it).

EXERCISE: Prove that det $e^{A}=e^{\operatorname{Tr} A}$, where $\operatorname{Tr} A$ is a trace of A.

EXAMPLE: Let $S L(V)$ be the group of all matrices with determinant 1, and $E n d_{0}(V)$ the space of all matrices with trace 0 . Then $e^{E n d_{0}(V)}=S L(V)$ (prove it). This implies that $S L(V)$ is also a Lie group.

Lie groups as submanifolds

DEFINITION: A subset $M \subset \mathbb{R}^{n}$ is an m-dimensional smooth submanifold if for each $x \in M$ there exists an open in \mathbb{R}^{n} neighbourhood $U \ni x$ and a diffeomorphism from U to an open ball $B \subset \mathbb{R}^{n}$ which maps $U \cap M$ to an intersection $B \cap R^{m}$ of B and an m-dimensional linear subspace.

PROPOSITION: Let $G \subset \operatorname{End}(V)$ be a matrix subgroup in $G L(V)$. Then G is a submanifold.

Proof. Step 1: From inverse function theorem, it follows that $A \longrightarrow e^{A}$ is a diffeomorphism on a neighbourhood of 0 mapping the Lie algebra W of G to G.

Step 2: For any $g \in G$, consider the map $x \longrightarrow g e^{x}$. This map defines a diffeomorphism between a neighbourhood of 0 in $\operatorname{End}(V)$ and a neighbourhood $g U$ of g, mapping W to $g U \subset G$.

Orthogonal group as a Lie group

DEFINITION: Let V be a vector space equipped with a non-degenerate bilinear symmetric form h. Then the group of all endomorphisms of V preserving h and orientation is called the special orthogonal group, denoted by $S O(V, h)$.

DEFINITION: Consider the space of all $A \in \operatorname{End}(V)$ which satisfy $h(A x, y)=$ $-h(x, A y)$. This space is called the space of antisymmetric matrices and denoted $\mathfrak{s o}(V, h)$.

REMARK: Clearly, $\mathfrak{s o}(V, h)=\left\{A \in \operatorname{End}(V) \mid A^{t}=-A\right\}$.

THEOREM: $S O(V, h)$ is a Lie group, and $\mathfrak{s o}(V, h)$ its Lie algebra.

Proof. Step 1:

$$
0=\frac{d}{d t} h\left(e^{t A} v, e^{t A} w\right)=h\left(A e^{t A} v, e^{t A} w\right)+h\left(e^{t A} v, A e^{t A} w\right)
$$

 metric.

Orthogonal group as a Lie group (2)

THEOREM: $S O(V, h)$ is a Lie group, and $\mathfrak{s o}(V, h)$ its Lie algebra.

Proof. Step 1:

$$
0=\frac{d}{d t} h\left(e^{t A} v, e^{t A} w\right)=h\left(e^{t A} A(v), e^{t A} w\right)+h\left(e^{t A} v, e^{t A} A(w)\right)
$$

 metric.

Step 2: Conversely, suppose that A is antisymmetric. Then

$$
\frac{d}{d t} h\left(e^{t A} v, e^{t A} w\right)=h\left(A e^{t A} v, e^{t A} w\right)+h\left(e^{t A} v, A e^{t A} A w\right)=0
$$

hence $h\left(e^{t A} v, e^{t A} w\right)$ is independent from t and equal to $h(v, w)$.

Classical Lie groups

EXERCISE: Prove that the following groups are Lie groups.
$U(n)$ ("unitary group"): the group of complex linear automorphisms of \mathbb{C}^{n} preserving a Hermitian form.
$S U(n)$: ("special unitary group"): the group of complex linear automorphisms of \mathbb{C}^{n} of determinant 1 preserving a Hermitian form.
$S p(2 n, \mathbb{R})$ ("symplectic group"): the group of linear automorphisms of $\mathbb{R}^{2 n}$ preserving a non-degenerate, antisymmetric 2-form.

Properties of matrix groups

LEMMA: Let $G \subset G L(V)$ be a matrix Lie group, equal to e^{W} in a neighbourhood of 1 . Then $W=T_{e} G \subset$ End $(V)=T_{e} G L(V)$.

