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Étalé space of a sheaf (reminder)

DEFINITION: Let F be a sheaf on M , and U, V ⊃ x be two open set

containing x ∈M . Two sections f ∈ F(U), g ∈ F(V ) are called equivalent in

x if there exists an open set W 3 x such that W ⊂ U ∩ V and f |W = g|W . A

germ of a sheaf F in x is a class of equivalence of sections of F in all open

sets U 3 x under this equivalence relation. The stalk of a sheaf F in x is the

space Fx of all germs in x.

DEFINITION: Let E(F) be the set of all stalks of a sheaf F in all points

x ∈ M . A germ f ∈ Fm is called a limit of a sequence of germs fi ∈ Fmi

if limimi = m and there exists a section f̃ of F over U 3 x such that almost

all fi are germs of f̃ . The étalé topology on E(F) is defined as follows: a

subset K ⊂ E(F) is closed in étalé topology if it contains all its limit points.

REMARK: Usually E(F) is non-Hausdorff.
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Étalé space of a constant sheaf (reminder)

CLAIM: Let F = VM be a constant sheaf on a manifold, and x ∈ M a

connected subset. Then the space of germs of F in x is equal to V.

Proof: Since F is constant, the set of its sections on any connected open

set is equal to V. This gives a natural map rx := F(U)−→ V: we restrict

f ∈ F(U) to a connected component U1 of U containing x, and obtain an

element of V. Clearly, two sections f, g are equivalent in K if and only if

rx(f) = rx(g). This identifies V with the set of equivalence classes of sections

in x.

Corollary 1: Let F = VM be a constant sheaf on a manifold. Then the

étalé space E(F) of F is identified with V disconnected copies of M.

Proof: Indeed, a sequence fi ∈ Fmi converges to f if limimi = m and rmi(fi) =

rm(f) for almost all i.
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Local systems

DEFINITION: Category of coverings of M is category C with Ob(C) all
coverings and morphisms continuous maps of coverings compatible with pro-
jections to M .

DEFINITION: Let π1 : M1 −→M , π2 : M2 −→M be continuous maps.
Fibered product M1×MM2 is the subset of M1×M2 defined as M1×MM2 :=
{(x, y) ∈M1 ×M2 | π1(x) = π2(y)}, with induced topology.

EXERCISE: Prove that a fibered product of coverings is a covering.

DEFINITION: An abelian group structure on a covering π1 : M1 −→M
is a morphism of coverings µ : M1 ×M M1 −→M1 together with a morphism
e : M −→M1 from a trivial covering to M1 and ∈ HomM(M1) such that µ
defines an additive structure of an abelian group on the set π−1

1 (x) for each
x ∈M , with e(x) a unit in this group and a the inverse.

REMARK: If, in addition, we have a group homomorphism R∗ −→ AutM(M1,M1)
which equips each π−1

1 (x) with a structure of a vector space, we obtain a
structure of a vector space on a covering.

DEFINITION: A local system is a covering with a structure of an abelian
group or a vector space.
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Étalé space of a locally constant sheaf

THEOREM: Let F = VM be a locally constant sheaf on a manifold. Then

its étalé space E(F) is a covering of M.

Proof: Immediately follows from Corollary 1.

THEOREM: Category of locally constant sheaves is equivalent to the

category of local systems.

Proof: Let F be a locally constant sheaf, and E(F) its etale space. Then

E(F) is a covering of M . The structure of vector space on germs defines

the structure of vector space on E(F). This gives a functor from locally

constant sheaves to local systems.

Conversely, let π : M1 −→M be a local system, and F(U) be the space of the

sections of π−1(U)
π−→ U . Then F(U) is a vector space. The correspondence

U −→F(U) gives a sheaf, which is clearly locally constant.
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Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the

bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: When M = [0, a] is an interval, any bunlde B on M is trivial. Let

b1, ..., bn be a basis in B. Then ∇ can be written as

∇d/dt
(∑

fibi
)

=
∑
i

dfi
dt
bi +

∑
fi∇d/dtbi

with the last term linear on f . Therefore, the equation ∇d/dt(b) = 0 is a first

order ODE, and it has a unique solution for any initial value b0 = b
∣∣∣{0}.
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Curvature

DEFINITION: Let ∇ : B −→B ⊗ Λ1M be a connection on a vector bundle

B. We extend ∇ to an operator

V
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using the Leibnitz identity ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. Then the operator

∇2 : B −→B ⊗ Λ2(M) is called the curvature of ∇.

