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Uniform convergence (reminder)

DEFINITION: A sequence of maps f; : M — N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f: M — N
if for any compact K C M, we have lim sup,cx d(fi(x), f(x)) = 0.

71— OO

Claim 1: Suppose that a sequence f; : M — N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M’ C M. Then f; con-
verges to f uniformly on compacts.

COROLLARY 1: The space of Lipschitz maps is closed in the topology of
pointwise convergence. Moreover, pointwise convergence of Lipschitz
maps implies uniform convergence on compacts.
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Arzela-Ascoli theorem for Lipschitz maps (reminder)

DEFINITION: Let M, N be metric spaces. A subset B C N is bounded if it
is contained in a ball of finite radius. A family {fo} of maps fo: M — N is
called uniformly bounded on compacts if for any compact subset K C M,
there is a bounded subset Cyi C N such that fo(K) C Cg for any element f,
of the family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let M be a metric space and F := {fo} a set of 1-Lipschitz maps fo: M — C,
uniformly bounded on compacts. Assume that M has countable base of open
sets and can be obtained as a countable union of compact subsets. Then
there is a sequence {f;} C F which converges to a function f: M — C
uniformly on compacts.

REMARK: The limit f is also 1-Lipschitz. Indeed, a uniform convergent
family is pointwise convergent, and a pointwise limit of 1-Lipschitz maps is
also 1-Lipschitz (Corollary 1).
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Normal families of holomorphic functions (reminder)

DEFINITION: Let M be a complex manifold. A family F := {fa} of holo-
morphic functions fo, : M — C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)

Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {f;} C 7 which
converges to f: M — C uniformly on compacts, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel's theorem on a subset of M where F is bounded. Therefore, we may
assume that all f, map M into a disk A.

Step 2: All fo are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f =1lim f;.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula. m

REMARK: The sequence f = |lim f; converdges uniformly with all deriva-

tives, again by Cauchy formula.
4
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Riemann mapping theorem

THEOREM: Let 2 C A be a simply connected, bounded domain. Then <2
IS biholomorphic to A.

Idea of a proof: We consider the Kobayashi metric on €2 and A, and let F
be the set of all injective holomorphic maps €2 — A. Consider z € 2, and
let f be a map with |dfz| maximal in the sense of Kobayashi metric in the
closure of F. Such f exists by Montel’s theorem. We prove that f is a
bijective isometry, and hence biholomorphic.
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Functions which take distinct values on a boundary of a disk

Lemma 1: Let u, v be non-equal holomorphic functions on a disk A, and
Sr C A a circle of radius zero around 0. Then for all r €]0,1], except a
countable set, u(z) = v(z) for all z € S,.

Proof: The set of zeros of u(z) — v(z) is discrete in A, hence countable.
Therefore, for all »r except countably many, S, does not contains zeros of

w(z) —v(z). =

Lemma 2: Let R be the set of all pairs of distinct, nhon-constant holomorphic
functions g,h : A — C continuously extended to the boundary such that
h(x) = g(x) for some =z € A, but h(zx) # g(x) everywhere on the boundary.
Then R is open in uniform topology.

Proof. Step 1: Consider the function (f;L%gg)’ on A. This function has a
; ; : _ |
simple pole in all the points where h = g. Moreover, n, , 1= ﬁfaA dz

is equal to the number of points z € A such that hA(x) = g(x) (taken with
multiplicities, which are always positive integers).

Step 2: Since the integral is continuous in uniform topology, this number
IS locally constant on the space of pairs such h,g: A — C. Therefore,
the set R of all h,g with ny , 7 0 is open. =

6
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T he set of injective holomorphic maps is closed

PROPOSITION: Let H be the set of holomorphic maps f : 21 — €2
between Riemann surfaces, equipped with uniform topology, and Hg its subset
consisting of injective maps and constant maps. Then Hg is closed in H.

Proof. Step 1: We will prove that the set of non-injective maps is open
iIn uniform topology.

