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Uniform convergence (reminder)

DEFINITION: A sequence of maps fi : M −→N between metric spaces uni-

formly converges (or converges uniformly on compacts) to f : M −→N

if for any compact K ⊂M , we have lim
i→∞

supx∈K d(fi(x), f(x)) = 0.

Claim 1: Suppose that a sequence fi : M −→N of 1-Lipschitz maps con-

verges to f pointwise in a countable dense subset M ′ ⊂ M . Then fi con-

verges to f uniformly on compacts.

COROLLARY 1: The space of Lipschitz maps is closed in the topology of

pointwise convergence. Moreover, pointwise convergence of Lipschitz

maps implies uniform convergence on compacts.
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Arzelà-Ascoli theorem for Lipschitz maps (reminder)

DEFINITION: Let M , N be metric spaces. A subset B ⊂ N is bounded if it

is contained in a ball of finite radius. A family {fα} of maps fα : M −→N is

called uniformly bounded on compacts if for any compact subset K ⊂ M ,

there is a bounded subset CK ⊂ N such that fα(K) ⊂ CK for any element fα
of the family.

THEOREM: (Arzelà-Ascoli for Lipschitz maps)

Let M be a metric space and F := {fα} a set of 1-Lipschitz maps fα : M −→ C,

uniformly bounded on compacts. Assume that M has countable base of open

sets and can be obtained as a countable union of compact subsets. Then

there is a sequence {fi} ⊂ F which converges to a function f : M −→ C
uniformly on compacts.

REMARK: The limit f is also 1-Lipschitz. Indeed, a uniform convergent

family is pointwise convergent, and a pointwise limit of 1-Lipschitz maps is

also 1-Lipschitz (Corollary 1).
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Normal families of holomorphic functions (reminder)

DEFINITION: Let M be a complex manifold. A family F := {fα} of holo-
morphic functions fα : M −→ C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)
Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {fi} ⊂ F which
converges to f : M −→ C uniformly on compacts, and f is holomorphic.

Proof. Step 1: As in the first step of Arzelà-Ascoli, it suffices to prove
Montel’s theorem on a subset of M where F is bounded. Therefore, we may
assume that all fα map M into a disk ∆.

Step 2: All fα are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzelà-Ascoli theorem can be applied, giving a uniform limit f = lim fi.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula.

REMARK: The sequence f = lim fi converges uniformly with all deriva-
tives, again by Cauchy formula.
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Riemann mapping theorem

THEOREM: Let Ω ⊂∆ be a simply connected, bounded domain. Then Ω

is biholomorphic to ∆.

Idea of a proof: We consider the Kobayashi metric on Ω and ∆, and let F
be the set of all injective holomorphic maps Ω−→∆. Consider x ∈ Ω, and

let f be a map with |dfx| maximal in the sense of Kobayashi metric in the

closure of F. Such f exists by Montel’s theorem. We prove that f is a

bijective isometry, and hence biholomorphic.
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Functions which take distinct values on a boundary of a disk

Lemma 1: Let u, v be non-equal holomorphic functions on a disk ∆, and
Sr ⊂ ∆ a circle of radius zero around 0. Then for all r ∈]0,1], except a
countable set, u(z) 6= v(z) for all z ∈ Sr.

Proof: The set of zeros of u(z) − v(z) is discrete in ∆, hence countable.
Therefore, for all r except countably many, Sr does not contains zeros of
u(z)− v(z).

Lemma 2: Let R be the set of all pairs of distinct, non-constant holomorphic
functions g, h : ∆−→ C continuously extended to the boundary such that
h(x) = g(x) for some x ∈ ∆, but h(x) 6= g(x) everywhere on the boundary.
Then R is open in uniform topology.

Proof. Step 1: Consider the function (h−g)′
h−g on ∆. This function has a

simple pole in all the points where h = g. Moreover, nh,g := 1
π
√
−1

∫
∂∆ dz

is equal to the number of points x ∈ ∆ such that h(x) = g(x) (taken with
multiplicities, which are always positive integers).

Step 2: Since the integral is continuous in uniform topology, this number
is locally constant on the space of pairs such h, g : ∆−→ C. Therefore,
the set R of all h, g with nh,g 6= 0 is open.
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The set of injective holomorphic maps is closed

PROPOSITION: Let H be the set of holomorphic maps f : Ω1 −→Ω2

between Riemann surfaces, equipped with uniform topology, and H0 its subset

consisting of injective maps and constant maps. Then H0 is closed in H.

Proof. Step 1: We will prove that the set of non-injective maps is open

in uniform topology.

Step 2: Let f : Ω1 −→Ω2 be a non-injective mapp Then f(a) = f(b) for

some a 6= b in Ω1. Choose open disks A and B ⊂ Ω1 containing a and b.