REMARK: ∇2(fb) = d2fb + df ∧ ∇b− df ∧ ∇b + f∇2b, hence the curvature

is a C∞M-linear operator. We shall consider the curvature B as a 2-

form with values in EndB. Then ∇2 := ΘB ∈ Λ2M ⊗ EndB, where an

End(B)-valued form acts on Λ∗M ⊗B as above.

DEFINITION: A connection is flat if its curvature vanishes.
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Riemann-Hilbert correspondence

THEOREM: Let M be a connected manifold, C1 the category of representa-

tions of π1(M), and C2 the category of local systems. Then the categories

C1 and C2 are naturally equivalent.

Proof: The category of sets with an action of π1(M) is equivalent to the

category of coverings (assignment 7). Local systems are group objects in the

category of coverings, and representations of π1(M) are group objects in the

category of sets with an action of π1(M).

THEOREM: The categories C1 and C2 are naturally equivalent to the

category of vector bundles on M equipped with flat connection.

Proof: We shall do it soon.
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Vector fields and derivations

DEFINITION: Let M be a smooth manifold, and X : C∞M −→ C∞M an

operator. We call X a vector field if in each coordinate system x1, ..., xn on

M , the map X can be written as X(f) =
∑
αi

df
dxi

.

DEFINITION: A map X from a ring to itself is called a derivation it it

satisfies the Leibnitz rule: X(fg) = gX(f) + fX(g). Further on, we shall

mostly consider derivations X : C∞M −→ C∞M . Such derivations are tacitly

assumed to be R-linear.

DEFINITION: Support Supp(f) of a continuous function f is the clo-

sure of the set of all points where it is not equal to 0. An operator X :

C∞M −→ C∞M is local if it maps a function with support in K to a function

with support in K, for each K ⊂M .

REMARK: Clearly, all vector fields are local derivations.
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Derivations are local

THEOREM: Any derivation X : C∞M −→ C∞M is local.

Proof. Step 1: Let K,L ⊂M be non-intersecting closed sets, f be a function

with support in K, and g a function satisfying g|L = 1 and Supp(g) ∩K = ∅.
Then 0 = X(fg) = gX(f) + fX(g). Restricted to L, this gives X(f)|L = 0,

because g|L = 1 and f |L = 0.

Step 2: Let us prove now that Supp(X(f)) ⊂ K = Supp(f). Let x /∈ K. We

need to show that x /∈ Supp(X(f)).

Choosing an appropriate coordinate system on M\K, we find a function g

such that Supp(g) ⊂ M\K and g = 1 in a neighbourhood V of x. Then

X(f)|V = 0 by Step 1. This implies that x /∈ Supp(X(f)).
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Hadamard’s Lemma

LEMMA: (Hadamard’s Lemma)
Let f be a smooth function on Rn, and xi the coordinate functions. Then
f(x) = f(0) +

∑n
i=1 xigi(x), for some smooth gi ∈ C∞Rn.

Proof: Let t ∈ Rn. Consider a function h(t) ∈ C∞Rn, h(t) = f(tx). Using the
chain rule, we get dh

dt =
∑ d
dxi
f(tx)xi, obtaining

f(x)− f(0) =
∫ 1

0

dh

dt
dt =

∑
i

xi

∫ 1

0

df(tx)

dxi
(tx)dt.

COROLLARY: Let m0 be an ideal of all smooth functions on Rn vanishing
in 0. Then m0 is generated by coordinate functions.

COROLLARY: Let f be a smooth function on Rn satisfying f(x) = 0 and
df
∣∣∣Tx(M) = 0. Then f ∈ m2

x.

Proof: f(x) =
∑n
i=1 xigi(x), where all gi vanish in 0.

EXERCISE 1: Let X : C∞M −→ C∞M be a derivation, and f ∈ m2
x. Prove

that X(f) ∈ mx.
11



2024: Riemann surfaces, lecture 17 M. Verbitsky

Polynomial vector fields and derivations

LEMMA 1: Let k be any field, k[x1, ..., xn] the ring of polynomials, and

A ⊃ k[x1, ..., xn] any ring. Then any k-linear derivation X : k[x1, ..., xn]−→A

is expressed as X(F ) =
∑
αi

df
dxi

, where αi = X(xi).

