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Matrix exponent and Lie groups

DEFINITION: Exponent of an endomorphism A is eA :=
∑∞
n=0

An

n! . Loga-
rithm of an endomorphism 1 +A is log(1 +A) :=

∑∞
n=1−(−1)nA

n

n

EXERCISE: Prove that exponent is inverse to logarithm in a neighbour-
hood of 0.

EXERCISE: Prove that if A,B ∈ End(V ) commute, one has eA+B = eAeB.

EXERCISE: Find an example when A,B ∈ End(V ) do not commute, and
eA+B 6= eAeB.

EXERCISE: Prove that exponent is invertible in a sufficiently small
neighbourhood of 0 (use the inverse map theorem).

DEFINITION: Let W ⊂ End(V ) be a subspace obtained by logarithms of
all elements in a neighbourhood of zero of a subgroup G ⊂ GL(V ). A group
G ⊂ GL(V ) is called a Lie subgroup of GL(V ), or a matrix Lie group, if
it is closed and equal to eW in a neighbourhood of unity. In this case W is
called its Lie algebra.

REMARK: It is possible to show that any closed subgroup of GL(V ) is a
matrix group. However, for many practical purposes this can be assumed.
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Lie groups: first examples

EXAMPLE: From (local) invertibility of exponent it follows that in a neigh-

bourhood of IdV we have GL(V ) = eW , for some W = End(V ) (prove it).

EXERCISE: Prove that det eA = eTrA, where TrA is a trace of A.

EXAMPLE: Let SL(V ) be the group of all matrices with determinant 1,

and End0(V ) the space of all matrices with trace 0. Then eEnd0(V ) = SL(V )

(prove it). This implies that SL(V ) is also a Lie group.
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Lie groups as submanifolds

DEFINITION: A subset M ⊂ Rn is an m-dimensional smooth submanifold

if for each x ∈ M there exists an open in Rn neighbourhood U 3 x and a

diffeomorphism from U to an open ball B ⊂ Rn which maps U ∩ M to an

intersection B ∩Rm of B and an m-dimensional linear subspace.

PROPOSITION: Let G ⊂ End(V ) be a matrix subgroup in GL(V ). Then

G is a submanifold.

Proof. Step 1: From inverse function theorem, it follows that A−→ eA is a

diffeomorphism on a neighbourhood of 0 mapping the Lie algebra W of G to

G.

Step 2: For any g ∈ G, consider the map x−→ gex. This map defines a dif-

feomorphism between a neighbourhood of 0 in End(V ) and a neighbourhood

gU of g, mapping W to gU ⊂ G.
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Orthogonal group as a Lie group

DEFINITION: Let V be a vector space equipped with a non-degenerate

bilinear symmetric form h. Then the group of all endomorphisms of V pre-

serving h and orientation is called the special orthogonal group, denoted

by SO(V, h).

DEFINITION: Consider the space of all A ∈ End(V ) which satisfy h(Ax, y) =

−h(x,Ay). This space is called the space of antisymmetric matrices and

denoted so(V, h).

REMARK: Clearly, so(V, h) = {A ∈ End(V ) | At = −A}.

THEOREM: SO(V, h) is a Lie group, and so(V, h) its Lie algebra.

Proof. Step 1:

0 =
d

dt
h(etAv, etAw) = h(AetAv, etAw) + h(etAv,AetAw).

If h is etA-invariant, this gives 0 = h(Av,w) + h(v,Aw), hence A is antisym-

metric.
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Orthogonal group as a Lie group (2)

THEOREM: SO(V, h) is a Lie group, and so(V, h) its Lie algebra.

Proof. Step 1:

0 =
d

dt
h(etAv, etAw) = h(etAA(v), etAw) + h(etAv, etAA(w)).

If h is etA-invariant, this gives 0 = h(Av,w) + h(v,Aw), hence A is antisym-

metric.

Step 2: Conversely, suppose that A is antisymmetric. Then

d

dt
h(etAv, etAw) = h(AetAv, etAw) + h(etAv,AetAAw) = 0,

hence h(etAv, etAw) is independent from t and equal to h(v, w).
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Classical Lie groups

EXERCISE: Prove that the following groups are Lie groups.

U(n) (“unitary group”): the group of complex linear automorphisms of Cn

preserving a Hermitian form.

SU(n): (“special unitary group”): the group of complex linear automor-

phisms of Cn of determinant 1 preserving a Hermitian form.