Using Lemma 1, we may shrink A and B, and identify A and B with ∆ in

such a way that a and b correspond to 0, and the functions g and h obtained

by restricting f to ∂A = ∂B satisfy g − h 6= 0 everywhere on ∂A = ∂B. By

Lemma 2, for any f1 in a sufficiently small uniform neighbourhood of

f, the function g1 := f1|A and h1 := f1|B = A also satisfy h1(z) = g1(z)

for some z ∈ B = A. Therefore, f1 is also non-injective.
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Coverings (reminder)

DEFINITION: A topological space X is locally path connected if for each

x ∈ X and each neighbourhood U 3 x, there exists a smaller neighbourhood

W 3 x which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,

and M̃ −→M a covering map. Then for each continuous map X −→M ,

there exists a lifting X −→ M̃ making the following diagram commutative.

M̃

X -

-

M
?
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Homotopy lifting principle (reminder)

EXAMPLE: The map x−→ x2 is a covering from C∗ := C\0 to itself (prove
it).

THEOREM: (homotopy lifting principle)
Let X be a simply connected, locally path connected topological space, and
M̃ −→M a covering map. Then for each continuous map X −→M , there
exists a lifting X −→ M̃ making the following diagram commutative.

X - M̃

M
?

-

COROLLARY: Let ϕ : Ω−→ C∗ be a holomorphic map from a simply
connected domain Ω. Then there exists a holomorphic map ϕ1 : Ω−→ C∗
such that for all z ∈∆, ϕ(z) = ϕ1(z)2.

Proof: We apply homotopy lifting principle to X = Ω, M = M̃ = C∗, and
M̃ −→M mapping x to x2.

REMARK: We denote ϕ1(z) by
√
ϕ(z), for obvious reasons.
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Poincaré metric and the map x−→ x2

CLAIM: Consider a non-bijective holomorphic map ϕ : ∆−→∆ from Poincare

disk to itself. Then |dϕ| < 1 at each point, where dϕ is a norm of an operator

dϕ : Tx∆−→ Tϕ(x)∆ taken with respect to the Poincare metric.

Proof: Let ϕ : ∆−→∆ be a holomorphic map which satisfies |dϕ| = 1 at

x ∈ ∆. Replacing ϕ by γ1 ◦ ϕ ◦ γ2 if necessary, where γi are biholomorphic

isometries of ∆, we may assume that x = 0 and ϕ(x) = 0. By Schwartz

lemma, for such ϕ, relation |dϕ(0)| = 1 implies that ϕ is a linear biholomorphic

map.

REMARK: We will apply this claim only to the function x
ϕ−→ x2. However,

even for this function it takes some work, because an explicit proof needs

and explicit form of Poincaré metric on a disk, which we did not have.
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Poincaré metric and
√
ϕ

Corollary 2: Let ϕ : ∆−→∆\0 be a holomorphic function, and
√
ϕ a

holomorphic function defined above. Let |dϕ|(x) denote the norm of the

operator dϕ at x ∈ ∆ computed with respect to the Poincare metric on ∆.

Then |dϕ|(x) < |d√ϕ|(x) for any x ∈∆.

Proof: Let ψ(x) = x2. By the claim above, |dψ|(x) < 1 for all x ∈ ∆ (here

the norm is taken with respect to Poincaré metric). Using the chain rule,

we obtain that dϕ = dψ ◦ d√ϕ. which gives |dϕ|(x) = |dψ|(√ϕ(x))|d√ϕ|(x),

hence

|d√ϕ|(x) =
|dϕ|(x)|

|dψ|(√ϕ(x))
> |dϕ|(x).
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Riemann mapping theorem

THEOREM: Let Ω ⊂∆ be a simply connected domain. Then Ω is biholo-

morphic to ∆.

Proof. Step 1: Consider the Kobayashi metric on Ω and ∆, and let F be

the set of all injective holomorphic maps Ω−→∆. Consider x ∈ Ω, and let

f be a map with |df |(x) maximal in the sense of Kobayashi metric. Such f

exists by Montel’s theorem. Since f lies in the closure of F, and the set

of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective:

z /∈ f(Ω). Taking a composition of f and an isometry of the Poincare disk

does not affect |df |(x), hence we may assume that z = 0. Then the function√
f is a well defined holomorphic map from Ω to ∆. By Corollary 2,

|d
√
f |(x) > |df |(x), which is impossible, because it |df |(x) is maximal.
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Fatou and Julia sets

DEFINITION: Let X,Y be complex varieties, and F a family of holomorphic

maps fα : X −→ Y . Recall that F is a normal family if any sequence {fi} in F
has a subsequence which converges (uniformly on compacts) to a holomorphic

map.

