Lecture 17: Riemann-Hilbert correspondence

Misha Verbitsky

IMPA, sala 236, 17:00

May 15, 2024

Étalé space of a sheaf (reminder)

DEFINITION: Let \mathcal{F} be a sheaf on M, and $U, V \supset x$ be two open set containing $x \in M$. Two sections $f \in \mathcal{F}(U)$, $g \in \mathcal{F}(V)$ are called **equivalent in** x if there exists an open set $W \ni x$ such that $W \subset U \cap V$ and $f|_W = g|_W$. A germ of a sheaf \mathcal{F} in x is a class of equivalence of sections of \mathcal{F} in all open sets $U \ni x$ under this equivalence relation. The stalk of a sheaf \mathcal{F} in x is the space \mathcal{F}_x of all germs in x.

DEFINITION: Let $E(\mathcal{F})$ be the set of all stalks of a sheaf \mathcal{F} in all points $x \in M$. A germ $f \in \mathcal{F}_m$ is called a limit of a sequence of germs $f_i \in \mathcal{F}_{m_i}$ if $\lim_i m_i = m$ and there exists a section \tilde{f} of \mathcal{F} over $U \ni x$ such that almost all f_i are germs of \tilde{f} . The étalé topology on $E(\mathcal{F})$ is defined as follows: a subset $K \subset E(\mathcal{F})$ is closed in étalé topology if it contains all its limit points.

REMARK: Usually $E(\mathcal{F})$ is non-Hausdorff.

Étalé space of a constant sheaf (reminder)

CLAIM: Let $\mathcal{F} = \mathbb{V}_M$ be a constant sheaf on a manifold, and $x \in M$ a connected subset. Then the space of germs of \mathcal{F} in x is equal to \mathbb{V} .

Proof: Since \mathcal{F} is constant, the set of its sections on any connected open set is equal to \mathbb{V} . This gives a natural map $r_x := \mathcal{F}(U) \longrightarrow \mathbb{V}$: we restrict $f \in \mathcal{F}(U)$ to a connected component U_1 of U containing x, and obtain an element of \mathbb{V} . **Clearly, two sections** f, g **are equivalent in** K **if and only if** $r_x(f) = r_x(g)$. This identifies \mathbb{V} with the set of equivalence classes of sections in x.

Corollary 1: Let $\mathcal{F} = \mathbb{V}_M$ be a constant sheaf on a manifold. Then the étalé space $E(\mathcal{F})$ of \mathcal{F} is identified with \mathbb{V} disconnected copies of M.

Proof: Indeed, a sequence $f_i \in \mathcal{F}_{m_i}$ converges to f if $\lim_i m_i = m$ and $r_{m_i}(f_i) = r_m(f)$ for almost all i.

Local systems

DEFINITION: Category of coverings of M is category C with Ob(C) all coverings and morphisms continuous maps of coverings compatible with projections to M.

DEFINITION: Let $\pi_1 : M_1 \longrightarrow M$, $\pi_2 : M_2 \longrightarrow M$ be continuous maps. **Fibered product** $M_1 \times_M M_2$ is the subset of $M_1 \times M_2$ defined as $M_1 \times_M M_2 := \{(x, y) \in M_1 \times M_2 \mid \pi_1(x) = \pi_2(y)\}$, with induced topology.

EXERCISE: Prove that a fibered product of coverings is a covering.

DEFINITION: An abelian group structure on a covering $\pi_1 : M_1 \to M$ is a morphism of coverings $\mu : M_1 \times_M M_1 \to M_1$ together with a morphism $e : M \to M_1$ from a trivial covering to M_1 and $\in \text{Hom}_M(M_1)$ such that μ defines an additive structure of an abelian group on the set $\pi_1^{-1}(x)$ for each $x \in M$, with e(x) a unit in this group and a the inverse.

REMARK: If, in addition, we have a group homomorphism $\mathbb{R}^* \longrightarrow \text{Aut}_M(M_1, M_1)$ which equips each $\pi_1^{-1}(x)$ with a structure of a vector space, we obtain a structure of a vector space on a covering.

DEFINITION: A local system is a covering with a structure of an abelian group or a vector space.

Étalé space of a locally constant sheaf

THEOREM: Let $\mathcal{F} = \mathbb{V}_M$ be a locally constant sheaf on a manifold. Then its étalé space $E(\mathcal{F})$ is a covering of M.

Proof: Immediately follows from Corollary 1. ■

THEOREM: Category of locally constant sheaves is equivalent to the category of local systems.

