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Some low-dimensional Lie group isomorphisms (reminder)

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action of
G on Lie(G). For a Lie group G = GL(n), SL(n), etc., let PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the center Z of G
(prove it).
DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional real space equipped with a scalar product of signature (1,2),
SO+(1,2) its connected component of unity, and U(1,1) the group of complex
linear maps C2 −→ C2 preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R), SO+(1,2) are isomorphic.

Proof: Isomorphism PU(1,1) = SO+(1,2) will be established later today. To
see PSL(2,R) ∼= SO+(1,2), consider the Killing form κ on the Lie algebra
sl(2,R), a, b−→ Tr(ab). Check that it has signature (1,2). Then the
image of SL(2,R) in automorphisms of its Lie algebra is mapped to
SO+(sl(2,R), κ) = SO+(1,2). Both groups are 3-dimensional, hence it is an
isomorphism (“Corollary 2”).
REMARK: We prove this theorem by showing that all these groups are
isomorphic to the group of conformal automorphism of a disk.
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Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

THEOREM: The natural map from PGL(2,C) to the group of Möbius

transforms is an isomorphism.

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation

subgroup U ⊂ PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-

cles.

THEOREM: All conformal automorphisms of C can be expressed by

z −→ az + b, where a, b are complex numbers, a 6= 0.
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Transitive action is determined by a stabilizer of a point (reminder)

Lemma 2: Let M = G/H be a homogeneous space, and Ψ : G1 −→G a

homomorphism such that G1 acts on M transitively and Stx(G1) = Stx(G).

Then G1 = G.

Proof: Since any element in ker Ψ belongs to Stx(G1) = Stx(G) ⊂ G, the

homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let g ∈ G. Since G1 acts on M transitively, gg1(x) = x for some g1 ∈ G1.

Then gg1 ∈ Stx(G1) = Stx(G) ⊂ imG1. This gives g ∈ G1.
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Upper half-plane (reminder)

REMARK: The map z −→ − (z −
√
−1 )−1 −

√
−1
2 induces a diffeomorphism

from the unit disc in C to the upper half-plane H2 (prove it).

PROPOSITION: The group Aut(∆) acts on the upper half-plane H2

as z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C).

Proof: The group PSL(2,R) preserves the line im z = 0, hence acts on H2 by

conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,

Lemma 2 implies that PSL(2,R) = PU(1,1).

COROLLARY: The group of conformal automorphisms of H2 acts on H2

preserving a unique, up to a constant, Riemannian metric. The Riemannian

manifold PSL(2,R)/S1 obtained this way is isometric to the hyperbolic

plane H2. Indeed, H2 = SO+(1,2)
SO(2) , and SO+(1,2) = PSL(2,R)
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a

homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H2.

Then the Riemannian form s ∈ Sym2 T ∗H2 is written as s = const dx
2+dy2

y2 .

Proof: Since the complex structure on H2 is the standard one and all Hermi-

tian structures are conformal (Lecture 1), we obtain that s = µ(dx2 + dy2),

where µ ∈ C∞(H2). It remains to find µ, using the fact that s is PSL(2,R)-

invariant.

For each a ∈ R, the parallel transport z −→ z + a fixes s, hence µ is a func-

tion of y. For any λ ∈ R>0, the homothety Hλ(z) = λz also fixes s; since

Hλ(dx2 + dy2) = λ2(dx2 + dy2), we have µ(λz) = λ−2µ(z) for any z ∈ H2. The

only function µ(x, y) which is constant in x and satisfies µ(λy) = λ−2µ(y) is

µ(x, y) = const · y−2.
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Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove

that an interval of a big circle of length 6 π is a minimising geodesic.
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Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight
lines and their images under the action of SL(2,R).

Proof. Step 1: Let a, b ∈ H2 be two points satisfying Re a = Re b, and l

the vertical line connecting these two points. Denote by Π the orthogonal
projection from H2 to the vertical line connecting a to b. For any tangent
vector v ∈ TzH2, one has |Dπ(v)| 6 |v|, and the equality means that v is
vertical (prove it). Therefore, a projection of a path γ connecting a to b

to l has length 6 L(γ), and the equality is realized only if γ is a straight
vertical interval.