Sp(2n,R) (“symplectic group”): the group of linear automorphisms of R2n

preserving a non-degenerate, antisymmetric 2-form.
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Properties of matrix groups

LEMMA: Let G ⊂ GL(V ) be a matrix Lie group, equal to eW in a neighbour-

hood of 1. Then W = TeG ⊂ End(V ) = TeGL(V ).

Proof: The exponent map W −→ eW ⊂ G is an isomorphism in a neighbour-

hood of 0, but the differential of this map is identity.

LEMMA: Let G be a connected Lie group. Then G is generated by any

neighbourhood of unity.

Proof: A subgroup H ⊂ G generated by a given neighbourhood of unity U 3 e
is open, The map U −→G mapping (u, x) to ux is a diffeomorphism from U

to a neighbourhood of x hence it is open. Since any orbit Hx of H acting on

G is open, it is also closed, and (unless G is disconnected) there is only one

such orbit.
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Surjective homomorphisms of matrix groups

COROLLARY 1: Let ψ : G−→G′ be a Lie group homomorphism. Suppose

that its differential is surjective. Then Ψ is surjective on a connected

component of unity.

Proof: Let W = TeG and W ′ = TeG′. Since the differential of Ψ is surjective,

Ψ is surjective to some neighbourhood of unity by the inverse function theo-

rem. However, a neighbourhood of unity generates G′ by the previous lemma.

Therefore, Ψ is surjective.

COROLLARY 2: Let ψ : G−→G′ be a Lie group homomorphism. Assume

that ψ is injective in a neighbourhood of unity, and dimG = dimG′. Then ψ

is surjective on a connected component of unity.

Proof: The differential of ψ is an isomorphism (it is an injective map of vector

spaces of the same dimension). Now ψ is surjective by Corollary 1.
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Group of unitary quaternions

DEFINITION: A quaternion z is called unitary if |z|2 := zz = 1. The
group of unitary quaternions is denoted by U(1,H). This is a group of all
quaternions satisfying z−1 = z.

CLAIM: Let imH := R3 be the space aI+bJ+cK of all imaginary quaternions.
The map x, y −→ −Re(xy) defines scalar product on imH.

CLAIM: This scalar product is positive definite.

Proof: Indeed, if z = aI + bJ + cK, Re(z2) = −a2 − b2 − c2.

COROLLARY: Consider the action of U(1,H) on ImH with h ∈ U(1,H)
mapping z ∈ ImH to hzh. Since hzh = hzh, this quaternion also imaginary.
Also, |hzh|2 = hzhhzh = h|z|2h = |z|2. This implies that U(1,H) acts on
the space imH by isometries.

DEFINITION: Denote the group of all oriented linear isometries of R3 by
SO(3). This group is called the group of rotations of R3.

REMARK: We have just defined a group homomorphism U(1,H)−→ SO(3)
mapping h, z to hzh.
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Broom Bridge

“Here as he walked by on the 16th of October 1843 Sir William Rowan Hamil-

ton in a flash of genius discovered the fundamental formula for quaternion

multiplication

I2 = J2 = K2 = IJK = −1

and cut it on a stone of this bridge.”
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William Rowan Hamilton (watched by his wife)

William Rowan Hamilton (1805 - 1865)

Daniel Doyle’s sand sculpture of William Rowan Hamilton (watched by his

wife) scratching the formula for his quaternions onto Broom Bridge in Cabra.
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U(H,1) is generated by exponents

LEMMA: The group U(H,1) is generated locally by exponents of imag-

inary quaternions.

Proof: Let h be an imaginary quaternion. Then d
dt(e

th, eth) = (heth, eth) +

(eth, heth) = 0 because (h(x), y) = −(x, h(y)) for any imaginary quaternion.

Indeed, rescaling h if necessary, we may assume that h2 = −1, then (h(x), y) =

(h2x, hy) = −(x, hy). Since U(H,1) is a 3-sphere, the map exp : imH−→ U(H,1)

is a local diffeomorphism. Since U(H,1) is connected, it is generated by any

open neighbourhood of the unity.
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SU(2) = U(H,1)

The left action of U(H,1) on H = C2 commutes with the right action of the

algebra C on H = C2. This defines a homomorphism U(H,1)−→ U(2).

THEOREM: This homomorphism defines an isomorphism U(H,1) ∼= SU(2),

where SU(2) ⊂ U(2) is a subgroup of special unitary matrices (unitary ma-

trices with determinant 1).