Proof: Let \mathcal{F} be a locally constant sheaf, and $E(\mathcal{F})$ its etale space. Then $E(\mathcal{F})$ is a covering of M. The structure of vector space on germs defines the structure of vector space on $E(\mathcal{F})$. This gives a functor from locally constant sheaves to local systems.

Conversely, let $\pi : M_1 \longrightarrow M$ be a local system, and $\mathcal{F}(U)$ be the space of the sections of $\pi^{-1}(U) \xrightarrow{\pi} U$. Then $\mathcal{F}(U)$ is a vector space. The correspondence $U \longrightarrow \mathcal{F}(U)$ gives a sheaf, which is clearly locally constant.

Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential *i*-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle *B* is an operator ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ satisfying $\nabla(fb) = b \otimes df + f\nabla(b)$, where $f \longrightarrow df$ is de Rham differential. When *X* is a vector field, we denote by $\nabla_X(b) \in B$ the term $\langle \nabla(b), X \rangle$.

REMARK: When M = [0, a] is an interval, any bundle B on M is trivial. Let $b_1, ..., b_n$ be a basis in B. Then ∇ can be written as

$$\nabla_{d/dt} \left(\sum f_i b_i \right) = \sum_i \frac{df_i}{dt} b_i + \sum f_i \nabla_{d/dt} b_i$$

with the last term linear on f. Therefore, the equation $\nabla_{d/dt}(b) = 0$ is a first order ODE, and **it has a unique solution for any initial value** $b_0 = b|_{\{0\}}$.

Curvature

DEFINITION: Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a vector bundle *B*. We extend ∇ to an operator

$$V \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using the Leibnitz identity $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}}\eta \wedge \nabla b$. Then the operator $\nabla^2: B \longrightarrow B \otimes \Lambda^2(M)$ is called **the curvature** of ∇ .

REMARK: $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b$, hence **the curvature** is a $C^{\infty}M$ -linear operator. We shall consider the curvature *B* as a 2form with values in End *B*. Then $\nabla^2 := \Theta_B \in \Lambda^2 M \otimes \text{End } B$, where an End(*B*)-valued form acts on $\Lambda^*M \otimes B$ as above.

DEFINITION: A connection is **flat** if its curvature vanishes.

Riemann-Hilbert correspondence

THEOREM: Let M be a connected manifold, C_1 the category of representations of $\pi_1(M)$, and C_2 the category of local systems. Then the categories C_1 and C_2 are naturally equivalent.

Proof: The category of sets with an action of $\pi_1(M)$ is equivalent to the category of coverings (assignment 7). Local systems are group objects in the category of coverings, and representations of $\pi_1(M)$ are group objects in the category of sets with an action of $\pi_1(M)$.

THEOREM: The categories C_1 and C_2 are naturally equivalent to the category of vector bundles on M equipped with flat connection.

Proof: We shall do it soon.

Vector fields and derivations

DEFINITION: Let M be a smooth manifold, and $X : C^{\infty}M \longrightarrow C^{\infty}M$ an operator. We call X a vector field if in each coordinate system $x_1, ..., x_n$ on M, the map X can be written as $X(f) = \sum \alpha_i \frac{df}{dx_i}$.

DEFINITION: A map X from a ring to itself is called a derivation it it satisfies the Leibnitz rule: X(fg) = gX(f) + fX(g). Further on, we shall mostly consider derivations $X : C^{\infty}M \longrightarrow C^{\infty}M$. Such derivations are tacitly assumed to be \mathbb{R} -linear.

DEFINITION: Support Supp(f) of a continuous function f is the closure of the set of all points where it is not equal to 0. An operator X: $C^{\infty}M \longrightarrow C^{\infty}M$ is local if it maps a function with support in K to a function with support in K, for each $K \subset M$.

REMARK: Clearly, all vector fields are local derivations.

Derivations are local

THEOREM: Any derivation $X : C^{\infty}M \longrightarrow C^{\infty}M$ is local.

Proof. Step 1: Let $K, L \subset M$ be non-intersecting closed sets, f be a function with support in K, and g a function satisfying $g|_L = 1$ and $\text{Supp}(g) \cap K = \emptyset$. Then 0 = X(fg) = gX(f) + fX(g). Restricted to L, **this gives** $X(f)|_L = 0$, because $g|_L = 1$ and $f|_L = 0$.

Step 2: Let us prove now that $\text{Supp}(X(f)) \subset K = \text{Supp}(f)$. Let $x \notin K$. We need to show that $x \notin \text{Supp}(X(f))$.