Proof: A derivation X on R[x1, ..., xn] is determined by Leibnitz formula and

X(x1), ..., X(xn). On monomials the Leibnitz formula gives

X(xa1
1 x

a2
2 ...xann ) = a1X(x1)xa1−1

1 x
a2
2 ...xann + a2X(x2)xa1

1 x
a2−1
2 ...xann + ...

+ anX(xn)xa1
1 x

a2−1
2 ...xan−1

n .

Therefore, for any polynomial F ∈ R[x1, ..., xn], we have X(F ) =
∑
αi
dF
dxi

,

where αi = X(xi).
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Vector fields and derivations

THEOREM 1: Any derivation X : C∞M −→ C∞M is a vector field on

M.

Proof. Step 1: Since derivations are local, it suffices to prove this state-

ment on Rn.

Step 2: For polynomial functions F ∈ R[x1, ..., xn], we have X(F ) =
∑
αi
dF
dxi

,

where αi = X(xi) (Lemma 1). Therefore, X
∣∣∣R[x1,...,xn] is a vector field.

Step 3: Given a derivation δ, write δ0 :=
∑
αi

df
dxi

, where αi = δ(xi). To finish
Theorem 1, it suffices to show that δ1 := δ − δ0 = 0. This would follow if

we prove that all derivations δ1 vanishing on all polynomial functions

vanish.

Step 4: By Hadamard’s lemma, for each x ∈ Rn, one has f ∈ m2
x modulo linear

functions. Since δ1 vanishes on linear functions, one has δ1(C∞Rn) = δ1(m2
x)

for each x ∈ Rn (Hadamard’s lemma). However, δ1(m2
x) ∈ mx because δ1 is

a derivation (Exercise 1). Therefore, δ1(f) vanishes everywhere for all

f ∈ C∞Rn.
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Flow of diffeomorphisms

DEFINITION: Let V : M × [a, b]−→M be a smooth map such that for all
t ∈ [a, b] the restriction Vt := V

∣∣∣M×{t} : M −→M is a diffeomorphism. Then
V is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=
f(Vt(x)). Consider the map d

dtVt|t=c : C∞M −→ C∞M , with d
dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

Proof: d
dtV
∗
t (fg) = V ∗t (f) ddt · V

∗
t g + d

dtV
∗
t f · V ∗t (g) by the Leibnitz rule, giving

(V −1
t )∗

d

dt
V ∗t (fg) = f · (V −1

t )∗
d

dt
V ∗t g + g · (V −1

t )∗
d

dt
V ∗t f.

DEFINITION: The vector field d
dtVt|t=c is called a vector field tangent to

a flow of diffeomorphisms Vt at t = c.

DEFINITION: Let vt be a vector field on M , smoothly depending on the
time parameter t ∈ [a, b], and V : M × [a, b]−→M a flow of diffeomorphisms
which satisfies (V −1

t )∗ ddtVt = vt for each t ∈ [a, b], and V0 = Id. Then Vt is
called an exponent of vt.

14



2024: Riemann surfaces, lecture 17 M. Verbitsky

Automorphisms of the ring of functions

REMARK: Each diffeomorphism ψ : M −→M induces an automorphism of

the ring of smooth functions on M , f 7→ ψ∗f .

THEOREM: Let M be a manifold. Then any automorphism Ψ : C∞M −→ C∞M
is induced by a diffeomorphism of M.

Proof. Step 1: Given a point x ∈ M , denote by Ix the maximal ideal of

x, that is, the ideal of all functions vanishing in x. On a compact manifold,

any maximal ideal is obtained this way. Indeed, if an ideal I ⊂ C∞M has no

common zeros, for each y ∈M there exists fy ∈ I which does not vanish in y.

Denote by Uy the open set where fy 6= 0. Then {Uy} is an open cover of M .

