Lecture 8: Geodesics on a hyperbolic plane

Misha Verbitsky

IMPA, sala 236, 17:00
April 10, 2024

Some low-dimensional Lie group isomorphisms (reminder)

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie (G) of leftinvariant vector fields. Adjoint representation of G is the standard action of G on Lie (G). For a Lie group $G=G L(n), S L(n)$, etc., let $P G L(n), \operatorname{PSL}(n)$, etc. denote the image of G in $G L(\operatorname{Lie}(G))$ with respect to the adjoint action.

REMARK: This is the same as a quotient G / Z by the center Z of G (prove it).
DEFINITION: Define $S O(1,2)$ as the group of orthogonal matrices on a 3-dimensional real space equipped with a scalar product of signature (1,2), $S O^{+}(1,2)$ its connected component of unity, and $U(1,1)$ the group of complex linear maps $\mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ preserving a pseudio-Hermitian form of signature $(1,1)$.

THEOREM: The groups $P U(1,1), \operatorname{PSL}(2, \mathbb{R}), S O^{+}(1,2)$ are isomorphic.
Proof: Isomorphism $P U(1,1)=S O^{+}(1,2)$ will be established later today. To see $\operatorname{PSL}(2, \mathbb{R}) \cong S O^{+}(1,2)$, consider the Killing form κ on the Lie algebra $\mathfrak{s l}(2, \mathbb{R}), a, b \longrightarrow \operatorname{Tr}(a b)$. Check that it has signature (1,2). Then the image of $S L(2, \mathbb{R})$ in automorphisms of its Lie algebra is mapped to $S O^{+}(\mathfrak{s l}(2, \mathbb{R}), \kappa)=S O^{+}(1,2)$. Both groups are 3-dimensional, hence it is an isomorphism ("Corollary 2").
REMARK: We prove this theorem by showing that all these groups are isomorphic to the group of conformal automorphism of a disk.

Möbius transforms (reminder)
DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C} P^{1}$.

REMARK: The group $P G L(2, \mathbb{C})$ acts on $\mathbb{C} P^{1}$ holomorphially.
THEOREM: The natural map from $\operatorname{PGL}(2, \mathbb{C})$ to the group of Möbius transforms is an isomorphism.

DEFINITION: A circle in S^{2} is an orbit of a 1-parametric isometric rotation subgroup $U \subset P G L(2, \mathbb{C})$.

PROPOSITION: The action of $P G L(2, \mathbb{C})$ on $\mathbb{C} P^{1}$ maps circles to circles.

THEOREM: All conformal automorphisms of \mathbb{C} can be expressed by $z \longrightarrow a z+b$, where a, b are complex numbers, $a \neq 0$.

Transitive action is determined by a stabilizer of a point (reminder)
Lemma 2: Let $M=G / H$ be a homogeneous space, and $\psi: G_{1} \longrightarrow G$ a homomorphism such that G_{1} acts on M transitively and $\mathrm{St}_{x}\left(G_{1}\right)=\mathrm{St}_{x}(G)$. Then $G_{1}=G$.

Proof: Since any element in ker ψ belongs to $\mathrm{St}_{x}\left(G_{1}\right)=\mathrm{St}_{x}(G) \subset G$, the homomorphism Ψ is injective. It remais only to show that ψ is surjective.

Let $g \in G$. Since G_{1} acts on M transitively, $g g_{1}(x)=x$ for some $g_{1} \in G_{1}$. Then $g g_{1} \in \mathrm{St}_{x}\left(G_{1}\right)=\mathrm{St}_{x}(G) \subset \operatorname{im} G_{1}$. This gives $g \in G_{1}$.

Upper half-plane (reminder)

REMARK: The map $z \longrightarrow-(z-\sqrt{-1})^{-1}-\frac{\sqrt{-1}}{2}$ induces a diffeomorphism from the unit disc in \mathbb{C} to the upper half-plane \mathbb{H}^{2} (prove it).

PROPOSITION: The group $\operatorname{Aut}(\Delta)$ acts on the upper half-plane \mathbb{H}^{2} as $z \xrightarrow{A} \frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbb{R}$, and $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)>0$.

REMARK: The group of such A is naturally identified with $\operatorname{PSL}(2, \mathbb{R}) \subset$ $\operatorname{PSL}(2, \mathbb{C})$.

Proof: The group $\operatorname{PSL}(2, \mathbb{R})$ preserves the line $\operatorname{im} z=0$, hence acts on \mathbb{H}^{2} by conformal automorphisms. The stabilizer of a point is S^{1} (prove it). Now, Lemma 2 implies that $P S L(2, \mathbb{R})=P U(1,1)$.