Choosing an appropriate coordinate system on $M \setminus K$, we find a function g such that $\text{Supp}(g) \subset M \setminus K$ and g = 1 in a neighbourhood V of x. Then $X(f)|_V = 0$ by Step 1. This implies that $x \notin \text{Supp}(X(f))$.

Hadamard's Lemma

LEMMA: (Hadamard's Lemma)

Let f be a smooth function on \mathbb{R}^n , and x_i the coordinate functions. Then $f(x) = f(0) + \sum_{i=1}^n x_i g_i(x)$, for some smooth $g_i \in C^{\infty} \mathbb{R}^n$.

Proof: Let $t \in \mathbb{R}^n$. Consider a function $h(t) \in C^{\infty}\mathbb{R}^n$, h(t) = f(tx). Using the chain rule, we get $\frac{dh}{dt} = \sum \frac{d}{dx_i} f(tx) x_i$, obtaining

$$f(x) - f(0) = \int_0^1 \frac{dh}{dt} dt = \sum_i x_i \int_0^1 \frac{df(tx)}{dx_i} (tx) dt.$$

COROLLARY: Let \mathfrak{m}_0 be an ideal of all smooth functions on \mathbb{R}^n vanishing in 0. Then \mathfrak{m}_0 is generated by coordinate functions.

COROLLARY: Let f be a smooth function on \mathbb{R}^n satisfying f(x) = 0 and $df|_{T_x(M)} = 0$. Then $f \in \mathfrak{m}_x^2$.

Proof: $f(x) = \sum_{i=1}^{n} x_i g_i(x)$, where all g_i vanish in 0.

EXERCISE 1: Let $X : C^{\infty}M \longrightarrow C^{\infty}M$ be a derivation, and $f \in \mathfrak{m}_x^2$. **Prove** that $X(f) \in \mathfrak{m}_x$.

Polynomial vector fields and derivations

LEMMA 1: Let k be any field, $k[x_1, ..., x_n]$ the ring of polynomials, and $A \supset k[x_1, ..., x_n]$ any ring. Then **any** k-linear derivation $X : k[x_1, ..., x_n] \longrightarrow A$ is expressed as $X(F) = \sum \alpha_i \frac{df}{dx_i}$, where $\alpha_i = X(x_i)$.

Proof: A derivation X on $\mathbb{R}[x_1, ..., x_n]$ is determined by Leibnitz formula and $X(x_1), ..., X(x_n)$. On monomials the Leibnitz formula gives

$$X(x_1^{a_1}x_2^{a_2}...x_n^{a_n}) = a_1X(x_1)x_1^{a_1-1}x_2^{a_2}...x_n^{a_n} + a_2X(x_2)x_1^{a_1}x_2^{a_2-1}...x_n^{a_n} + ... + a_nX(x_n)x_1^{a_1}x_2^{a_2-1}...x_n^{a_n-1}.$$

Therefore, for any polynomial $F \in \mathbb{R}[x_1, ..., x_n]$, we have $X(F) = \sum \alpha_i \frac{dF}{dx_i}$, where $\alpha_i = X(x_i)$.

Vector fields and derivations

THEOREM 1: Any derivation $X : C^{\infty}M \longrightarrow C^{\infty}M$ is a vector field on M.

Proof. Step 1: Since derivations are local, it suffices to prove this statement on \mathbb{R}^n .

Step 2: For polynomial functions $F \in \mathbb{R}[x_1, ..., x_n]$, we have $X(F) = \sum \alpha_i \frac{dF}{dx_i}$, where $\alpha_i = X(x_i)$ (Lemma 1). **Therefore,** $X|_{\mathbb{R}[x_1,...,x_n]}$ is a vector field.

Step 3: Given a derivation δ , write $\delta_0 := \sum \alpha_i \frac{df}{dx_i}$, where $\alpha_i = \delta(x_i)$. To finish Theorem 1, it suffices to show that $\delta_1 := \delta - \delta_0 = 0$. This would follow if we prove that all derivations δ_1 vanishing on all polynomial functions vanish.

Step 4: By Hadamard's lemma, for each $x \in \mathbb{R}^n$, one has $f \in \mathfrak{m}_x^2$ modulo linear functions. Since δ_1 vanishes on linear functions, one has $\delta_1(C^{\infty}\mathbb{R}^n) = \delta_1(\mathfrak{m}_x^2)$ for each $x \in \mathbb{R}^n$ (Hadamard's lemma). However, $\delta_1(\mathfrak{m}_x^2) \in \mathfrak{m}_x$ because δ_1 is a derivation (Exercise 1). Therefore, $\delta_1(f)$ vanishes everywhere for all $f \in C^{\infty}\mathbb{R}^n$.