DEFINITION: Let f : CP1 −→ CP1 be a rational map, and {f i} = {f, f ◦
f, f ◦ f ◦ f, ...} the set of all iterations of f . Fatou set of f is the set of all

points x ∈ C such that for some neighbourhood U 3 x, the restriction {f i|U }
is a normal family, with all f i except finitely many taking values in a disk

B ⊂ CP1, and Julia set is a complement to Fatou set.

EXAMPLE: For the map f(x) = x2, Julia set is the unit circle, and the

Fatou set is its complement (prove it).
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Attractor points

DEFINITION: Attractor point z is a fixed point of f such that |df |(z) < 1;

the attractor basin for z is the set of all x ∈ C such that limi f
i(x) = z.

CLAIM: For any fixed point z, its attractor basin belongs to the Fatou

set.

Proof: Indeed, since limi f
i(x) = z for any point in attractor basin U , {f i}

is a normal family on U (pointwise convergence is equivalent to uniform

convergence for bounded holomorphic functions by Arzela-Ascoli the-

orem).

Clearly, z is an attracting fixed point of f(t) if f(z) = z and |f ′(z)| < 1.
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Newton iteration method

DEFINITION: Newton iteration for solving the polynomial equation g(z) =
0: a solution is obtained as a limit limi f

i(z), where f(z) = z − g(z)
g′(z).

CLAIM: The solutions of g(z) = 0 are attracting fixed points of f.

Proof. Step 1: Let z be a solution of g(z) = 0, and m the multiplicity of
zero of g in z. Since g′(z) haz zero of multiplicity m−1, one has g(z)

g′(z) = 0, the

function g(z)
g′(z) is holomorphic in a neighbourhood of z by Riemann removable

singularity theorem, and f(z) = z.

Step 2: To simplify the formulas, assume that z = 0. Since g(0) = 0 and g

has a zero of multiplicity m, the Taylor decomposition for g in 0 takes form

g(z) = amz
m + am+1z

m+1 + ...,

where am 6= 0. Then

g′(z) = mamz
m−1 + (m+ 1)am+1z

m + ...

Let u(z) = am+am+1z+am+2z
2 + ... and v(z) = mam+(m+1)am+1z+(m+

2)am+2z
2 + ... Since

∑
|ai| converges, these series converge in an appropriate

neighbourhood of zero. Clearly, g(z) = zmu(z) and g′(z) = zm−1u(z), which
gives g(z)

g′(z) = zu(z)
v(z), and d

dz
g(z)
g′(z)|z=0 = u(0)

v(0) = 1
m. This gives f ′(0) = 1− 1

m.
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Fatou and Julia sets for f(z) = 1+2z3

3z2

We apply the Newton iteration method to g(z) = z3 − 1.

Julia set (in white) for the map f(z) = 1+2z3

3z2 = z− g(z)
g′(z). Attractor basins for

three roots of g(z) = z3 − 1 are colored in red, green, blue.
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Julia set for f(z) = z2 −
√
−1

Julia set for f(z) = z2 −
√
−1 is called dendrite.
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Julia set for f(z) = z2 + 0.12 + 0.6
√
−1
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San Marco fractal

San Marco fractal is the Julia set for f(z) = z2 − 0.75
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St. Mark’s Basilica, Venice
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Mandelbrot set

DEFINITION: Mandelbrot set is the set of all c such that 0 belongs to the
Fatou set of f(z) = z2 + c.
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Properties of Fatou and Julia sets

REMARK: Let f : CP1 −→ CP1 be a holomorphic map. Then the Fatou

F (f) and Julia set J(f) of f are f-invariant.

LEMMA: (Iteration lemma) For each k, J(f) = J(fk), where fk is k-th

iteration of f.

Proof. Step 1: Clearly, F (fk) ⊂ F (f), because {fk, f2k, f3k, ...} is compact

when {f, f2, f3, ...} is compact.

Step 2: Conversely, suppose that X = F (fk); then {fk, f2k, f3k, ...} is com-

pact, but then {f, fk+1, f2k+1, f3k+1, ...} is also compact as a continuous im-

age of a compact (the composition is continuous in uniform topology), same

for {f2, fk+2, f2k+2, f3k+2, ...}, and so on. Then {f, f2, f3, ...} is obtained as

a union of k compact sets. Therefore, F (f) ⊂ F (fk).
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Properties of Fatou and Julia sets (2)

THEOREM: Julia set of polynomial map f : C−→ C is non-empty,

unless deg f 6 1.

Proof: Let ∆ ⊂ CP1, and n(g) the number of critical points of a holomorphic

function g in ∆. Then n(g) = 1
π
√
−1

∫
∂∆

g′
g dz, and this number is locally

constant in uniform topology if g has no critical points on the boundary.

Since the number of critical points of f i is ideg f −1, it converges to infinity,

hence f i cannot converge to a holomorphic function everywhere.
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