Proof: The exponent map $W \longrightarrow e^{W} \subset G$ is an isomorphism in a neighbourhood of 0 , but the differential of this map is identity.

LEMMA: Let G be a connected Lie group. Then G is generated by any neighbourhood of unity.

Proof: A subgroup $H \subset G$ generated by a given neighbourhood of unity $U \ni e$ is open, The map $U \longrightarrow G$ mapping (u, x) to $u x$ is a diffeomorphism from U to a neighbourhood of x hence it is open. Since any orbit $H x$ of H acting on G is open, it is also closed, and (unless G is disconnected) there is only one such orbit.

Surjective homomorphisms of matrix groups

COROLLARY 1: Let $\psi: G \longrightarrow G^{\prime}$ be a Lie group homomorphism. Suppose that its differential is surjective. Then ψ is surjective on a connected component of unity.

Proof: Let $W=T_{e} G$ and $W^{\prime}=T_{e} G^{\prime}$. Since the differential of ψ is surjective, ψ is surjective to some neighbourhood of unity by the inverse function theorem. However, a neighbourhood of unity generates G^{\prime} by the previous lemma. Therefore, ψ is surjective.

COROLLARY 2: Let $\psi: G \longrightarrow G^{\prime}$ be a Lie group homomorphism. Assume that ψ is injective in a neighbourhood of unity, and $\operatorname{dim} G=\operatorname{dim} G^{\prime}$. Then ψ is surjective on a connected component of unity.

Proof: The differential of ψ is an isomorphism (it is an injective map of vector spaces of the same dimension). Now ψ is surjective by Corollary 1 .

Group of unitary quaternions

DEFINITION: A quaternion z is called unitary if $|z|^{2}:=z \bar{z}=1$. The group of unitary quaternions is denoted by $U(1, \mathbb{H})$. This is a group of all quaternions satisfying $z^{-1}=\bar{z}$.

CLAIM: Let $\operatorname{im} \mathbb{H}:=\mathbb{R}^{3}$ be the space $a I+b J+c K$ of all imaginary quaternions. The map $x, y \longrightarrow-\operatorname{Re}(x y)$ defines scalar product on im \mathbb{H}.

CLAIM: This scalar product is positive definite.
Proof: Indeed, if $z=a I+b J+c K, \operatorname{Re}\left(z^{2}\right)=-a^{2}-b^{2}-c^{2}$.
COROLLARY: Consider the action of $U(1, \mathbb{H})$ on $\operatorname{Im} H$ with $h \in U(1, \mathbb{H})$ mapping $z \in \operatorname{Im} \mathbb{H}$ to $h z \bar{h}$. Since $\overline{h z \bar{h}}=h \bar{z} \bar{h}$, this quaternion also imaginary. Also, $|h z \bar{h}|^{2}=h z \bar{h} h \bar{z} \bar{h}=h|z|^{2} \bar{h}=|z|^{2}$. This implies that $U(1, \mathbb{H})$ acts on the space im \mathbb{H} by isometries.

DEFINITION: Denote the group of all oriented linear isometries of \mathbb{R}^{3} by $S O(3)$. This group is called the group of rotations of \mathbb{R}^{3}.

REMARK: We have just defined a group homomorphism $U(1, \mathbb{H}) \longrightarrow S O(3)$ mapping h, z to $h z \bar{h}$.

Broom Bridge

"Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication

$$
I^{2}=J^{2}=K^{2}=I J K=-1
$$

and cut it on a stone of this bridge."

William Rowan Hamilton (watched by his wife)

```
William Rowan Hamilton (1805-1865)
```


Daniel Doyle's sand sculpture of William Rowan Hamilton (watched by his wife) scratching the formula for his quaternions onto Broom Bridge in Cabra.

$U(\mathbb{H}, 1)$ is generated by exponents

LEMMA: The group $U(\mathbb{H}, 1)$ is generated locally by exponents of imaginary quaternions.