Proof. Step 1: The group U(2) is 4-dimensional, because it is a fixed

point set of an anti-complex involution A−→ (At)−1 in a space GL(2,C) of

real dimension 8. The group SU(2) is a kernel of the determinant map

U(2)
det−→ U(1), hence it is 3-dimensional.

Step 2: The map U(H,1)−→ U(2) is by construction injective. Its image is

generated by exponents of imaginary quaternions. The elements of imH act

on H = C2 by traceless matrices (prove this). Using the formula eTrA =

det eA, we obtain that their exponents have trivial determinant. This gives

an injective map U(H,1)−→ SU(2). It is surjective by Corollary 2.
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Group of rotations of R3

Similar to complex numbers which can be used to describe rotations of R2,

quaternions can be used to describe rotations of R3.

THEOREM: Let U(1,H) be the group of unitary quaternions acting on

R3 = ImH as above: h(x) := hxh. Then the corresponding group homo-

morphism defines an isomorphism Ψ : U(1,H)/{±1} −̃→ SO(3).

Proof. Step 1: First, any quaternion h which lies in the kernel of the

homomorpism U(1,H)−→ SO(3) commmutes with all imaginary quaternions,

Such a quaternion must be real (check this). Since |h| = 1, we have h = ±1.

This implies that Ψ is injective.

Step 2: These groups are 3-dimensional. Then Ψ is surjective by Corollary

2.

COROLLARY: The group SO(3) is identified with the real projective

space RP3.

Proof: Indeed, U(1,H) is identified with a 3-sphere, and RP3 := S3/{±1}.
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The group SO(4)

Consider the following scalar product on H = R4: g(x, y) = Re(xy). Obviously
from its definition, this form is positive definite. Let U(1,H) × U(1,H) act
on H as follows: h1, h2, z −→ h1zh2, with z ∈ H and h1, h2 ∈ U(1,H). Clearly,
|h1zh2|2 = h1zh2h2zh1 = h1zzh1 = zz, hence the group U(1,H) × U(1,H)
acts on H = R4 by isometries. The group ker Ψ contains a pair (−1,−1) ⊂
U(1,H) × U(1,H). We denote the group generated by (−1,−1) as {±1} ⊂
U(1,H)× U(1,H).

THEOREM: Denote by SO(4) the group of linear orthogonal automorphisms
of R4, and let Ψ : U(1,H)× U(1,H)/{±1} −→ SO(4) be the group homomor-
phism constructed above, h1, h2(x) = h1xh2. Then Ψ is an isomorphism.
In particular, SO(4) is diffeomorphic to S3 × S3/{±1}.

Proof. Step 1: Again, let (h1, h2) ∈ ker Ψ. Since Ψ(h1, h2)(1) = 1, this
gives h2 = h1 = h−1

1 . However, h1zh
−1
1 = z means that h1 commutes with z,

which implies that h1 commutes with all quaternions, hence it is real. Then
h1 = ±1. This proves injectivity of Ψ.

Step 2: The group SO(4) is 6-dimensional (prove it), and U(1,H)×U(1,H)
is also 6-dimensional. Then Ψ is surjective by Corollary 2.
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PU(2) = SO(3)

DEFINITION: Let U(2) ⊂ GL(2,C) be the group of unitary matrices, and
PU(2) its quotient by the group U(1) of diagonal matrices. It is called pro-
jective unitary group.

REMARK: PU(2) is a quotient of SU(2) by its center − Id (prove it). The
group U(2) acts on CP1, its action is factorized through PU(2), and all non-
trivial g ∈ PU(2) act on CP1 non-trivially (prove it).

THEOREM: PU(2) is isomorphic to SO(3), the isotropy group of its action
on CP1 is U(1), and the U(2)-invariant metric on CP1 is isometric to the
standard Riemannian metric on S2.

Proof: As shown above, PU(2) = SU(2)
±1 , and SO(3) = U(1,H)

±1 . On the other
hand, SU(2) = U(1,H).

An element a ∈ SU(2) fixing a line x ∈ CP1 acts on its orthogonal complement
by rotations. Since det a = 1, the angle of this rotation uniquely determines
the angle of rotation of a on the line x. Therefore, the isotropy group of
SU(2)-action on CP1 is S1. For PU(2) it is S1/{±1} = S1.

