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Hyperbolic polyhedral manifolds (reminder)

DEFINITION: A polyhedral manifold of dimension 2 is a piecewise smooth

manifold obtained by gluing polygons along edges.

DEFINITION: Let {Pi} be a set of polygons on the same hyperbolic plane,

and M be a polyhedral manifold obtained by gluing these polygons. Assume

that all edges which are glued have the same length, and we glue the edges

of the same length. Then M is called a hyperbolic polyhedral manifold.

We consider M as a metric space, with the path metric induced from Pi.

CLAIM: Let M be a hyperbolic polyhedral manifold. Then for each point

x ∈M which is not a vertex, x has a neighbourhood which is isometric to

an open set of a hyperbolic plane.

Proof: For interior points of M this is clear. When x belongs to an edge, it

is obtained by gluing two polygons along isometric edges, hence the neigh-

bourhood is locally isometric to the union of the same polygons in H2 aligned

along the edge.
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Fundamental domains and polygons (reminder)

DEFINITION: Let Γ be a discrete group acting on a manifold M , and U ⊂M
an open subset with piecewise smooth boundary. Assume that for any non-
trivial γ ∈ Γ one has U ∩ γ(U) = ∅ and Γ · U = M , where U is closure of U .
Then U is called a fundamental domain of the action of Γ.

THEOREM 1: Let Γ be a discrete group acting on a hyperbolic plane H2

by oriented isometries. Then Γ has a polyhedral fundamental domain P .
If, moreover, H2/Γ has finite volume, ∂P has at most finitely many points on
the absolute Abs.

Proof. Step 1: Clearly, Vol(P ) = Vol(H2/Γ). This takes care of the last
assertion, because polygons with infinitely many points on Abs have infinite
volume.
Step 2: Let Γ · x be an orbit of Γ in H2. The Voronoi partition gives a
polygonal fundamental domain P for the Γ-action. Clearly, H2 is tiled by the
Voronoi cells, which are all isometric polygons. However, the cells are not
necessarily fundamental domains: each cell P can be possibly stabilized by
a subgroup ΓP ⊂ Γ. Clearly, each cell P contains a unique point x1 ∈ Γ · x,
hence ΓP fixes x1. The stabilizer of x1 in SO+(1,2) is a circle, and ΓP is
discrete, hence it is a cyclic group, and P is a polygon admitting an action
of a cyclic group. Cutting P onto angles which are freely rotated by ΓP , we
obtain a polygonal fundamental domain.
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Group quotients and polyhedral hyperbolic manifolds (reminder)

THEOREM: Let Γ ⊂ SO+(1,2) be a discrete subgroup, and H2/Γ the quo-

tient. Then H2/Γ is isometric to a polyhedral hyperbolic manifold.

Proof. Step 1: First, we prove that the quotient H2/Γ is a manifold.

Indeed, outside of the set of fixed points, the action of Γ is properly discon-

tinuous, and the quotient is smooth. For each fixed point p, it contains a

neighbourhood where StΓ(p) acts as a finite order rotation group Z/nZ on a

disk, and the quotient is also a disk.

Step 2: By Theorem 1, Γ-action admits a polygonal fundamental domain

D. Then H2/Γ is obtained by gluing isometric edges of D; since it is a manifold

(Step 1), it is a hyperbolic polyhedral manifold.
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Fundamental domains and tilings

Earlier, we went from fundamental domains to tilings. The converse direc-
tion is also possible.

DEFINITION: Bounded polygon in H2 is a polygon P such that P has no
points in Abs, or, equivalently, such that the closure of P in H2 is compact.

CLAIM: Let T be a semi-regular tiling of H2 by bounded polygons. Then the
group Γ of isometries of H2 preserving T acts on H2 with a fundamental
domain which is a bounded polygon.

Proof: Let Γ · x be an orbit of x ∈ H2, and Vx the corresponding Voronoi
domain. It would suffice to show that the closure of Vx is compact. Let
Bx(R) ⊂ H2 be a a disc of radius R with center in x which contains a rep-
resentative of each Γ-orbit on the tiles of T . There are finitely many orbits,
and all tiles are compact, hence such a disk always exists. Then for every
y ∈ H2, there exists γ ∈ Γ such that γ(y) ∈ Bx(R). Then d(y, γ−1(x)) 6 R,
hence either y ∈ Bx(R) or y /∈ Vx. We proved that Vx ⊂ Bx(R), hence the
Voronoi polygon is compact.

COROLLARY: Let Γ be a group of isometries of a semi-regular tiling. Then
the quotient H2/Γ is a compact polyhedral hyperbolic manifold, hence is
a compact Riemann surface.
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Hyperbolic polyhedral manifolds: interior angles of vertices (reminder)

DEFINITION: Let v ∈ M be a vertex in a hyperbolic polyhedral manifold.
Interior angle of v in M is sum of the adjacent angles of all polygons adjacent
to v.

EXAMPLE 1: Let M −→∆ be a ramified n-tuple cover of the Poincaré disk,
given by solutions of yn = x. We can lift split ∆ to polygons and lift the
hyperbolic metric to M , obtaining M as a union of n times as many polygons
glued along the same edges. Then the interior angle of the ramification
point is 2πn.

EXAMPLE 2: Let ∆−→M be a ramified n-tuple cover, obtained as a
quotient M = ∆/G, where G = Z/nZ. Split ∆ onto fundamental domains of
G, shaped like angles adjacent to 0. Then the quotient ∆/G gives an angle
with its opposite sides glued. It is a hyperbolic polyhedral manifold with
interior angle 2π

n at its ramification point.