Proof: Let h be an imaginary quaternion. Then $\frac{d}{d t}\left(e^{t h}, e^{t h}\right)=\left(h e^{t h}, e^{t h}\right)+$ $\left(e^{t h}, h e^{t h}\right)=0$ because $(h(x), y)=-(x, h(y))$ for any imaginary quaternion. Indeed, rescaling h if necessary, we may assume that $h^{2}=-1$, then $(h(x), y)=$ $\left(h^{2} x, h y\right)=-(x, h y)$. Since $U(\mathbb{H}, 1)$ is a 3-sphere, the map $\exp : \operatorname{im} \mathbb{H} \longrightarrow U(\mathbb{H}, 1)$ is a local diffeomorphism. Since $U(\mathbb{H}, 1)$ is connected, it is generated by any open neighbourhood of the unity.
$S U(2)=U(\mathbb{H}, 1)$
The left action of $U(\mathbb{H}, 1)$ on $\mathbb{H}=\mathbb{C}^{2}$ commutes with the right action of the algebra \mathbb{C} on $\mathbb{H}=\mathbb{C}^{2}$. This defines a homomorphism $U(\mathbb{H}, 1) \longrightarrow U(2)$.

THEOREM: This homomorphism defines an isomorphism $U(\mathbb{H}, 1) \cong S U(2)$, where $S U(2) \subset U(2)$ is a subgroup of special unitary matrices (unitary matrices with determinant 1).

Proof. Step 1: The group $U(2)$ is 4-dimensional, because it is a fixed point set of an anti-complex involution $A \longrightarrow\left(A^{t}\right)^{-1}$ in a space $G L(2, \mathbb{C})$ of real dimension 8. The group $S U(2)$ is a kernel of the determinant map $U(2) \xrightarrow{\text { det }} U(1)$, hence it is 3-dimensional.

Step 2: The map $U(\mathbb{H}, 1) \longrightarrow U(2)$ is by construction injective. Its image is generated by exponents of imaginary quaternions. The elements of im \mathbb{H} act on $\mathbb{H}=\mathbb{C}^{2}$ by traceless matrices (prove this). Using the formula $e^{\operatorname{Tr} A}=$ $\operatorname{det} e^{A}$, we obtain that their exponents have trivial determinant. This gives an injective map $U(\mathbb{H}, 1) \longrightarrow S U(2)$. It is surjective by Corollary 2 .

Group of rotations of \mathbb{R}^{3}
Similar to complex numbers which can be used to describe rotations of \mathbb{R}^{2}, quaternions can be used to describe rotations of \mathbb{R}^{3}.

THEOREM: Let $U(1, \mathbb{H})$ be the group of unitary quaternions acting on $\mathbb{R}^{3}=\operatorname{Im} H$ as above: $h(x):=h x \bar{h}$. Then the corresponding group homomorphism defines an isomorphism $\psi: U(1, \mathbb{H}) /\{ \pm 1\} \xrightarrow{\sim} S O(3)$.

Proof. Step 1: First, any quaternion h which lies in the kernel of the homomorpism $U(1, \mathbb{H}) \longrightarrow S O(3)$ commmutes with all imaginary quaternions, Such a quaternion must be real (check this). Since $|h|=1$, we have $h= \pm 1$. This implies that ψ is injective.

Step 2: These groups are 3-dimensional. Then ψ is surjective by Corollary 2.

COROLLARY: The group $S O(3)$ is identified with the real projective space $\mathbb{R} P^{3}$.
Proof: Indeed, $U(1, \mathbb{H})$ is identified with a 3-sphere, and $\mathbb{R} P^{3}:=S^{3} /\{ \pm 1\}$.

The group $S O(4)$
Consider the following scalar product on $\mathbb{H}=\mathbb{R}^{4}: g(x, y)=\operatorname{Re}(x \bar{y})$. Obviously from its definition, this form is positive definite. Let $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ act on \mathbb{H} as follows: $h_{1}, h_{2}, z \longrightarrow h_{1} z \bar{h}_{2}$, with $z \in \mathbb{H}$ and $h_{1}, h_{2} \in U(1, \mathbb{H})$. Clearly, $\left|h_{1} z \bar{h}_{2}\right|^{2}=h_{1} z \bar{h}_{2} h_{2} \bar{z} \bar{h}_{1}=h_{1} z \bar{z} \bar{h}_{1}=z \bar{z}$, hence the group $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ acts on $\mathbb{H}=\mathbb{R}^{4}$ by isometries. The group ker ψ contains a pair $(-1,-1) \subset$ $U(1, \mathbb{H}) \times U(1, \mathbb{H})$. We denote the group generated by $(-1,-1)$ as $\{ \pm 1\} \subset$ $U(1, \mathbb{H}) \times U(1, \mathbb{H})$.