COROLLARY: The group of conformal automorphisms of \mathbb{H}^{2} acts on \mathbb{H}^{2} preserving a unique, up to a constant, Riemannian metric. The Riemannian manifold $P S L(2, \mathbb{R}) / S^{1}$ obtained this way is isometric to the hyperbolic plane \mathbb{H}^{2}. Indeed, $\mathbb{H}^{2}=\frac{S O^{+}(1,2)}{S O(2)}$, and $S O^{+}(1,2)=P S L(2, \mathbb{R})$

Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane \mathbb{H}^{2}. Then the Riemannian form $s \in \operatorname{Sym}^{2} T^{*} \mathbb{H}^{2}$ is written as $s=$ const $\frac{d x^{2}+d y^{2}}{y^{2}}$.

Proof: Since the complex structure on \mathbb{H}^{2} is the standard one and all Hermitian structures are conformal (Lecture 1), we obtain that $s=\mu\left(d x^{2}+d y^{2}\right)$, where $\mu \in C^{\infty}\left(\mathbb{H}^{2}\right)$. It remains to find μ, using the fact that s is $\operatorname{PSL}(2, \mathbb{R})$ invariant.

For each $a \in \mathbb{R}$, the parallel transport $z \longrightarrow z+a$ fixes s, hence μ is a function of y. For any $\lambda \in \mathbb{R}^{>0}$, the homothety $H_{\lambda}(z)=\lambda z$ also fixes s; since $\mathbb{H}_{\lambda}\left(d x^{2}+d y^{2}\right)=\lambda^{2}\left(d x^{2}+d y^{2}\right)$, we have $\mu(\lambda z)=\lambda^{-2} \mu(z)$ for any $z \in \mathbb{H}^{2}$. The only function $\mu(x, y)$ which is constant in x and satisfies $\mu(\lambda y)=\lambda^{-2} \mu(y)$ is $\mu(x, y)=$ const $\cdot y^{-2}$.

Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise smooth path connecting x to y such that its length is equal to the geodesic distance. Geodesic is a piecewise smooth path γ such that for any $x \in \gamma$ there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove that an interval of a big circle of length $\leqslant \pi$ is a minimising geodesic.

Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight lines and their images under the action of $S L(2, \mathbb{R})$.

Proof. Step 1: Let $a, b \in \mathbb{H}^{2}$ be two points satisfying $\operatorname{Re} a=\operatorname{Re} b$, and l the vertical line connecting these two points. Denote by Π the orthogonal projection from \mathbb{H}^{2} to the vertical line connecting a to b. For any tangent vector $v \in T_{z} \mathbb{H}^{2}$, one has $|D \pi(v)| \leqslant|v|$, and the equality means that v is vertical (prove it). Therefore, a projection of a path γ connecting a to b to l has length $\leqslant L(\gamma)$, and the equality is realized only if γ is a straight vertical interval.

Step 2: For any points a, b in the Poincare half-plane, there exists an isometry mapping (a, b) to a pair of points $\left(a_{1}, b_{1}\right)$ such that $\operatorname{Re}\left(a_{1}\right)=$ $\operatorname{Re}\left(b_{1}\right)$. (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré halfplane is obtained as an isometric image of a straight vertical line: $\gamma=v\left(\gamma_{0}\right), v \in \operatorname{Iso}\left(\mathbb{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$

COROLLARY: Any two points in \mathbb{H}^{2} are connected by a unique geodesic.

Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane $\mathbb{C}=\mathbb{R}^{2}$, and S_{1} closure of its image in $\mathbb{C} P^{1}$ inder the natural map $z \longrightarrow 1: z$. Then S_{1} is a circle, and any circle in $\mathbb{C} P^{1}$ is obtained this way.

Proof: The circle $S_{r}(p)$ of radius r centered in $p \in \mathbb{C}$ is given by equation $|p-z|=r$, in homogeneous coordinates it is $|p x-z|^{2}=r|x|^{2}$. This is the zero set of the pseudo-Hermitian form $h(x, z)=|p x-z|^{2}-|x|^{2}$, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight lines and half-circles orthogonal to the line $\operatorname{im} z=0$ in the intersection points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius transforms of straight lines orthogonal to $\operatorname{im} z=0$. However, any Möbius transform preserves angles and maps circles or straight lines to circles or straight lines.

Poincaré metric on a disk

DEFINITION: Poincaré metric on the unit disk $\Delta \subset \mathbb{C}$ is an Aut(Δ)invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let $f: M \longrightarrow M_{1}$ be a map of metric spaces. Then f is called C-Lipschitz if $d(x, y) \geqslant C d(f(x), f(y))$. A map is called Lipschitz if it is C-Lipschitz for some $C>0$.

THEOREM: (Schwarz-Pick lemma)
Any holomorphic map $\varphi: \Delta \longrightarrow \Delta$ from a unit disk to itself is 1 Lipschitz with respect to Poincaré metric.

