Lecture 8: Geodesics on a hyperbolic plane

Misha Verbitsky

IMPA, sala 236, 17:00

April 10, 2024

Some low-dimensional Lie group isomorphisms (reminder)

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of leftinvariant vector fields. Adjoint representation of G is the standard action of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., let PGL(n), PSL(n), etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the center Z of G (prove it).

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a 3-dimensional real space equipped with a scalar product of signature (1,2), $SO^+(1,2)$ its connected component of unity, and U(1,1) the group of complex linear maps $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), $PSL(2,\mathbb{R})$, $SO^+(1,2)$ are isomorphic.

Proof: Isomorphism $PU(1,1) = SO^+(1,2)$ will be established later today. To see $PSL(2,\mathbb{R}) \cong SO^+(1,2)$, consider the Killing form κ on the Lie algebra $\mathfrak{sl}(2,\mathbb{R}), a, b \longrightarrow \operatorname{Tr}(ab)$. Check that it has signature (1,2). Then the image of $SL(2,\mathbb{R})$ in automorphisms of its Lie algebra is mapped to $SO^+(\mathfrak{sl}(2,\mathbb{R}),\kappa) = SO^+(1,2)$. Both groups are 3-dimensional, hence it is an isomorphism ("Corollary 2").

REMARK: We prove this theorem by showing that all these groups are isomorphic to the group of conformal automorphism of a disk.

Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C}P^1$.

REMARK: The group $PGL(2, \mathbb{C})$ acts on $\mathbb{C}P^1$ holomorphially.

THEOREM: The natural map from $PGL(2, \mathbb{C})$ to the group of Möbius transforms is an isomorphism.

DEFINITION: A circle in S^2 is an orbit of a 1-parametric isometric rotation subgroup $U \subset PGL(2, \mathbb{C})$.

PROPOSITION: The action of $PGL(2, \mathbb{C})$ on $\mathbb{C}P^1$ maps circles to circles.

THEOREM: All conformal automorphisms of \mathbb{C} can be expressed by $z \longrightarrow az + b$, where a, b are complex numbers, $a \neq 0$.

Transitive action is determined by a stabilizer of a point (reminder)

Lemma 2: Let M = G/H be a homogeneous space, and $\Psi : G_1 \longrightarrow G$ a homomorphism such that G_1 acts on M transitively and $St_x(G_1) = St_x(G)$. **Then** $G_1 = G$.

Proof: Since any element in ker Ψ belongs to $St_x(G_1) = St_x(G) \subset G$, the homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let $g \in G$. Since G_1 acts on M transitively, $gg_1(x) = x$ for some $g_1 \in G_1$. Then $gg_1 \in St_x(G_1) = St_x(G) \subset \operatorname{im} G_1$. This gives $g \in G_1$.

Upper half-plane (reminder)

REMARK: The map $z \rightarrow -(z - \sqrt{-1})^{-1} - \frac{\sqrt{-1}}{2}$ induces a diffeomorphism from the unit disc in \mathbb{C} to the upper half-plane \mathbb{H}^2 (prove it).

PROPOSITION: The group $\operatorname{Aut}(\Delta)$ acts on the upper half-plane \mathbb{H}^2 as $z \xrightarrow{A} \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{R}$, and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} > 0$.

REMARK: The group of such A is naturally identified with $PSL(2,\mathbb{R}) \subset PSL(2,\mathbb{C})$.

Proof: The group $PSL(2,\mathbb{R})$ preserves the line im z = 0, hence acts on \mathbb{H}^2 by conformal automorphisms. The stabilizer of a point is S^1 (prove it). Now, Lemma 2 implies that $PSL(2,\mathbb{R}) = PU(1,1)$.

COROLLARY: The group of conformal automorphisms of \mathbb{H}^2 acts on \mathbb{H}^2 preserving a unique, up to a constant, Riemannian metric. The Riemannian manifold $PSL(2,\mathbb{R})/S^1$ obtained this way is isometric to the hyperbolic plane \mathbb{H}^2 . Indeed, $\mathbb{H}^2 = \frac{SO^+(1,2)}{SO(2)}$, and $SO^+(1,2) = PSL(2,\mathbb{R})$

Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane \mathbb{H}^2 . **Then the Riemannian form** $s \in \text{Sym}^2 T^* \mathbb{H}^2$ is written as $s = const \frac{dx^2 + dy^2}{y^2}$.