Flow of diffeomorphisms

DEFINITION: Let $V : M \times [a,b] \longrightarrow M$ be a smooth map such that for all $t \in [a,b]$ the restriction $V_t := V|_{M \times \{t\}} : M \longrightarrow M$ is a diffeomorphism. Then V is called a flow of diffeomorphisms.

CLAIM: Let V_t be a flow of diffeomorphisms, $f \in C^{\infty}M$, and $V_t^*(f)(x) := f(V_t(x))$. Consider the map $\frac{d}{dt}V_t|_{t=c}$: $C^{\infty}M \longrightarrow C^{\infty}M$, with $\frac{d}{dt}V_t|_{t=c}(f) = (V_c^{-1})^*\frac{dV_t}{dt}|_{t=c}f$. Then $f \longrightarrow (V_t^{-1})^*\frac{d}{dt}V_t^*f$ is a derivation (that is, a vector field).

Proof:
$$\frac{d}{dt}V_t^*(fg) = V_t^*(f)\frac{d}{dt} \cdot V_t^*g + \frac{d}{dt}V_t^*f \cdot V_t^*(g)$$
 by the Leibnitz rule, giving $(V_t^{-1})^*\frac{d}{dt}V_t^*(fg) = f \cdot (V_t^{-1})^*\frac{d}{dt}V_t^*g + g \cdot (V_t^{-1})^*\frac{d}{dt}V_t^*f.$

DEFINITION: The vector field $\frac{d}{dt}V_t|_{t=c}$ is called a vector field tangent to a flow of diffeomorphisms V_t at t = c.

DEFINITION: Let v_t be a vector field on M, smoothly depending on the time parameter $t \in [a, b]$, and $V : M \times [a, b] \longrightarrow M$ a flow of diffeomorphisms which satisfies $(V_t^{-1})^* \frac{d}{dt} V_t = v_t$ for each $t \in [a, b]$, and $V_0 = \text{Id}$. Then V_t is called **an exponent of** v_t .

Automorphisms of the ring of functions

REMARK: Each diffeomorphism ψ : $M \longrightarrow M$ induces an automorphism of the ring of smooth functions on M, $f \mapsto \psi^* f$.

THEOREM: Let *M* be a manifold. Then any automorphism $\Psi : C^{\infty}M \longrightarrow C^{\infty}M$ is induced by a diffeomorphism of *M*.

Proof. Step 1: Given a point $x \in M$, denote by I_x the maximal ideal of x, that is, the ideal of all functions vanishing in x. On a compact manifold, any maximal ideal is obtained this way. Indeed, if an ideal $I \subset C^{\infty}M$ has no common zeros, for each $y \in M$ there exists $f_y \in I$ which does not vanish in y. Denote by U_y the open set where $f_y \neq 0$. Then $\{U_y\}$ is an open cover of M. Finding a finite subcover, we obtain a finite number of functions $f_i \in I$ such that $\bigcap_i U_{f_i} = M$. Then the function $\sum f_i^2 \in I$ is invertible, hence $I = C^{\infty}M$ is not a maximal ideal. For non-compact manifolds, points of M are the same as ideals $I \subset C^{\infty}M$ such that $C^{\infty}M/I = \mathbb{R}$ (prove it).

Step 2: Identifying points and maximal ideals, we obtain a map $\psi : M \longrightarrow M$ induced by Ψ . It remains to show that this map is a diffeomorphism.

Automorphisms of the ring of functions (2)

THEOREM: Let *M* be a compact manifold. Then **any automorphism** $\Psi : C^{\infty}M \longrightarrow C^{\infty}M$ is induced by a diffeomorphism of *M*.

Step 2: Identifying points and maximal ideals, we obtain a map $\psi : M \longrightarrow M$ induced by Ψ . It remains to show that this map is a diffeomorphism.

Step 3: All open subsets of M can be obtained as unions of open sets $U_f := f^{-1}(\mathbb{R}\setminus 0)$, where $f \in C^{\infty}M$ (prove it). However, f(x) = 0 if and only if $f \in I_x$. Then U_f can be considered as a set of maximal ideals I_x such that $f \notin I_x$. Since Ψ maps U_f to $U_{\Psi(f)}$, the corresponding map ψ is continuous on M. This implies that ψ is a homeomorphism.