THEOREM: Denote by $S O$ (4) the group of linear orthogonal automorphisms of \mathbb{R}^{4}, and let $\psi: U(1, \mathbb{H}) \times U(1, \mathbb{H}) /\{ \pm 1\} \longrightarrow S O(4)$ be the group homomorphism constructed above, $h_{1}, h_{2}(x)=h_{1} x \bar{h}_{2}$. Then ψ is an isomorphism. In particular, $S O(4)$ is diffeomorphic to $S^{3} \times S^{3} /\{ \pm 1\}$.

Proof. Step 1: Again, let $\left(h_{1}, h_{2}\right) \in \operatorname{ker} \Psi$. Since $\Psi\left(h_{1}, h_{2}\right)(1)=1$, this gives $h_{2}=\bar{h}_{1}=h_{1}^{-1}$. However, $h_{1} z h_{1}^{-1}=z$ means that h_{1} commutes with z, which implies that h_{1} commutes with all quaternions, hence it is real. Then $h_{1}= \pm 1$. This proves injectivity of ψ.

Step 2: The group $S O(4)$ is 6-dimensional (prove it), and $U(1, \mathbb{H}) \times U(1, \mathbb{H})$ is also 6 -dimensional. Then Ψ is surjective by Corollary 2.
$P U(2)=S O(3)$
DEFINITION: Let $U(2) \subset G L(2, \mathbb{C})$ be the group of unitary matrices, and $P U(2)$ its quotient by the group $U(1)$ of diagonal matrices. It is called projective unitary group.

REMARK: $P U(2)$ is a quotient of $S U(2)$ by its center - Id (prove it). The group $U(2)$ acts on $\mathbb{C} P^{1}$, its action is factorized through $P U(2)$, and all nontrivial $g \in P U(2)$ act on $\mathbb{C} P^{1}$ non-trivially (prove it).

THEOREM: $P U(2)$ is isomorphic to $S O(3)$, the isotropy group of its action on $\mathbb{C} P^{1}$ is $U(1)$, and the $U(2)$-invariant metric on $\mathbb{C} P^{1}$ is isometric to the standard Riemannian metric on S^{2}.

Proof: As shown above, $P U(2)=\frac{S U(2)}{ \pm 1}$, and $S O(3)=\frac{U(1, H 1)}{ \pm 1}$. On the other hand, $S U(2)=U(1, \mathbb{H})$.

An element $a \in S U(2)$ fixing a line $x \in \mathbb{C} P^{1}$ acts on its orthogonal complement by rotations. Since det $a=1$, the angle of this rotation uniquely determines the angle of rotation of a on the line x. Therefore, the isotropy group of $S U(2)$-action on $\mathbb{C} P^{1}$ is S^{1}. For $P U(2)$ it is $S^{1} /\{ \pm 1\}=S^{1}$.

Finally, there exists only one, up to a constant, $S O(3)=P U(2)$-invariant metric on $\frac{S O(3)}{S O(2)}=S^{2}$.

Lie algebra

REMARK: Since the commutator of left-invariant vector fields is leftinvariant, commutator is well defined on the space of left invariant vector fields A. Commutator is a bilinear, antisymmetric operation $A \times A \longrightarrow A$ which satisfies the Jacobi identity:

$$
[X,[Y, Z]]=[[X, Y], Z]+[Y,[X, Z]]
$$

DEFINITION: A Lie algebra is a vector space A equipped with a bilinear, antisymmetric operation $A \times A \longrightarrow A$ which satisfies the Jacobi identity.

THEOREM: (The main theorem of Lie theory) A simply connected Lie group is uniquely determined by its Lie algebra. Every finite-dimensional Lie algebra is obtained as a Lie algebra of a simply connected Lie group.

DEFINITION: Adjoint representation of a Lie group is the action of G on its Lie algebra $T_{e} G$ obtained from the adjoint action of G on itself, $g(x)=$ $g x g^{-1}$.

