Lecture 5: Pseudo-Hermitian forms

Misha Verbitsky

IMPA, sala 236, 17:00
April 1, 2024

Hermitian and pseudo-Hermitian forms

DEFINITION: Let (V, I) be a (real) vector space equipped with a complex structure, and h a bilinear symmetric form. It is called pseudo-Hermitian if $h(x, y)=h(I x, I y)$.

REMARK: The corresponding quadratic form $x \mapsto h(x, x)$ is sometimes writen as $h(x)$. One can recover $h(x, y)$ from $h(x)$ as usual: $2 h(x, y)=$ $h(x+y)-h(x)-h(y)$.

REMARK: Often one considers a complex-valued form $h(x, y)+\sqrt{-1} h(x, I y)$. It is sesquilinear as a form on the complex space: $h(\lambda x, y)=\lambda(x, y), h(x, \lambda y)=$ $\bar{\lambda}(x, y)$, for any $\lambda \in \mathbb{C}$, and the imaginary part $\sqrt{-1} h(x, I y)$ is anti-symmetric.

CLAIM: Let (V, I, h) be a pseudo-Hermitian vector space. Consider V as a complex vector space, $\operatorname{dim}_{\mathbb{C}} V=n$. Then there exists a basis z_{1}, \ldots, z_{n} in V such that $h\left(z_{i}, z_{j}\right)=0$ for $i \neq j$ (such a basis is called orthogonal). Moreover, this basis can be chosen in such a way that $h\left(z_{i}, z_{i}\right)$ is ± 1 or 0 (such a basis is called orthonormal).

Orthonormal basis for a pseudo-Hermitian form

CLAIM: For any pseudo-Hermitian form h on (V, I), there exists orthonormal basis z_{1}, \ldots, z_{n}.

Proof: Use induction on $\operatorname{dim} V$. If $h=0$, this claim is clear. Assume that $h \neq 0$. For any $A \subset V$, denote by A^{\perp} the space $\{x \in V \mid h(x, a)=0 \forall a \in A\}$.

Choose any $z_{1} \in V$ such that $h\left(z_{1}, z_{1}\right) \neq 0$, and let $z_{1}^{\perp, \mathbb{C}}:=\left\langle z_{1}, I\left(z_{1}\right)\right\rangle^{\perp}=$ $z_{1}^{\perp} \cap I\left(z_{1}\right)^{\perp}$. This is a complex vector space which is orthogonal to z_{1}. It can also be obtained as an orthogonal complement in the complex vector space (V, I) with respect to the sesquilinear form $h(x, y)+\sqrt{-1} h(x, I y)$.

By induction assumption, the space $z_{1}^{\perp, \mathbb{C}}$ has an orthonormal basis z_{2}, \ldots, z_{n}. Then z_{1}, \ldots, z_{n} is an orthogonal basis in V. Replacing z_{1} by $h\left(z_{1}, z_{1}\right)^{1 / 2} z_{1}$, we obtain an orthonormal basis z_{1}, \ldots, z_{n}.

Signature of a Hermitian form

REMARK: By Sylvester's law of inertia, the number of z_{i} such that $h\left(z_{i}, z_{i}\right)=$ $1, h\left(z_{i}, z_{i}\right)=-1$ and $h\left(z_{i}, z_{i}\right)=0$ is independent form the choice of an orthonormal basis.

DEFINITION: Let (V, I, h) be a vector space with non-degenerate Hermitian form, and z_{1}, \ldots, z_{n} an orthonormal basis, $h\left(z_{i}, z_{i}\right)=1$ for $i=1, \ldots p$ and $h\left(z_{i}, z_{i}\right)=1$ for $i=p+1, \ldots, n$, with $q=n-p$. Then h is called Hermitian form of signature (p, q). The group of complex linear automorphisms preserving h is denoted $U(p, q)$.

Normal form for a pair of Hermitian forms

Theorem 1: Let $V=\mathbb{R}^{n}$, and $h, h^{\prime} \in \operatorname{Sym}^{2} V^{*}$ be two bilinear symmetric forms, with h positive definite. Then there exists a basis x_{1}, \ldots, x_{n} which is orthonormal with respect to h, and orthogonal with respect to h^{\prime}.

Theorem 1': Let $V=\mathbb{C}^{n}$, and $h, h^{\prime} \in \operatorname{Sym}^{2} V^{*}$ be two (pseudo-)Hermitian forms, with h positive definite. Then there exists a basis x_{1}, \ldots, x_{n} which is orthonormal with respect to h, and orthogonal with respect to h^{\prime}.

