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Laurent power series

THEOREM: (Laurent theorem)
Let f be a holomorphic function on an annulus (that is, a ring)

R:={{z | a<|z|<pB}.

Then f can be expressed as a Laurent power series f(z) = Yo7 2'a;
converging in R.

Proof: Same as Cauchy formula. Do that as an exercise. =
REMARK: This theorem remains valid if o« =0 and 8 = ~c.

REMARK: A function ¢ : C* — C uniquely determines its Laurent
power series. Indeed, the residue of zFyp in 0 is /—1 2ma_j_1.

REMARK: Let ¢ : C* — C be a holomorphic function, and ¢ = Y,z 2'a;
its Laurent power series. Then ¢(z) := ¢(z~1) has Laurent polynomial

Y= ez z ‘a;.
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Complex projective space

DEFINITION: Let V = C" be a complex vector space equipped with a Her-
mitian form h, and U(n) the group of complex endomorphisms of V preserving
h. This group is called the complex isometry group.

DEFINITION: Complex projective space CP" is the space of 1-dimensional
subspaces (lines) in C* 1.

REMARK: Since the group U(n+1) of unitary matrices acts on lines in C*11

" _ _ U(n+1
transitively (prove it), CP" is a homogeneous space, CP" = U(l()"””xj;]()n),

where U(1) x U(n) is a stabilizer of a line in C*t1,

EXAMPLE: CP! is §2.
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Homogeneous and affine coordinates on CP"

DEFINITION: We identify CP™ with the set of n 4+ 1-tuples xg : x1 : ... . xn
defined up to equivalence zg : 1 : ... | T ~ Axg | Ax1 : ... | Axp, fOr each
A € C*. This representation is called homogeneous coordinates. Affine
coordinates in the chart z;, = 0 are are i: : ii ool iz The space
CP™ is a union of n+ 1 affine charts identified with C", with the complement

to each chart identified with CP"—1.

CLAIM: Complex projective space is a complex manifold, with the at-

: . — Jx0 . 21 . . . . Tn n
las given by affine charts A, = {xk L e 1:...: wk} . and the transition
functions mapping the set

AkﬂAl:{x—O:ﬂ:...:l:...:x—n :cl;to}
Lk Tk Lk
to
AlﬂAkz{@:ﬂ:...:l:...:x—n xk#O}
Ly I L

as a multiplication of all terms by the scalar %

4
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Affine coordinates on CP1

DEFINITION: We identify CP! with the set of pairs z : y defined up to
equivalence = : y ~ Ax . Ay, for each A € C*. This representation is called
homogeneous coordimates. Affine coordinatesarel:zforz #0, z =y/x
and z:1 for y # 0, z = x/y. The corresponding gluing functions are given by

the map z — 2~ 1.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are
holomorphic and g # 0.

REMARK: A holomorphic map C —s CP! is the same as a pair of maps
f g up to equivalence f: g~ fh:gh. In other words, holomorphic maps
C —s CP1l are identified with meromorphic functions on C.

b
d

acts as ¢ . y —ax + by : cx + dy. Therefore, in affine coordinates it acts

. az+b
as Z l4 CZ_I_d-

REMARK: In homogeneous coordinates, an element c PSL(2,C)
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MoODbius transforms

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CPL.

REMARK: The group PGL(2,C) acts on CPl holomorphically.
The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Maobius
transforms is an isomorphism.

Claim 1: Let ¢ : CPl—CP! be a holomorphic automorphism, ¢g :
C — CP1 its restriction to the chart z : 1, and ¢s : C — CP?! its restric-
tion 1 : z. We consider ¢g, 9o as meromorphic functions on C. Then

oo = oz~ 1) L.

Proof: Passing from the coordinate z: 1 to z : 1 takes z to z—1. The function
Yoo 1S Obtained from g by doing this coordinate change on the domain and
on the range. m

§)
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Mobius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Mobius transforms is an isomorphism.

Proof. Step 1: Let ¢ € Aut(CP!). Since PSL(2,C) acts transitively on
pairs of points z = y Iin (CPl, by composing ¢ with an appropriate element in
PGL(2,C) we can assume that ¢(0) = 0 and ¢(oc0) = co. This means that
we may consider the restrictions g and ¢~ Of ¢ to the affine charts as a
holomorphic functions on these charts, ¢g, poo : C — C.

Step 2: Let pg = Y;>0aiz’, a1 # 0. Claim 1 gives

poo(2) = ozt =a1z(1 + Y )7L
i>2 41
Unless a; = O for all ¢ > 2, this Laurent series has singularities in O and
cannot be holomorphic. Therefore ¢g is a linear function, and it belongs
to PGL(2,C). =

Lemma 1: Let ¢ be a Mdbius transform fixing oo € CPL. Then ¢(2) = az+b
for some a,bcC and all z=2z:1 e CPL.
Proof: Let A € PGL(2,C) be a map acting on C = <CP1\oo as parallel trans-
port mapping ¢(0) to 0. Then po A is a MObius transform which fixes co and
0. As shown in Step 2 above, it is a linear function. =

{
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Conformal automorphisms of C

THEOREM: (Riemann removable singularity theorem) Let f: C—C
be a continuous function which is holomorphic outside of a finite set. Then
f is holomorphic.

Proof: Do it as an exercise, using the Cauchy formula. =

THEOREM: All conformal automorphisms of C can be expressed as
z — az + b, where a,b are complex numbers, a # 0.

Proof: Let ¢ be a conformal automorphism of C. The Riemann removable
singularity theorem implies that ¢ can be extended to a holomorphic au-
tomorphism of CPL. Indeed, CP! is obtained as a 1-point compactification
of C, and any continuous map from C to C is extended to a continuous map
on CPLl. Now, Lemma 1 implies that ¢(2) =az+b. =