Proof. Step 1: We need to prove that for each $x \in \Delta$ the norm of the differential, taken with respect to the Poincaré metric, satisfies $\left|D \varphi_{x}\right|_{P} \leqslant 1$. Since the automorphism group acts on Δ transitively, it suffices to prove that $\left|D \varphi_{x}\right| \leqslant 1$ when $x=0$ and $\varphi(x)=0$.

Step 2: This is Schwarz lemma.

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Riemannian manifold of one of the following types:
positive curvature: S^{n} (an n-dimensional sphere), equipped with an action of the group $S O(n+1)$ of rotations
zero curvature: \mathbb{R}^{n} (an n-dimensional Euclidean space), equipped with an action of isometries
negative curvature: $\mathbb{H}^{n}:=S O(1, n) / S O(n)$, equipped with the natural $S O(1, n)$-action. This space is also called hyperbolic space, and in dimension 2 hyperbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by a lemma, proven in Lecture 3.

LEMMA: Let $M=G / H$ be a simply connected space form. Then M admits a unique (up to a constant multiplier) G-invariant Riemannian form.

REMARK: We shall consider space forms as Riemannian manifolds equipped with a G-invariant Riemannian form.
M. C. Escher, Circle Limit IV

Crochet coral (Great Barrier Reef, Australia)

Reflections and geodesics

DEFINITION: A reflection on a hyperbolic plane is an involution which reverses orientation and has a fixed set of codimension 1.

EXAMPLE: Let the quadratic form q be written as $q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$. Then the map $x_{1}, x_{2}, x_{3} \longrightarrow x_{1}, x_{2},-x_{3}$ is clearly a reflection.

CLAIM: Fixed point set of a reflection is a geodesic. This produces a bijection between the set of geodesics and the set of reflections.

Proof: Let $x, y \in F$ be two distinct points on a fixed set of a reflection τ. Since the geodesic connecting x and y is unique, it is τ-invariant. Therefore, it is contained in F. It remains to show that any geodesic on \mathbb{H} is a fixed point set of some reflection.

Let γ be a vertical line $x=0$ on the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2}, y>\right.$ $0\}$ with the metric $\frac{d x^{2}+d y^{2}}{y^{2}}$. Clearly, γ is a fixed point set of a reflection $(x, y) \longrightarrow(-x, y)$. Since every geodesic is conjugate to γ, every geodesic is a fixed point set of a reflection.

Geodesics on the hyperbolic plane

Let $V=\mathbb{R}^{3}$ be a vector space with quadratic form q of signature (1,2), Pos $:=\{v \in V \quad \mid \quad q(v)>0\}$, and \mathbb{P} Pos its projectivisation. Then $\mathbb{P} P o s=$ $S O^{+}(1,2) / S O(1)$ (check this), giving \mathbb{P} Pos $=\mathbb{H}^{2}$; this is one of the standard models of a hyperbolic plane.

REMARK: Let $l \subset V$ be a line, that is, a 1-dimensional subspace. The property $q(x, x)<0$ for a non-zero $x \in l$ is written as $q(l, l)<0$. A line l with $q(l, l)<0$ is called negative line, a line with $q(l, l)>0$ is called positive line.

PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.
(see the proof on the next slide)

REMARK: Using the equivalence between reflections and geodesics established above, this proposition can be reformulated by saying that geodesics on \mathbb{P} Pos are the same as negative lines $l \in \mathbb{P} V$.

Geodesics on hyperbolic plane (2)
PROPOSITION: Reflections on \mathbb{P} Pos are in bijective correspondence with negative lines $l \subset V$.

Proof. Step 1: Consider an isometry τ of V which fixes x and acts as $v \longrightarrow-v$ on its orthogonal complement v^{\perp}. Since v^{\perp} has signature (1,1), the set $\mathbb{P} \operatorname{Pos} \cap \mathbb{P} v^{\perp}$ is 1 -dimensional and fixed by τ. We proved that τ fixes a codimension 1 submanifold in \mathbb{P} Pos $=\mathbb{H}^{2}$, hence τ is a reflection.

It remains to show that any reflection is obtained this way.

Step 2: Since geodesics are fixed point sets of reflections, and all geodesics are conjugate by isometries, all reflections are also conjugated by isometries. Therefore, it suffices to prove that the reflection $x_{1}, x_{2}, x_{3} \longrightarrow x_{1}, x_{2},-x_{3}$ is obtained from a negative line l. Let $l=(0,0, \lambda)$. Then $\tau\left(x_{1}, x_{2}, x_{3}\right)=$ $-x_{1},-x_{2}, x_{3}$, and on $\mathbb{P} V$ this operation acts as $x_{1}, x_{2}, x_{3} \longrightarrow x_{1}, x_{2},-x_{3}$.

REMARK: This also implies that all geodesics in \mathbb{P} Pos are obtained as intersections $\mathbb{P} P$ os $\cap \mathbb{P} W$, where $W \subset V$ is a subspace of signature $(1,1)$.