REMARK: In this basis, h^{\prime} is written as diagonal matrix, with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ independent from the choice of the basis. Indeed, consider h, h^{\prime} as maps from V to $V^{*}, h(v)=h(v, \cdot)$. Then $h_{1} h^{-1}$ is an endomorphism with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$. This implies that Theorem 1 gives a normal form of the pair h, h^{\prime}.

Finding principal axes of an ellipsoid

REMARK: Theorem 1 implies the following statement about ellipsoids: for any positive definite quadratic form q in \mathbb{R}^{n}, consider the ellipsoid

$$
S=\{v \in V \quad \mid \quad q(v)=1\} .
$$

The group $S O(n)$ acts on \mathbb{R}^{n} preserving the standard scalar product. Then for some $g \in S O(n), g(S)$ is given by equation $\sum a_{i} x_{i}^{2}=1$, where $a_{i}>0$. This is called finding principal axes of an ellipsoid.

Maximum of a quadratic form on a sphere

Further on, we prove the following lemma.
LEMMA: Let $V=\mathbb{R}^{n}$, and $h, h^{\prime} \in \operatorname{Sym}^{2} V^{*}$ be two bilinear symmetric forms, h positive definite, and $q(v)=h(v, v), q^{\prime}(v)=h^{\prime}(v, v)$ the corresponding quadratic forms. Consider q^{\prime} as a function on a sphere $S=\{v \in V \mid q(v)=1\}$, and let $x \in S$ be the point where q^{\prime} attains maximum. Denote by $x^{\perp_{h}}$ and $x^{\perp} h^{\prime}$ the orthogonal complement with respect to h, h^{\prime}. Then $x^{\perp_{h}}=x^{\perp_{h^{\prime}}}$.

This lemma immediately implies Theorem 1. Let h, h^{\prime}, x as above. Using induction, we may assume that $x^{\perp_{h}}=x^{\perp_{h^{\prime}}}$ admits a basis x_{2}, \ldots, x_{n} which is orthonormal for h and orthogonal for h^{\prime}. Then x, x_{2}, \ldots, x_{n} is a basis we need.

Similarly one proves Theorem 1'. Take $x \in S$ as above. Then $I(x)$ is also a maximum for q^{\prime}. The orthogonal complements to $x, I(x)$ with respect to h and h^{\prime} coincide by our lemma. Therefore, $W=\langle x, I x\rangle^{\perp_{h}}=\langle x, I x\rangle^{\perp} h^{\prime}$. We obtain a complex vector space W orthogonal to x with respect to h and h^{\prime}. Using induction, we find a basis x_{2}, \ldots, x_{n} in W which is orthonormal for h and orthogonal for h^{\prime}. Then x, x_{2}, \ldots, x_{n} is such a basis in V.

Maximum of a quadratic form on a sphere

LEMMA: Let $V=\mathbb{R}^{n}$, and $h, h^{\prime} \in \operatorname{Sym}^{2} V^{*}$ be two bilinear symmetric forms, h positive definite, and $q(v)=h(v, v), q^{\prime}(v)=h^{\prime}(v, v)$ the corresponding quadratic forms. Consider q^{\prime} as a function on a sphere $S=\{v \in V \mid q(v)=1\}$, and let $x \in S$ be the point where q^{\prime} attains maximum. Denote by $x^{\perp_{h}}$ and $x^{\perp} h^{\prime}$ the orthogonal complements with respect to h, h^{\prime}. Then $x^{\perp}=x^{\perp}$.

Proof: Let us rescale q, q^{\prime} in such a way that $q \geqslant q^{\prime}$, with equality on x. Suppose that $v \in x^{\perp}$. Then $q(x+\varepsilon v)=q(x)+\varepsilon^{2} q(v)$. However, $q^{\prime}(x+\varepsilon v)=$ $q(x)+\varepsilon^{2} q^{\prime}(v)+2 \varepsilon h^{\prime}(v, x)$. This gives

$$
q(x)+\varepsilon^{2} q(v) \geqslant q(x)+\varepsilon^{2} q^{\prime}(v)+2 \varepsilon h^{\prime}(v, x)
$$

cancelling $q(x)$ and dividing by $\varepsilon>0$, obtain

$$
\varepsilon\left(q(v)-q^{\prime}(v)\right) \geqslant 2 h^{\prime}(v, x)
$$

for all $\varepsilon>0$. This implies that $0 \geqslant 2 h^{\prime}(v, x)$ for all $v \in x^{\perp}$. Since $v \mapsto h^{\prime}(v, x)$ is a linear form on v, inequality $0 \geqslant h^{\prime}(v, x)$ implies that $h^{\prime}(v, x)=0$.