Proof: Since the complex structure on \mathbb{H}^2 is the standard one and all Hermitian structures are conformal (Lecture 1), we obtain that $s = \mu(dx^2 + dy^2)$, where $\mu \in C^{\infty}(\mathbb{H}^2)$. It remains to find μ , using the fact that s is $PSL(2,\mathbb{R})$ -invariant.

For each $a \in \mathbb{R}$, the parallel transport $z \longrightarrow z + a$ fixes s, hence μ is a function of y. For any $\lambda \in \mathbb{R}^{>0}$, the homothety $H_{\lambda}(z) = \lambda z$ also fixes s; since $\mathbb{H}_{\lambda}(dx^2 + dy^2) = \lambda^2(dx^2 + dy^2)$, we have $\mu(\lambda z) = \lambda^{-2}\mu(z)$ for any $z \in \mathbb{H}^2$. The only function $\mu(x, y)$ which is constant in x and satisfies $\mu(\lambda y) = \lambda^{-2}\mu(y)$ is $\mu(x, y) = const \cdot y^{-2}$.

Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise smooth path connecting x to y such that its length is equal to the geodesic distance. Geodesic is a piecewise smooth path γ such that for any $x \in \gamma$ there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove that an interval of a big circle of length $\leq \pi$ is a minimising geodesic.

Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight lines and their images under the action of $SL(2,\mathbb{R})$.

Proof. Step 1: Let $a, b \in \mathbb{H}^2$ be two points satisfying $\operatorname{Re} a = \operatorname{Re} b$, and l the vertical line connecting these two points. Denote by Π the orthogonal projection from \mathbb{H}^2 to the vertical line connecting a to b. For any tangent vector $v \in T_z \mathbb{H}^2$, one has $|D\pi(v)| \leq |v|$, and the equality means that v is vertical (prove it). Therefore, a projection of a path γ connecting a to b to l has length $\leq L(\gamma)$, and the equality is realized only if γ is a straight vertical interval.

Step 2: For any points a, b in the Poincaré half-plane, **there exists an** isometry mapping (a, b) to a pair of points (a_1, b_1) such that $Re(a_1) = Re(b_1)$. (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré halfplane is obtained as an isometric image of a straight vertical line: $\gamma = v(\gamma_0), v \in \text{Iso}(\mathbb{H}^2) = PSL(2, \mathbb{R})$

COROLLARY: Any two points in \mathbb{H}^2 are connected by a unique geodesic.

Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane $\mathbb{C} = \mathbb{R}^2$, and S_1 closure of its image in $\mathbb{C}P^1$ inder the natural map $z \longrightarrow 1 : z$. Then S_1 is a circle, and any circle in $\mathbb{C}P^1$ is obtained this way.

Proof: The circle $S_r(p)$ of radius r centered in $p \in \mathbb{C}$ is given by equation |p-z| = r, in homogeneous coordinates it is $|px-z|^2 = r|x|^2$. This is the zero set of the pseudo-Hermitian form $h(x,z) = |px-z|^2 - |x|^2$, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight lines and half-circles orthogonal to the line im z = 0 in the intersection points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius transforms of straight lines orthogonal to im z = 0. However, any Möbius transform preserves angles and maps circles or straight lines to circles or straight lines.

Poincaré metric on a disk

DEFINITION: Poincaré metric on the unit disk $\Delta \subset \mathbb{C}$ is an Aut(Δ)-invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let $f : M \longrightarrow M_1$ be a map of metric spaces. Then f is called *C*-Lipschitz if $d(x,y) \ge Cd(f(x), f(y))$. A map is called Lipschitz if it is *C*-Lipschitz for some C > 0.

THEOREM: (Schwarz-Pick lemma) Any holomorphic map $\varphi : \Delta \longrightarrow \Delta$ from a unit disk to itself is 1-Lipschitz with respect to Poincaré metric.

Proof. Step 1: We need to prove that for each $x \in \Delta$ the norm of the differential, taken with respect to the Poincaré metric, satisfies $|D\varphi_x|_P \leq 1$. Since the automorphism group acts on Δ transitively, it suffices to prove that $|D\varphi_x| \leq 1$ when x = 0 and $\varphi(x) = 0$.