Step 2: Let f: Q71— 5 be a non-injective mapp Then f(a) = f(b) for
some a #= b in €27. Choose open disks A and B C 27 containing a and b.
Using Lemma 1, we may shrink A and B, and identify A and B with A in
such a way that a and b correspond to O, and the functions g and h obtained
by restricting f to 0A = 0B satisfy g — h %= 0 everywhere on 0A = 0B. BY
Lemma 2, for any f; in a sufficiently small uniform neighbourhood of
f, the function g1 := f1|4 and hq := f1|p = A also satisfy hi(z) = g1(2)
for some z € B = A. Therefore, f1 is also non-injective. =
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Coverings (reminder)

DEFINITION: A topological space X is locally path connected if for each
x € X and each neighbourhood U > x, there exists a smaller neighbourhood
W > x which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space,
and M — M a covering map. Then for each continuous map X — M,
there exists a lifting X — M making the following diagram commutative.
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Homotopy lifting principle (reminder)

EXAMPLE: The map z 22 is a covering from C* := C\0 to itself (prove
it).

THEOREM: (homotopy lifting principle)
Let X be a simply connected, locally path connected topological space, and
M — M a covering map. Then for each continuous map X — M, there
exists a lifting X — M making the following diagram commutative.

X M

COROLLARY: Let ¢ : ©2—C* be a holomorphic map from a simply
connected domain £2. Then there exists a holomorphic map ¢ : 2 — C~*
such that for all z € A, o(2) = ¢1(2)%.

Proof: We apply homotopy lifting principle to X = Q, M = M = C*, and
M —s M mapping = to z2. =

REMARK: We denote ¢1(z) by /p(z), for obvious reasons.
9
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Poincaré metric and the map =z — 22

CLAIM: Consider a non-bijective holomorphic map ¢ : A — A from Poincare
disk to itself. Then |dy| < 1 at each point, where dy is a norm of an operator
do . Tz A —>Tg0(x)A taken with respect to the Poincare metric.

Proof: Let ¢ : A — A be a holomorphic map which satisfies |[dp| = 1 at
x € A. Replacing ¢ by ~v1 o p oo if necessary, where ~, are biholomorphic
isometries of A, we may assume that z = 0 and ¢p(x) = 0. By Schwartz
lemma, for such ¢, relation |dp(0)| = 1 implies that ¢ is a linear biholomorphic
map. m

REMARK: We will apply this claim only to the function z LNy However,
even for this function it takes some work, because an explicit proof needs
and explicit form of Poincaré metric on a disk, which we did not have.

10
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Poincare metric and /¢

Corollary 2: Let ¢ : A — A\O be a holomorphic function, and /¢ a
holomorphic function defined above. Let |dp|(x) denote the norm of the
operator dy at x € A computed with respect to the Poincare metric on A.
Then |dy|(x) < |d\/p|(x) for any = € A.

Proof: Let ¢(z) = z2. By the claim above, |d¢|(z) < 1 for all z € A (here
the norm is taken with respect to Poincaré metric). Using the chain rule,
we obtain that dp = dvy o d\/p. which gives |dp|(x) = |dy|(/p(x))|d/p|(x),
hence

| ()
[dy| (/e (x))

dy/ol(z) = > |del(x).

11
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Riemann mapping theorem

THEOREM: Let €2 C A be a simply connected domain. Then €2 is biholo-
morphic to A.

Proof. Step 1: Consider the Kobayashi metric on €2 and A, and let F be
the set of all injective holomorphic maps 2 — A. Consider z € 2, and let
f be a map with |df|(x) maximal in the sense of Kobayashi metric. Such f
exists by Montel’s theorem. Since f lies in the closure of F, and the set
of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective:
z & f(2). Taking a composition of f and an isometry of the Poincare disk
does not affect |df|(x), hence we may assume that z = 0. Then the function
Vv f is a well defined holomorphic map from 2 to A. By Corollary 2,
|dv/f|(x) > |df|(x), which is impossible, because it |df|(x) is maximal. =

12
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Fatou and Julia sets

DEFINITION: Let X,Y be complex varieties, and F a family of holomorphic
maps fo : X — Y. Recall that F is a normal family if any sequence {f;} in F
has a subsequence which converges (uniformly on compacts) to a holomorphic
map.

DEFINITION: Let f: CPl— CP! be a rational map, and {f*} = {f, fo
f,fofof, ..} the set of all iterations of f. Fatou set of f is the set of all
points « € C such that for some neighbourhood U 3 z, the restriction {f*|;;}
IS a normal family, with all fi except finitely many taking values in a disk
B C (CPl, and Julia set is a complement to Fatou set.

