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Hermitian and pseudo-Hermitian forms

DEFINITION: Let (V,I) be a (real) vector space equipped with a complex
structure, and h a bilinear symmetric form. It is called pseudo-Hermitian if

h(x,y) = h(Ix, 1y).

REMARK: The corresponding quadratic form z — h(x,x) is sometimes
writen as h(xz). One can recover h(x,y) from h(z) as usual: 2h(x,y) =

h(z +y) — h(z) — h(y).

REMARK: Often one considers a complex-valued form h(z,y)++v—1h(z, Iy).
It is sesquilinear as a form on the complex space: h(Axz,y) = A(z,vy), h(x, \y) =
Mz, y), for any A € C, and the imaginary part v/—1 h(z, Iy) is anti-symmetric.

CLAIM: Let (V,I,h) be a pseudo-Hermitian vector space. Consider V as a
complex vector space, dimgV = n. Then there exists a basis z1,...,zn IN V
such that h(z;, z;) = 0 for i # j (such a basis is called orthogonal). Moreover,
this basis can be chosen in such a way that h(z;, z;) is =1 or O (such a basis
is called orthonormal).
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Orthonormal basis for a pseudo-Hermitian form

CLAIM: For any pseudo-Hermitian form h on (V,I), there exists orthonor-
mal basis zq, ..., zn.

Proof: Use induction on dimV. If h = 0, this claim is clear. Assume that
h # 0. For any A C V, denote by AL thespace {x €V | h(z,a) =0V a e A}.

Choose any z1 € V such that h(z1,21) #= 0, and let zf’c = (21, 1(21))+ =
,zlL ﬂI(zl)L. This is a complex vector space which is orthogonal to z7. It can
also be obtained as an orthogonal complement in the complex vector space
(V,I) with respect to the sesquilinear form h(z,y) + v/—1 h(x, Iy).

By induction assumption, the space zf’c has an orthonormal basis zo, ..., zn.
Then z4,...,z, is an orthogonal basis in V. Replacing 21 by h(z1,21)1/224,
we obtain an orthonormal basis z1,...,zn. ®
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Signature of a Hermitian form

REMARK: By Sylvester’s law of inertia, the number of z; such that h(z;, z;) =
1, h(z;,2;) = —1 and h(z;,2;) = 0 Is independent form the choice of an
orthonormal basis.

DEFINITION: Let (V,I,h) be a vector space with non-degenerate Hermi-
tian form, and zq,...,zn, an orthonormal basis, h(z;,z;) = 1 for ¢ = 1,...p and
h(z;,z;) =1 fori=p+4+1,...n, with ¢ = n —p. Then h is called Hermi-
tian form of signature (p,q). The group of complex linear automorphisms
preserving h is denoted U(p, q).
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Normal form for a pair of Hermitian forms

Theorem 1: Let V = R", and h,h' € Sym2V* be two bilinear symmetric
forms, with h positive definite. Then there exists a basis xq,...,z, wWhich
is orthonormal with respect to h, and orthogonal with respect to #/'.

Theorem 1': Let V = C", and h,h € Sym2V* be two (pseudo-)Hermitian
forms, with h positive definite. Then there exists a basis xq,...,z, wWhich
is orthonormal with respect to A, and orthogonal with respect to A'.

REMARK: In this basis, kA’ is written as diagonal matrix, with eigenvalues
a1, ...,an independent from the choice of the basis. Indeed, consider h,h’ as
maps from V to V*, h(v) = h(v,-). Then hih~ ! is an endomorphism with
eigenvalues a1, ...,an. This implies that Theorem 1 gives a normal form
of the pair h,h/.
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Finding principal axes of an ellipsoid

REMARK: Theorem 1 implies the following statement about ellipsoids: for
any positive definite quadratic form ¢ in R™, consider the ellipsoid

S={veV | q) =1}

The group SO(n) acts on R™ preserving the standard scalar product. Then
for some g € SO(n), g(S) is given by equation Y a;z? = 1, where a; > 0.
This is called finding principal axes of an ellipsoid.
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Maximum of a quadratic form on a sphere
Further on, we prove the following lemma.

LEMMA: Let V =R", and h,h/ € Sym2 V* be two bilinear symmetric forms,
h positive definite, and qg(v) = h(v,v),¢d(v) = h'(v,v) the corresponding
quadratic forms. Consider ¢’ as a function on asphere S ={v eV | q(v) = 1},
and let x € S be the point where ¢’ attains maximum. Denote by z1h and
cTr the orthogonal complement with respect to h,h’. Then cth = xlnw,

This lemma immediately implies Theorem 1. Let h, k', as above. Using
induction, we may assume that tth = 11 admits a basis xo,...,Tn Which is
orthonormal for h and orthogonal for /. Then z,z-,...,z, iS a basis we
need.

Similarly one proves Theorem 1’. Take x € S as above. Then I(x) is also
a maximum for ¢’. The orthogonal complements to =z, I(x) with respect to
h and K’ coincide by our lemma. Therefore, W = (z, [z)+h = (z, Iz) 1. We
obtain a complex vector space W orthogonal to x with respect to h and h'.
Using induction, we find a basis xzo, ..., zn in W which is orthonormal for h and

orthogonal for A/. Then z,zo,...,x, IS such a basis in V.
’
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Maximum of a quadratic form on a sphere

LEMMA: Let V =R", and h,h' € Sym2V* be two bilinear symmetric forms,
h positive definite, and q(v) = h(v,v),qd'(v) = K (v,v) the corresponding
quadratic forms. Consider ¢’ as a function on asphere S={v eV | q(v) = 1},
and let = € S be the point where ¢’ attains maximum. Denote by z+r and
11 the orthogonal complements with respect to h,h’. Then zlh = gtw.

Proof: Let us rescale q,q¢’ in such a way that ¢ > ¢/, with equality on =z.
Suppose that v € z1h. Then ¢(z +ev) = ¢(x) 4+ 2¢(v). However, ¢ (z +ev) =
q(x) + £2¢'(v) 4+ 2eh’(v, 2). This gives

¢(z) + £2q(v) > q(x) + e2¢'(v) + 2/ (v, z)
cancelling ¢g(x) and dividing by € > 0, obtain

e(q(v) — ¢'(v)) = 21/ (v, z).

for all e > 0. This implies that 0 > 2h/(v,z) for all v € ztr. Since v — K/ (v, z)
is a linear form on v, inequality 0 > h/(v,z) implies that A/(v,2) = 0. =

3