Step 4: Finally, Ψ maps coordinate functions on $U \subset M$ to coordinate functions on $\psi^{-1}(U)$, hence this homeomorphism is smooth.

Solutions of ODE (1)

DEFINITION: Let v_t be a vector field on M, smoothly depending on the time parameter $t \in [0, a]$, and $V : M \times [0, a] \longrightarrow M$ a flow of diffeomorphisms which satisfies $(V_t^{-1})^* \frac{d}{dt} V_t = v_t$ for each $t \in [0, a]$, and $V_0 = \text{Id}$. Then V_t is called **an exponent of** v_t .

Theorem 1: Let v_t be a vector field on M, smoothly depending on the time parameter $t \in [0, a]$. Then **the exponent of** v_t **is unique. It always exists** when v_t has compact support.

Solutions of ODE (2)

Theorem 2: Let v_t be a vector field on M, smoothly depending on the time parameter $t \in [0, a]$. Then **the exponent of** v_t **is unique. It always exists** when v_t vanish (for all t) outside of a compact set $K \subset M$.

Proof: To construct a flow of diffeomorphisms $V_t = e^{v_t}$ it suffices to find a family of automorphisms $\Psi_t : C^{\infty}M \longrightarrow C^{\infty}M$ smoothly depending on $t \in$ [0, a] such that $\Psi_t^{-1} \frac{d}{dt} \Psi_t = v_t$. This is the same as to solve the ordinary differential equation

$$\frac{lf_t}{dt} = v_t(f_t) \quad (*)$$

for any given f_0 . Then $\Psi_t(f_0) := f_t$ clearly satisfies $\frac{d}{dt}\Psi_t(f_0) = v_t\Psi_t(f_0)$.

To finish the proof, we need to show that a solution of (*) exists and is unique, and to prove that Ψ_t defined this way is an automorphism, that is, satisfies $\Psi_t(fg) = \Psi_t(f)\Psi_t(g)$.

Existence and uniqueness of solutions of ODE

THEOREM: Let v_t be a vector field on a manifold M. Consider the differential equation

$$\frac{dx_t}{dt} = v_t(x_t), \quad (*)$$

where $x_t \in M$, and $t \in [0, a]$. Suppose that v_t has compact support. Then (*) has a unique solution for each initial value x_0 .

Proof: Existence and uniqueness of solutions of (*) follows from Peano and Picard-Lindelöf theorem. Recall that a function μ : $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ is Lipschitz if $|\mu(x) - \mu(y)| < C|x - y|$ for all x, y. Let D be an open subset of $\mathbb{R} \times \mathbb{R}^n$, $f \in C^{\infty}D$, and

 $\frac{df_t}{dt} = v(t, f(t)) \qquad (**)$

a continuous first-order differential equation defined on D. (Peano) Then for every initial value f_0 there exists a solution of (**) defined on a small interval $[0, \varepsilon]$. Moreover (Picard-Lindelöf) the solution is unique if v is Lipschitz. Notice that v is Lipschitz on any compact set if it is smooth. Finally, if there are functions α, β : $[0, \infty[\longrightarrow [0, \infty[$ such that $|v_t(x)| < \alpha(t)|x| + \beta(t)$, the solution exists globally for all $t \in [0, \infty[$.

Derivations and automorphisms

To finish Theorem 2, it would suffice to show that the map $f_0 \xrightarrow{\Psi_t} f_t$ obtained as a solution of $\frac{df_t}{dt} = v_t(f_t)$ is multiplicative: $\Psi_t(fg) = \Psi_t(f)\Psi_t(g)$. From the definition of Ψ_t it follows

$$\frac{d}{dt}\Psi_t(fg) = v_t(f_t)g_t + f_t v(g_t)$$

and

$$\frac{d}{dt}\left(\Psi_t(f)\Psi_t(g)\right) = v_t(f_t)g_t + f_t v(g_t)$$

Therefore, both $\Psi_t(fg)$ and $\Psi_t(f)\Psi_t(g)$ are solition of a differential equation $\frac{d}{dt}(\chi_t) = v_t(\chi_t)$ with the same initial value $\chi_0 = fg$. They are equal by uniqueness of solutions.

The same argument proves the following lemma.

LEMMA: Let v, v' be commuting vector fields. Then the corresponding diffeomorphisms commute. Moreover, $V_t(v') = v'$, where V_t is the diffeomorphism flow associated with v.

Proof: Indeed, exponents of commuting linear operators commute.