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Points of ramification (different proof)

DEFINITION: Let ϕ : X −→ Y be a holomorphic map of complex manifolds

of dimension 1, not constant on each connected component of X. Any point

x ∈ X where dϕ = 0 is called a ramification point of ϕ. Ramification index

of the point x is the number of preimages of y′ ∈ Y , for y′ in a sufficiently

small neighbourhood of y = ϕ(x).

THEOREM 0: Let X, Y be compact Riemann surfaces, ϕ : X −→ Y a holo-

morphic map, and x ∈ X a ramification point. Then there is a neighbourhood

of x ∈ X biholomorphic to a disk ∆, such that the map ϕ|∆ is equivalent

to ϕ(x) = xn, where n is the ramification index.

Proof: Take neighbourhoods U 3 x, V 3 ϕ(x) which are biholomorphic to

a disk, with ϕ(U) ⊂ V . Write the Taylor decomposition for ϕ in 0: ϕ(x) =

anxn + an+1x
n+1 + ... = xnu(x), where an 6= 0. where u(x) = an + an+1x +

an+1x
2 + ... Since u(x) is invertible, one can choose a branch v(x) := n

√
u(x)

in a neighbourhood of 0. Then ϕ(x) = zn, where z = xv(x).
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Hyperelliptic curves and hyperelliptic equations (reminder)

REMARK: Let M
Ψ−→ N be a C∞-map of compact smooth oriented mani-

folds. Recall that degree of Ψ is number of preimages of a regular value n,
counted with orientation. Recall that the number of preimages is inde-
pendent from the choice of a regular value n ∈ N, and the degree is a
homotopy invariant.

DEFINITION: Hyperelliptic curve S is a compact Riemann surface admit-
ting a holomorphic map S −→ CP1 of degree 2 and with 2n ramification points
of degree 2. Hyperelliptic equation is an equation P (t, y) = y2 + F (t) = 0,
where F ∈ C[t] is a polynomial with no multiple roots.

DEFINITION: Let P (t, y) = y2 + F (t) = 0 be a hyperelliptic equation.
Homogeneous hyperelliptic equation is P (x, y, z) = y2zn−2 +znF (x/z) = 0,
where n = degF .

REMARK: The set of solutions of P (x, y, z) = 0 is usually singular, but
an algebraic variety of dimension 1 has a natural desingularization, called
normalization. Define the involution τ(x, y, z) = (x,−y, z). Clearly, τ(S) = S.
The involution τ is extended to the desingularization S, giving S/τ = CP1

because CP1 is the only smooth holomorpic compactification of C as we have
seen already.
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Hyperbolic polyhedral manifolds (reminder)

DEFINITION: A polyhedral manifold of dimension 2 is a piecewise smooth

manifold obtained by gluing polygons along edges.

DEFINITION: Let {Pi} be a set of polygons on the same hyperbolic plane,

and M be a polyhedral manifold obtained by gluing these polygons. Assume

that all edges which are glued have the same length, and we glue the edges

of the same length. Then M is called a hyperbolic polyhedral manifold.

We consider M as a metric space, with the path metric induced from Pi.

CLAIM: Let M be a hyperbolic polyhedral manifold. Then for each point

x ∈M which is not a vertex, x has a neighbourhood which is isometric to

an open set of a hyperbolic plane.

Proof: For interior points of M this is clear. When x belongs to an edge, it

is obtained by gluing two polygons along isometric edges, hence the neigh-

bourhood is locally isometric to the union of the same polygons in H2 aligned

along the edge.
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Voronoi partitions

DEFINITION: Let M be a metric space, and S ⊂ M a discrete subset.
Voronoi cell Di associated with xi ∈ S is

Di := {z ∈M | d(z, xi) 6 d(z, xi)∀j 6= i}.

Voronoi partition (also known as “Dirichlet tessellation”) is partition of M
onto its Voronoi cells.