EXAMPLE 3: Let D be a diameter bisecting a disk ∆, and passing through
the origin 0 and P ⊂ ∆ one of the halves. The (unique) edge of P is split
onto two half-geodesics E+ and E− by the origin. Gluing E+ and E−, we
obtain a hyperbolic polyhedral manifold with a single vertex and the
interior angle π.
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Sphere with n points of angle π (reminder)

EXAMPLE: Let P be a bounded polygon in H2, α the sum of its angles, and
ai, i = 1, ..., n median points on its edges Ei. Each ai splits Ei in two equal
intervals. We glue them as in Example 3, and glue all vertices of P together.
This gives a sphere M with hyperbolic polyhedral metric, one vertex ν
with angle α (obtained by gluing all vertices of P together) and n vertices
with angle π corresponding to ai ∈ Ei.

REMARK: Assume that α = 2π, that is, M is isometric to a hyperbolic disk
in a neighbourhood of ν. We equip M with a complex structure compatible
with the hyperbolic metric outside of its singularities. A neighbourhood of
each singularity is isometrically identified with a neighbourhood of 0 in ∆/G,
where G = Z/2Z. We put a complex structure on ∆/G as in Example 2. This
puts a structure of a complex manifold on M.

THEOREM: (Alexandre Anan’in)
Let M be the hyperbolic polyhedral manifold obtained from the polygon P
with n vertices as above. Assume that n is even, and α = 2π. Then M
admits a double cover M1, ramified at all ai, which is locally isometric
to H2.
Proof: later today.

REMARK: Clearly, M1 is hyperelliptic.
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The proof of Anan’in’s Theorem

EXAMPLE: Let P be a bounded convex polygon in H2, α the sum of its
angles, and ai, i = 1, ..., n the median points on its edges Ei. Each ai splits Ei
in two equal intervals. We glue them as in Example 3, and glue all vertices
of P together. This gives a sphere M with hyperbolic polyhedral metric,
one vertex ν with angle α (obtained by gluing all vertices of P together) and
n vertices with angle π corresponding to ai ∈ Ei.

REMARK: Assume that α = 2π, that is, M is isometric to a hyperbolic
sphere around ν. We equip M with a complex structure compatible with
the hyperbolic metric outside of its singularities. A neighbourhood of each
singularity is isometrically identified with a neighbourhood of 0 in ∆/G, where
G = Z/2Z.

THEOREM: (Alexandre Anan’in)
Let M be the hyperbolic polyhedral manifold obtained from the polyhedron
P as above. Assume that n is even, and α = 2π. Then M admits a double
cover M1, ramified at all ai, which is locally isometric to H2.

Strategy of the proof: We tile the hyperbolic plane H2 by copies of P . We
show that the group Γ of oriented isometries of this tiling has a subgroup Γ2
of index 2, freely acting on H2, such that H2/Γ = M , and H2/Γ2 is its ramified
covering with ramification in a1, ..., an.
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Alexandre (Sasha) Anan’in, 1952-2021
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The proof of Anan’in Theorem (2)

Proof. Step 1: Fix an isometric embedding P ↪→ H2. Let Γ be the group

of isometries generated by central symmetries (that is, rotations with angle

π) around a1, ..., an. Then the images of P tile H2 in such a way that P is

a fundamental domain of Γ. Indeed, Γ · P covers the whole H (it is open

and closed). However, rotating around the edge adjacent to a given vertex

of P , we go through a full circle after adding all interior angles one by one.

Since the sum of interior angles of P is 2π, we arrive back to P , hence the

images of P intersect with P only on the edge. We proved that P is a

fundamental domain of Γ, which is the isometry group of the tiling of H2 by

copies of P .

Anan’in tiling of a Euclidean plane by quadrangles
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The proof of Anan’in Theorem (3)

THEOREM: (Alexandre Anan’in)

Let M be the hyperbolic polyhedral manifold obtained from the polyhedron

P as above. Assume that n is even, and α = 2π. Then M admits a double

cover M1, ramified at all ai, which is locally isometric to H2.

Proof. Step 1: Fix an isometric embedding P ↪→ H2. Let Γ be the group

of isometries generated by central symmetries around a1, ..., an. Then the

images of P tile H2 in such a way that P is a fundamental domain of

Γ.

Step 2: Now we prove that H2/Γ = M. Indeed, Γ acts freely the set of

tiles of our tiling, and its action is non-free only in a1, ..., an, which are fixed

points of appropriate central symmetries. These central symmetries identify

two opposite halves of each edge, hence H2/Γ is obtained by gluing half of

each edge of P with the opposite half.
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The proof of Anan’in Theorem (4)

Step 3: It remains to construct an index 2 subgroup Γ2 ⊂ Γ freely

acting on H2. We color the vertices of the tiling constructed above in colors

red and green in such a way that connected vertices have different colors.

This is possible if P has even number of vertices.

Anan’in tiling of a Euclidean plane with colored vertices

The central symmetries τj generating Γ exchange red and green vertices. Let

Γ2 ⊂ Γ be a subgroup generated by products of even number of τj. Clearly,

Γ2 is a subgroup of all elements γ ∈ Γ preserving colors of the vertices. Any

element of Γ has at most 1 fixed point in the middle of an edge of a tile,

hence Γ2 acts on H2 freely.
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