REMARK: Any matrix Lie group $G \subset G L(V)$, is generated by exponents of its Lie algebra Lie (G), and locally in a neighbourhood of zero the exponent map exp : $\operatorname{Lie}(G) \longrightarrow G$ is a diffeomorphism.

Left-invariant vector fields

REMARK: A group acts on itself in three different ways: there is left action $g(x)=g x$, right action $g(x)=x g^{-1}$, and adjoint action $g(x)=g x g^{-1}$,

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie (G) of left-invariant vector fields.

REMARK: Since the group acts on itself freely and transitively, left-invariant vector fields on G are identified $T_{e} G$. Indeed, any vector $x \in T_{e} G$ can be extended to a left-invariant vector field in a unique way.

REMARK: The same is true for any left-invariant tensor on G : it can be obtained in a unique way from a tensor on a vector space $T_{e} G$.

Homotopy lifting principle

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space, and $\tilde{M} \longrightarrow M$ a covering map. Then for each continuous map $X \longrightarrow M$, there exists a lifting $X \longrightarrow \tilde{M}$ making the following diagram commutative.

Universal covering of a Lie group

THEOREM: Let G be a connected Lie group, and \tilde{G} its universal covering. Then \tilde{G} has a unique structure of a Lie group, such that the covering map $\pi: \widetilde{G} \longrightarrow G$ is a homomorphism.

Proof: The multiplication $\operatorname{map} \widetilde{G} \longrightarrow \widetilde{G} \xrightarrow{\tilde{\mu}} \tilde{G}$ is a lifting of the composition of π and multiplication $\widetilde{G} \times \widetilde{G} \xrightarrow{\pi \times \pi} G \times G \xrightarrow{\mu} G$ mapping the unity $\tilde{e} \times \tilde{e}$ to \tilde{e}. Similarly, the inverse map $\tilde{a}: \widetilde{G} \longrightarrow \widetilde{G}$ is a lifting of the inverse $a: G \longrightarrow G$ mapping \tilde{e} to \tilde{e}

Uniqueness and group identities on \tilde{G} both follow from the uniqueness of the homotopy lifting.

Classification of 1-dimensional Lie groups

Exercise 1: Prove that any non-trivial discrete subgroup of \mathbb{R} is cyclic (isomorphic to \mathbb{Z}).

THEOREM: Any 1-dimensional connected Lie group G is isomorphic to S^{1} or \mathbb{R}.

Proof. Step 1: Any 1-dimensional manifold is diffeomorphic to S^{1} or \mathbb{R}. By Exercise 1 it suffices to prove that any simply connected, connected 1 dimensional Lie group is isomorphic to \mathbb{R}.

Classification of 1 -dimensional Lie groups (2)

THEOREM: Any 1-dimensional connected Lie group G is isomorphic to S^{1} or \mathbb{R}.

Step 2: Since G is simply connected, it is diffeomorphic to \mathbb{R}. Let $v \in T_{e} G$ be a non-zero tangent vector, $\vec{v} \in T G$ the corresponding left-invariant vector field, and $E: \mathbb{R} \longrightarrow G$ a solution of the ODE

$$
\frac{d}{d t} E(t)=\vec{v} . \quad(*)
$$

mapping 0 to e. A solution of $(*)$, considered as a map from \mathbb{R} to $G=\mathbb{R}$, exists and is uniquely determined by $P(0)$ by the uniqueness and existence of solutions of ODE. Since the left action L_{g} of G on itself preserves \vec{v}, it maps solutions of $(*)$ to solutions of $(*)$. Let $g=E(s)$. Then $t \longrightarrow L_{g^{-1}} E(s+t)$ is a solution of $(*)$ which maps 0 to $E(s)^{-1} E(s)=e$, hence $L_{g^{-1}} E(s+t)=$ $E(t)$ and $E(s+t)=E(s) E(t)$. Therefore, the map $E: \mathbb{R} \longrightarrow G$ is a group homomorphism.

Step 3: Differential of E is non-degenerate, hence E is locally a diffeomorphism; since G is connected, G is generated by a neighbourhood of 0 , hence E is surjective. If E is not injective, its kernel is discrete, but then $\operatorname{ker} E=\mathbb{Z}$, and G is a circle. Therefore, E is invertible.