EXAMPLE: For the map f(z) = z2, Julia set is the unit circle, and the
Fatou set is its complement (prove it).

13
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Attractor points

DEFINITION: Attractor point z is a fixed point of f such that |df|(z) < 1;
the attractor basin for z is the set of all z € C such that lim,; fi(z) = =.

CLAIM: For any fixed point z, its attractor basin belongs to the Fatou
set.

Proof: Indeed, since lim; f'(z) = z for any point in attractor basin U, {f'}
is a normal family on U (pointwise convergence is equivalent to uniform
convergence for bounded holomorphic functions by Arzela-Ascoli the-
orem). =

Clearly, z is an attracting fixed point of f(t) if f(z) =z and |f'(2)| < 1.

14
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Newton iteration method

DEFINITION: Newton iteration for solving the polynomial equation g(z) =
0: a solution is obtained as a limit lim; f*(z), where f(z) = z — 5,(("’2)).

CLAIM: The solutions of g(z) = 0 are attracting fixed points of f.

Proof. Step 1: Let z be a solution of g(z) = 0, and m the multiplicity of
zero of g in z. Since ¢/(z) haz zero of multiplicity m —1, one has gg,(é)) = 0, the

function gg,(é) is holomorphic in a neighbourhood of z by Riemann removable
singularity theorem, and f(z) = z.

Step 2: To simplify the formulas, assume that z = 0. Since g(0) =0 and g
has a zero of multiplicity m, the Taylor decomposition for g in O takes form

g(z) = amz" + am_l_lzm_'_l + ...,

where a,, 7= 0. Then

g'(2) = mamz""1 4+ (m + Dap+12™ + ...

Let u(z) = am—l—am_|_1z—|—am_|_2z2—|—... and v(z) = mam+(m+1)ay,412+(m+
2)am_|_2z2 + ... Since ) |a;| converges, these series converge in an appropriate
neighbcgu)rhood(o)f zero. Cl(ea)arly, g(2) E)zmu(z) and ¢'(z) = 2™ 1u(z), which
- glz) _ _u(z d g(z _u — 1 : : / — 1
gives 77y = Z 05y and %g/(z)|z=0 = vl(g) = . This gives f/(0)=1—- . =
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14223

Fatou and Julia sets for f(z) =75

We apply the Newton iteration method to g(z) = 23 — 1.

% 1

Julia set (in white) for the map f(z) = % =z — %. Attractor basins for

three roots of g(z) = 23 — 1 are colored in red, green, blue.
16
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Julia set for f(z) = 22— /=1

Julia set for f(z) = 22 — /=1 is called dendrite.
17
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Julia set for f(z) =224 0.124 0.6/—1
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San Marco fractal

San Marco fractal is the Julia set for f(z) = 22 — 0.75

19
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St. Mark’s Basilica, VVenice

20
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Mandelbrot set

DEFINITION: Mandelbrot set is the set of all ¢ such that O belongs to the
Fatou set of f(z2) = 22 +c.
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Properties of Fatou and Julia sets

REMARK: Let f: CP! — CP! be a holomorphic map. Then the Fatou
F(f) and Julia set J(f) of f are f-invariant.

LEMMA: (Iteration lemma) For each k, J(f) = J(f¥), where f* is k-th
iteration of f.

Proof. Step 1: Clearly, F(f*) c F(f), because {fk, f2k 3k ..} is compact
when {f, 2, f3,...} is compact.

Step 2: Conversely, suppose that X = F(f*); then {fk, f2k 3k .} is com-
pact, but then {f, fkt1 f2k+1 ¢3k+1 1 is also compact as a continuous im-
age of a compact (the composition is continuous in uniform topology), same
for {f2, fk+2 f2k+2 £3k+2 1 and so on. Then {f, f2, f3,...} is obtained as
a union of kK compact sets. Therefore, F(f) C F(f*). m

22
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Properties of Fatou and Julia sets (2)

THEOREM: Julia set of polynomial map f: C— C is non-empty,
unless deg f < 1.

Proof: Let A ¢ CP!, and n(g) the number of critical points of a holomorphic
function g in A. Then n(g) = - 1_1 faA%’dz, and this number is locally
constant in uniform topology if g has no critical points on the boundary.
Since the number of critical points of f*is ideg f — 1, it converges to infinity,

hence fi cannot converge to a holomorphic function everywhere. =
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