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Upper half-plane as a Riemannian manifold (reminder)

DEFINITION: Let G = PSL(2,R) be a group of orientation-preserving

conformal (that is, holomorphic) automorphisms of the upper halfplane H2.

Poincaré half-plane is the upper half-plane equipped with a G-invariant met-

ric of constant negative curvature constructed in Lecture 7.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H2,

and s a PSL(2,R)-invariant metric on H2. Then s = const dx
2+dy2

y2 .

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

THEOREM: Geodesics on a Poincaré half-plane are vertical half-lines

and their images under the action of PSL(2,R).
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Poincaré metric on a disk (reminder)

DEFINITION: Poincaré metric on the unit disk ∆ ⊂ C is an Aut(∆)-

invariant metric (it is unique up to a constant multiplier; prove it).

DEFINITION: Let f : M −→M1 be a map of metric spaces. Then f is

called C-Lipschitz if d(x, y) > Cd(f(x), f(y)). A map is called Lipschitz if it

is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map ϕ : ∆−→∆ from a unit disk to itself is 1-

Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x ∈ ∆ the norm of the

differential, taken with respect to the Poincaré metric, satisfies |Dϕx|P 6 1.

Since the automorphism group acts on ∆ transitively, it suffices to prove

that |Dϕx| 6 1 when x = 0 and ϕ(x) = 0.

Step 2: This is Schwartz lemma.
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Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).
REMARK: Let D be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y)
is also a pseudometric (prove this as an exercise).
REMARK: This is false for inf (construct a counterexample).

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set D of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.
EXERCISE: Prove that the distance between points x, y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting x to y.

CLAIM: Any holomorphic map X
ϕ−→ Y is 1-Lipschitz with respect to

the Kobayashi pseudometric.
Proof: If x ∈ X is connected to x′ by a sequence of Poincare disks ∆1, ...,∆n,
then ϕ(x) is connected to ϕ(x′) by ϕ(∆1), ..., ϕ(∆n).

REMARK: This implies that the Kobayashi pseudometric on C vanishes.
Indeed, homothety must be an isometry, which is impossible unless the metric
vanishes (prove this).
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Kobayashi hyperbolic manifolds

COROLLARY: Let B ⊂ Cn be a unit ball, and x, y ∈ B points with coordi-

nates x = (x1, ..., xn), y = (y1, ..., yn). Since xi, yi belongs to ∆, it makes sense

to compute the Poincare distance dP (xi, yi). Then dK(x, y) > maxi dP (xi, yi).

Proof: Each of projection maps Πi : B −→∆ is 1-Lipshitz, hence the

Kobayashi metric is bounded from below by each of dP (xi, yi).

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi

pseudometric dK is non-degenerate.

DEFINITION: A domain in Cn is an open subset. A bounded domain is

an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in Cn is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that Ω ⊂ B where B is

an open ball. Then the Kobayashi distance in Ω is > that in B. However, the

Kobayashi distance in B is bounded by the metric d(x, y) := maxi dP (xi, yi) as

follows from above.
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Caratheodory metric

DEFINITION: Let x, y ∈ M be points on a complex manifold. Define

Caratheodory pseudometric as dC(x, y) = sup{dP (f(x), f(y))}, where the

supremum is taken over all holomorphic map f : M −→∆, and dP is Poincare

metric on the disk ∆.

REMARK: Usually the term “Kobayashi/Caratheodory pseudometric” is ab-

breviated to “Kobayashi/Caratheodory metric”, even when it is not a met-

ric.

REMARK: Caratheodory pseudometric satisfies the triangle inequality

because a supremum of pseudometrics satisfies triangle inequality.

EXERCISE: Prove that Caratheodory pseudometric is bounded by the

Kobayashi pseudometric: dK > dC.

REMARK: Clearly, dC 6= 0 on any bounded domain.
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Complex hyperbolic space

DEFINITION: Let V = Cn+1 be a complex vector space equipped with a
Hermitian metric h of signature (1, n), and HnC ⊂ PV projectivization of the
set of positive vectors {x ∈ V ‖ h(x, x) > 0}. Then HnC is equipped with
a homogeneous action of U(1, n). The same argument as used for space
forms implies that HnC admits a U(1, n)-invariant Hermitian metric, which is
unique up to a constant multiplier. This Hermitian complex manifold is called
complex hyperbolic space.

REMARK: For n > 1 it is not isometric to the real hyperbolic spaces
defined earlier.

REMARK: As a complex manifold HnC is isomorphic to an open ball in Cn
(prove it!)

REMARK: The Kobayashi metric and the Caratheodory metric on HnC are
U(1, n)-invariant, because U(1, n) acts holomorphically, hence proportional to
the hyperbolic metric, which is also called Bergman metric on an open ball.

EXERCISE: Prove that Kobayashi metric on a ball in Cn is equal to the
Caratheodory metric.
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