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Hermitian and pseudo-Hermitian forms

DEFINITION: Let (V, I) be a (real) vector space equipped with a complex

structure, and h a bilinear symmetric form. It is called pseudo-Hermitian if

h(x, y) = h(Ix, Iy).

REMARK: The corresponding quadratic form x 7→ h(x, x) is sometimes

writen as h(x). One can recover h(x, y) from h(x) as usual: 2h(x, y) =

h(x+ y)− h(x)− h(y).

REMARK: Often one considers a complex-valued form h(x, y)+
√
−1h(x, Iy).

It is sesquilinear as a form on the complex space: h(λx, y) = λ(x, y), h(x, λy) =

λ(x, y), for any λ ∈ C, and the imaginary part
√
−1 h(x, Iy) is anti-symmetric.

CLAIM: Let (V, I, h) be a pseudo-Hermitian vector space. Consider V as a

complex vector space, dimC V = n. Then there exists a basis z1, ..., zn in V

such that h(zi, zj) = 0 for i 6= j (such a basis is called orthogonal). Moreover,

this basis can be chosen in such a way that h(zi, zi) is ±1 or 0 (such a basis

is called orthonormal).
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Orthonormal basis for a pseudo-Hermitian form

CLAIM: For any pseudo-Hermitian form h on (V, I), there exists orthonor-

mal basis z1, ..., zn.

Proof: Use induction on dimV . If h = 0, this claim is clear. Assume that

h 6= 0. For any A ⊂ V , denote by A⊥ the space {x ∈ V | h(x, a) = 0 ∀ a ∈ A}.

Choose any z1 ∈ V such that h(z1, z1) 6= 0, and let z
⊥,C
1 := 〈z1, I(z1)〉⊥ =

z⊥1 ∩ I(z1)⊥. This is a complex vector space which is orthogonal to z1. It can

also be obtained as an orthogonal complement in the complex vector space

(V, I) with respect to the sesquilinear form h(x, y) +
√
−1 h(x, Iy).

By induction assumption, the space z
⊥,C
1 has an orthonormal basis z2, ..., zn.

Then z1, ..., zn is an orthogonal basis in V . Replacing z1 by h(z1, z1)1/2z1,

we obtain an orthonormal basis z1, ..., zn.
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Signature of a Hermitian form

REMARK: By Sylvester’s law of inertia, the number of zi such that h(zi, zi) =

1, h(zi, zi) = −1 and h(zi, zi) = 0 is independent form the choice of an

orthonormal basis.

DEFINITION: Let (V, I, h) be a vector space with non-degenerate Hermi-

tian form, and z1, ..., zn an orthonormal basis, h(zi, zi) = 1 for i = 1, ...p and

h(zi, zi) = 1 for i = p + 1, ..., n, with q = n − p. Then h is called Hermi-

tian form of signature (p, q). The group of complex linear automorphisms

preserving h is denoted U(p, q).
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Normal form for a pair of Hermitian forms

Theorem 1: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric

forms, with h positive definite. Then there exists a basis x1, ..., xn which

is orthonormal with respect to h, and orthogonal with respect to h′.

Theorem 1’: Let V = Cn, and h, h′ ∈ Sym2 V ∗ be two (pseudo-)Hermitian

forms, with h positive definite. Then there exists a basis x1, ..., xn which

is orthonormal with respect to h, and orthogonal with respect to h′.

REMARK: In this basis, h′ is written as diagonal matrix, with eigenvalues

α1, ..., αn independent from the choice of the basis. Indeed, consider h, h′ as

maps from V to V ∗, h(v) = h(v, ·). Then h1h
−1 is an endomorphism with

eigenvalues α1, ..., αn. This implies that Theorem 1 gives a normal form

of the pair h, h′.
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Finding principal axes of an ellipsoid

REMARK: Theorem 1 implies the following statement about ellipsoids: for

any positive definite quadratic form q in Rn, consider the ellipsoid

S = {v ∈ V | q(v) = 1}.

The group SO(n) acts on Rn preserving the standard scalar product. Then

for some g ∈ SO(n), g(S) is given by equation
∑
aix

2
i = 1, where ai > 0.

This is called finding principal axes of an ellipsoid.
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Maximum of a quadratic form on a sphere

Further on, we prove the following lemma.

LEMMA: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric forms,

h positive definite, and q(v) = h(v, v), q′(v) = h′(v, v) the corresponding

quadratic forms. Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1},
and let x ∈ S be the point where q′ attains maximum. Denote by x⊥h and

x⊥h′ the orthogonal complement with respect to h, h′. Then x⊥h = x⊥h′.

This lemma immediately implies Theorem 1. Let h, h′, x as above. Using

induction, we may assume that x⊥h = x⊥h′ admits a basis x2, ..., xn which is

orthonormal for h and orthogonal for h′. Then x, x2, ..., xn is a basis we

need.

Similarly one proves Theorem 1’. Take x ∈ S as above. Then I(x) is also

a maximum for q′. The orthogonal complements to x, I(x) with respect to

h and h′ coincide by our lemma. Therefore, W = 〈x, Ix〉⊥h = 〈x, Ix〉⊥h′. We

obtain a complex vector space W orthogonal to x with respect to h and h′.
Using induction, we find a basis x2, ..., xn in W which is orthonormal for h and

orthogonal for h′. Then x, x2, ..., xn is such a basis in V .
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Maximum of a quadratic form on a sphere

LEMMA: Let V = Rn, and h, h′ ∈ Sym2 V ∗ be two bilinear symmetric forms,

h positive definite, and q(v) = h(v, v), q′(v) = h′(v, v) the corresponding

quadratic forms. Consider q′ as a function on a sphere S = {v ∈ V | q(v) = 1},
and let x ∈ S be the point where q′ attains maximum. Denote by x⊥h and

x⊥h′ the orthogonal complements with respect to h, h′. Then x⊥h = x⊥h′.

Proof: Let us rescale q, q′ in such a way that q > q′, with equality on x.

Suppose that v ∈ x⊥h. Then q(x+ εv) = q(x) + ε2q(v). However, q′(x+ εv) =

q(x) + ε2q′(v) + 2εh′(v, x). This gives

q(x) + ε2q(v) > q(x) + ε2q′(v) + 2εh′(v, x)

cancelling q(x) and dividing by ε > 0, obtain

ε(q(v)− q′(v)) > 2h′(v, x).

for all ε > 0. This implies that 0 > 2h′(v, x) for all v ∈ x⊥h. Since v 7→ h′(v, x)

is a linear form on v, inequality 0 > h′(v, x) implies that h′(v, x) = 0.
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