Voronoi partition

DEFINITION: Recall that the absolute Abs is the infinity boundary of the
Poincaré disk, identified with the projectivization of the isotropic cone in R1,2
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Fundamental domains and polygons

DEFINITION: Let Γ be a discrete group acting on a manifold M , and U ⊂M
an open subset with piecewise smooth boundary. Assume that for any non-
trivial γ ∈ Γ one has U ∩ γ(U) = ∅ and Γ · U = M , where U is closure of U .
Then U is called a fundamental domain of the action of Γ.

THEOREM 1: Let Γ be a discrete group acting on a hyperbolic plane H2

by oriented isometries. Then Γ has a polyhedral fundamental domain P .
If, moreover, H2/Γ has finite volume, ∂P has at most finitely many points on
the absolute Abs.

Proof. Step 1: Clearly, Vol(P ) = Vol(H2/Γ). This takes care of the last
assertion, because polygons with infinitely many points on Abs have infinite
volume.
Step 2: Let Γ · x be an orbit of Γ in H2. The Voronoi partition gives a
polygonal fundamental domain P for the Γ-action. Clearly, H2 is tiled by the
Voronoi cells, which are all isometric polygons. However, the cells are not
necessarily fundamental domains: each cell P can be possibly stabilized by
a subgroup ΓP ⊂ Γ. Clearly, each cell P contains a unique point x1 ∈ Γ · x,
hence ΓP fixes x1. The stabilizer of x1 in SO+(1,2) is a circle, and ΓP is
discrete, hence it is a cyclic group, and P is a polygon admitting an action
of a cyclic group. Cutting P onto angles which are freely rotated by ΓP , we
obtain a polygonal fundamental domain.
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Group quotients and polyhedral hyperbolic manifolds

THEOREM: Let Γ ⊂ SO+(1,2) be a discrete subgroup, and H2/Γ the quo-

tient. Then H2/Γ is isometric to a polyhedral hyperbolic manifold.

Proof. Step 1: First, we prove that the quotient H2/Γ is a manifold.

Indeed, outside of the set of fixed points, the action of Γ is properly discon-

tinuous, and the quotient is smooth. For each fixed point p, it contains a

neighbourhood where StΓ(p) acts as a finite order rotation group Z/nZ on a

disk, and the quotient is also a disk.

Step 2: By Theorem 1, Γ-action admits a polygonal fundamental domain

D. Then H2/Γ is obtained by gluing isometric edges of D; since it is a manifold

(Step 1), it is a hyperbolic polyhedral manifold.
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Semi-regular tilings

DEFINITION: A tiling of H2 is a partition of H2 onto polygons (or, some-

times, other figures) with finite volume. A tiling is regular if the group Γ of

isometries preserving tilings acts transitively on vertices, edges and faces of

the partition. A tiling T is semi-regular if Γ acts on the set of faces of T

with finitely many orbits.

REMARK: Tilings is good a way to produce hyperbolic manifolds and Rie-

mannian surfaces from a hyperbolic plane. Indeed, for any semi-regular tiling,

T , the quotient space H2/Γ has finite volume. Moreover, H2/Γ is compact

if all polygons in T have no vertices in Abs (prove it).

EXERCISE: Let T be a regular tiling of H2, and Γ the group of isometries

of H2 preserving T . Prove that any face of T is a fundamental domain

for Γ.
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Regular tiling of H2 by right-angle pentagons

Regular tiling of H2 by right-angle pentagons
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Semi-regular tiling of H2

Semi-regular tiling of H2 by octagons and triangles
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M. C. Escher, Circle Limit IV, 1960

This is an example of semi-regular tiling of a hyperbolic plane by angels and

demons. In the hypebolic plane, the angels and the demons are isometric

to each other.
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M. C. Escher, Circle Limit III, 1959
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M. C. Escher, Circle Limit II, 1959
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M. C. Escher, Circle Limit I, 1958

”...I worked terribly hard to finally finish that litho, and then with gritted teeth, spent another

four days making beautiful prints of that extremely complex circle limit in colors. Each print

is a series of twenty printings: five pieces, and each piece four times. All this with the

remarkable feeling that this work is a milestone in my development, and that nobody, except

myself, will ever realize this.” – M.C.Escher in a letter to his son Arthur, 1960
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Maurits Cornelis Escher, 1898-1972

M. C. Escher in 1971, a photo by Hans Peters
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