Step 2: This is Schwarz lemma. ■

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Riemannian manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

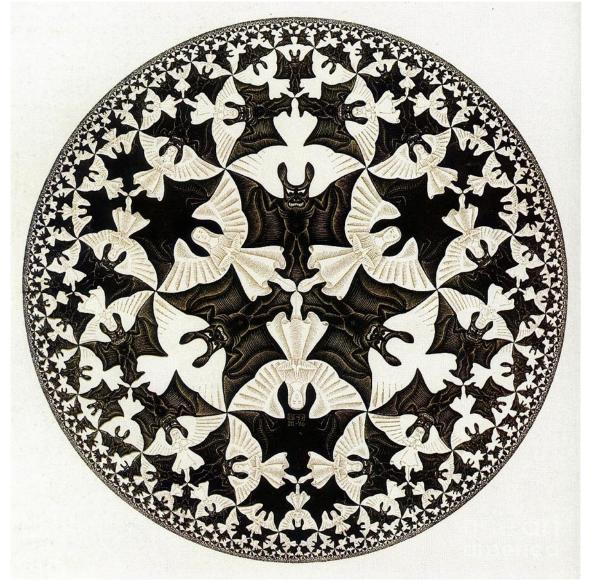
negative curvature: $\mathbb{H}^n := SO(1, n)/SO(n)$, equipped with the natural SO(1, n)-action. This space is also called **hyperbolic space**, and in dimension 2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by a lemma, proven in Lecture 3.

LEMMA: Let M = G/H be a simply connected space form. Then M admits a unique (up to a constant multiplier) G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds equipped with a *G*-invariant Riemannian form.

M. C. Escher, Circle Limit IV



Crochet coral (Great Barrier Reef, Australia)

Reflections and geodesics

DEFINITION: A reflection on a hyperbolic plane is an involution which reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as $q(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$. Then the map $x_1, x_2, x_3 \longrightarrow x_1, x_2, -x_3$ is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a bijection between the set of geodesics and the set of reflections.

Proof: Let $x, y \in F$ be two distinct points on a fixed set of a reflection τ . Since the geodesic connecting x and y is unique, it is τ -invariant. Therefore, it is contained in F. It remains to show that any geodesic on \mathbb{H} is a fixed point set of some reflection.

Let γ be a vertical line x = 0 on the upper half-plane $\{(x, y) \in \mathbb{R}^2, y > 0\}$ with the metric $\frac{dx^2 + dy^2}{y^2}$. Clearly, γ is a fixed point set of a reflection $(x, y) \longrightarrow (-x, y)$. Since every geodesic is conjugate to γ , every geodesic is a fixed point set of a reflection.

Geodesics on the hyperbolic plane

Let $V = \mathbb{R}^3$ be a vector space with quadratic form q of signature (1,2), Pos := { $v \in V \mid q(v) > 0$ }, and \mathbb{P} Pos its projectivisation. Then \mathbb{P} Pos = $SO^+(1,2)/SO(1)$ (check this), giving \mathbb{P} Pos = \mathbb{H}^2 ; this is one of the standard models of a hyperbolic plane.

REMARK: Let $l \subset V$ be a line, that is, a 1-dimensional subspace. The property q(x,x) < 0 for a non-zero $x \in l$ is written as q(l,l) < 0. A line l with q(l,l) < 0 is called **negative line**, a line with q(l,l) > 0 is called **positive line**.

PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.

(see the proof on the next slide)

REMARK: Using the equivalence between reflections and geodesics established above, this proposition can be reformulated by saying that **geodesics** on \mathbb{P} Pos are the same as negative lines $l \in \mathbb{P}V$.

Geodesics on hyperbolic plane (2)

PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.

Proof. Step 1: Consider an isometry τ of V which fixes x and acts as $v \longrightarrow -v$ on its orthogonal complement v^{\perp} . Since v^{\perp} has signature (1,1), the set $\mathbb{P} \operatorname{Pos} \cap \mathbb{P} v^{\perp}$ is 1-dimensional and fixed by τ . We proved that τ fixes a codimension 1 submanifold in $\mathbb{P} \operatorname{Pos} = \mathbb{H}^2$, hence τ is a reflection.

It remains to show that any reflection is obtained this way.

Step 2: Since geodesics are fixed point sets of reflections, and all geodesics are conjugate by isometries, **all reflections are also conjugated by isometries.** Therefore, it suffices to prove that the reflection $x_1, x_2, x_3 \rightarrow x_1, x_2, -x_3$ is obtained from a negative line l. Let $l = (0, 0, \lambda)$. Then $\tau(x_1, x_2, x_3) = -x_1, -x_2, x_3$, and on $\mathbb{P}V$ this operation acts as $x_1, x_2, x_3 \rightarrow x_1, x_2, -x_3$.

REMARK: This also implies that all geodesics in \mathbb{P} Pos are obtained as intersections \mathbb{P} Pos $\cap \mathbb{P}W$, where $W \subset V$ is a subspace of signature (1,1).