Step 2: For any points a, b in the Poincaré half-plane, there exists an
isometry mapping (a, b) to a pair of points (a1, b1) such that Re(a1) =
Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré half-
plane is obtained as an isometric image of a straight vertical line:
γ = v(γ0), v ∈ Iso(H2) = PSL(2,R)

COROLLARY: Any two points in H2 are connected by a unique geodesic.
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Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and

S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is

a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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Poincaré metric on a disk

DEFINITION: Poincaré metric on the unit disk ∆ ⊂ C is an Aut(∆)-

invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let f : M −→M1 be a map of metric spaces. Then f is

called C-Lipschitz if d(x, y) > Cd(f(x), f(y)). A map is called Lipschitz if it

is C-Lipschitz for some C > 0.

THEOREM: (Schwarz-Pick lemma)

Any holomorphic map ϕ : ∆−→∆ from a unit disk to itself is 1-

Lipschitz with respect to Poincaré metric.

Proof. Step 1: We need to prove that for each x ∈ ∆ the norm of the

differential, taken with respect to the Poincaré metric, satisfies |Dϕx|P 6 1.

Since the automorphism group acts on ∆ transitively, it suffices to prove

that |Dϕx| 6 1 when x = 0 and ϕ(x) = 0.

Step 2: This is Schwarz lemma.
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Rieman-

nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: Hn := SO(1, n)/SO(n), equipped with the natural

SO(1, n)-action. This space is also called hyperbolic space, and in dimension

2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by a lemma, proven in Lecture 3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits

a unique (up to a constant multiplier) G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds

equipped with a G-invariant Riemannian form.
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M. C. Escher, Circle Limit IV
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Crochet coral (Great Barrier Reef, Australia)
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Reflections and geodesics

DEFINITION: A reflection on a hyperbolic plane is an involution which

reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as q(x1, x2, x3) = x2
1−x

2
2−x

2
3.

Then the map x1, x2, x3 −→ x1, x2,−x3 is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a

bijection between the set of geodesics and the set of reflections.

Proof: Let x, y ∈ F be two distinct points on a fixed set of a reflection τ .

Since the geodesic connecting x and y is unique, it is τ-invariant. Therefore,

it is contained in F . It remains to show that any geodesic on H is a fixed

point set of some reflection.

Let γ be a vertical line x = 0 on the upper half-plane {(x, y) ∈ R2, y >

0} with the metric dx2+dy2

y2 . Clearly, γ is a fixed point set of a reflection

(x, y)−→ (−x, y). Since every geodesic is conjugate to γ, every geodesic

is a fixed point set of a reflection.
14



2024: Riemann surfaces, lecture 8 M. Verbitsky

Geodesics on the hyperbolic plane

Let V = R3 be a vector space with quadratic form q of signature (1,2),

Pos := {v ∈ V | q(v) > 0}, and PPos its projectivisation. Then PPos =

SO+(1,2)/SO(1) (check this), giving PPos = H2; this is one of the stan-

dard models of a hyperbolic plane.

REMARK: Let l ⊂ V be a line, that is, a 1-dimensional subspace. The

property q(x, x) < 0 for a non-zero x ∈ l is written as q(l, l) < 0. A line l with

q(l, l) < 0 is called negative line , a line with q(l, l) > 0 is called positive line.

PROPOSITION: Reflections on PPos are in bijective correspondence

with negative lines l ⊂ V .

(see the proof on the next slide)

REMARK: Using the equivalence between reflections and geodesics estab-

lished above, this proposition can be reformulated by saying that geodesics

on PPos are the same as negative lines l ∈ PV .
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Geodesics on hyperbolic plane (2)

PROPOSITION: Reflections on PPos are in bijective correspondence

with negative lines l ⊂ V .

Proof. Step 1: Consider an isometry τ of V which fixes x and acts as

v −→ − v on its orthogonal complement v⊥. Since v⊥ has signature (1,1),

the set PPos∩Pv⊥ is 1-dimensional and fixed by τ . We proved that τ fixes a

codimension 1 submanifold in PPos = H2, hence τ is a reflection.

It remains to show that any reflection is obtained this way.

Step 2: Since geodesics are fixed point sets of reflections, and all geodesics

are conjugate by isometries, all reflections are also conjugated by isome-

tries. Therefore, it suffices to prove that the reflection x1, x2, x3 −→ x1, x2,−x3

is obtained from a negative line l. Let l = (0,0, λ). Then τ(x1, x2, x3) =

−x1,−x2, x3, and on PV this operation acts as x1, x2, x3 −→ x1, x2,−x3.

REMARK: This also implies that all geodesics in PPos are obtained as

intersections PPos∩PW , where W ⊂ V is a subspace of signature (1,1).
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