Finally, there exists only one, up to a constant, SO(3) = PU(2)-invariant
metric on SO(3)

SO(2) = S2.
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Lie algebra

REMARK: Since the commutator of left-invariant vector fields is left-
invariant, commutator is well defined on the space of left invariant vector
fields A. Commutator is a bilinear, antisymmetric operation A×A−→A which
satisfies the Jacobi identity:

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

DEFINITION: A Lie algebra is a vector space A equipped with a bilinear,
antisymmetric operation A×A−→A which satisfies the Jacobi identity.

THEOREM: (The main theorem of Lie theory) A simply connected Lie
group is uniquely determined by its Lie algebra. Every finite-dimensional
Lie algebra is obtained as a Lie algebra of a simply connected Lie group.

DEFINITION: Adjoint representation of a Lie group is the action of G on
its Lie algebra TeG obtained from the adjoint action of G on itself, g(x) =
gxg−1.

REMARK: Any matrix Lie group G ⊂ GL(V ), is generated by exponents of
its Lie algebra Lie(G), and locally in a neighbourhood of zero the exponent
map exp : Lie(G)−→G is a diffeomorphism.
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Left-invariant vector fields

REMARK: A group acts on itself in three different ways: there is left action

g(x) = gx, right action g(x) = xg−1, and adjoint action g(x) = gxg−1,

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of

left-invariant vector fields.

REMARK: Since the group acts on itself freely and transitively, left-invariant

vector fields on G are identified TeG. Indeed, any vector x ∈ TeG can be

extended to a left-invariant vector field in a unique way.

REMARK: The same is true for any left-invariant tensor on G: it can

be obtained in a unique way from a tensor on a vector space TeG.
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Homotopy lifting principle

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,

and M̃ −→M a covering map. Then for each continuous map X −→M ,

there exists a lifting X −→ M̃ making the following diagram commutative.

M̃

X -

-

M
?
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Universal covering of a Lie group

THEOREM: Let G be a connected Lie group, and G̃ its universal covering.

Then G̃ has a unique structure of a Lie group, such that the covering

map π : G̃−→G is a homomorphism.

Proof: The multiplication map G̃−→ G̃
µ̃−→ G̃ is a lifting of the composition

of π and multiplication G̃ × G̃ π×π−→ G × G µ−→ G mapping the unity ẽ × ẽ to

ẽ. Similarly, the inverse map ã : G̃−→ G̃ is a lifting of the inverse a : G−→G

mapping ẽ to ẽ

G̃

G̃× G̃
(π × π) ◦ µ

-

µ̃

-

G

π

?

G̃

G̃
π ◦ a

-

ã

-

G

π

?

Uniqueness and group identities on G̃ both follow from the uniqueness of the

homotopy lifting.
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Classification of 1-dimensional Lie groups

Exercise 1: Prove that any non-trivial discrete subgroup of R is cyclic

(isomorphic to Z).

THEOREM: Any 1-dimensional connected Lie group G is isomorphic

to S1 or R.

Proof. Step 1: Any 1-dimensional manifold is diffeomorphic to S1 or R.

By Exercise 1 it suffices to prove that any simply connected, connected 1-

dimensional Lie group is isomorphic to R.
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Classification of 1-dimensional Lie groups (2)

THEOREM: Any 1-dimensional connected Lie group G is isomorphic
to S1 or R.

Step 2: Since G is simply connected, it is diffeomorphic to R. Let v ∈ TeG
be a non-zero tangent vector, ~v ∈ TG the corresponding left-invariant vector
field, and E : R−→G a solution of the ODE

d

dt
E(t) = ~v. (∗)

mapping 0 to e. A solution of (*), considered as a map from R to G = R,
exists and is uniquely determined by P (0) by the uniqueness and existence of
solutions of ODE. Since the left action Lg of G on itself preserves ~v, it maps
solutions of (*) to solutions of (*). Let g = E(s). Then t−→ Lg−1E(s + t)

is a solution of (*) which maps 0 to E(s)−1E(s) = e, hence Lg−1E(s + t) =
E(t) and E(s + t) = E(s)E(t). Therefore, the map E : R−→G is a group
homomorphism.

Step 3: Differential of E is non-degenerate, hence E is locally a diffeomor-
phism; since G is connected, G is generated by a neighbourhood of 0, hence
E is surjective. If E is not injective, its kernel is discrete, but then kerE = Z,
and G is a circle. Therefore, E is invertible.
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