Finding a finite subcover, we obtain a finite number of functions fi ∈ I such

that
⋂
iUfi = M . Then the function

∑
f2
i ∈ I is invertible, hence I = C∞M

is not a maximal ideal. For non-compact manifolds, points of M are the

same as ideals I ⊂ C∞M such that C∞M/I = R (prove it).

Step 2: Identifying points and maximal ideals, we obtain a map ψ : M −→M

induced by Ψ. It remains to show that this map is a diffeomorphism.
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Automorphisms of the ring of functions (2)

THEOREM: Let M be a compact manifold. Then any automorphism

Ψ : C∞M −→ C∞M is induced by a diffeomorphism of M.

Step 2: Identifying points and maximal ideals, we obtain a map ψ : M −→M

induced by Ψ. It remains to show that this map is a diffeomorphism.

Step 3: All open subsets of M can be obtained as unions of open sets

Uf := f−1(R\0), where f ∈ C∞M (prove it). However, f(x) = 0 if and only

if f ∈ Ix. Then Uf can be considered as a set of maximal ideals Ix such that

f /∈ Ix. Since Ψ maps Uf to UΨ(f), the corresponding map ψ is continuous

on M . This implies that ψ is a homeomorphism.

Step 4: Finally, Ψ maps coordinate functions on U ⊂ M to coordinate

functions on ψ−1(U), hence this homeomorphism is smooth.
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Solutions of ODE (1)

DEFINITION: Let vt be a vector field on M , smoothly depending on the

time parameter t ∈ [0, a], and V : M × [0, a]−→M a flow of diffeomorphisms

which satisfies (V −1
t )∗ ddtVt = vt for each t ∈ [0, a], and V0 = Id. Then Vt is

called an exponent of vt.

Theorem 1: Let vt be a vector field on M , smoothly depending on the time

parameter t ∈ [0, a]. Then the exponent of vt is unique. It always exists

when vt has compact support.

17



2024: Riemann surfaces, lecture 17 M. Verbitsky

Solutions of ODE (2)

Theorem 2: Let vt be a vector field on M , smoothly depending on the time

parameter t ∈ [0, a]. Then the exponent of vt is unique. It always exists

when vt vanish (for all t) outside of a compact set K ⊂M .

Proof: To construct a flow of diffeomorphisms Vt = evt it suffices to find

a family of automorphisms Ψt : C∞M −→ C∞M smoothly depending on t ∈
[0, a] such that Ψ−1

t
d
dtΨt = vt. This is the same as to solve the ordinary

differential equation

dft

dt
= vt(ft) (∗)

for any given f0. Then Ψt(f0) := ft clearly satisfies d
dtΨt(f0) = vtΨt(f0).

To finish the proof, we need to show that a solution of (*) exists and

is unique, and to prove that Ψt defined this way is an automorphism,

that is, satisfies Ψt(fg) = Ψt(f)Ψt(g).
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Existence and uniqueness of solutions of ODE

THEOREM: Let vt be a vector field on a manifold M . Consider the differ-

ential equation
dxt
dt = vt(xt), (∗)

where xt ∈ M , and t ∈ [0, a]. Suppose that vt has compact support. Then

(*) has a unique solution for each initial value x0.

Proof: Existence and uniqueness of solutions of (*) follows from Peano and

Picard-Lindelöf theorem. Recall that a function µ : Rn −→ Rm is Lipschitz

if |µ(x) − µ(y)| < C|x − y| for all x, y. Let D be an open subset of R × Rn,

f ∈ C∞D, and

dft

dt
= v(t, f(t)) (∗∗)

a continuous first-order differential equation defined on D. (Peano) Then for

every initial value f0 there exists a solution of (**) defined on a small in-

terval [0, ε]. Moreover (Picard-Lindelöf) the solution is unique if v is Lip-

schitz. Notice that v is Lipschitz on any compact set if it is smooth. Finally,

if there are functions α, β : [0,∞[−→ [0,∞[ such that |vt(x)| < α(t)|x|+ β(t),

the solution exists globally for all t ∈ [0,∞[.
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Derivations and automorphisms

To finish Theorem 2, it would suffice to show that the map f0
Ψt−→ ft ob-

tained as a solution of dft
dt = vt(ft) is multiplicative: Ψt(fg) = Ψt(f)Ψt(g).

From the definition of Ψt it follows

d

dt
Ψt(fg) = vt(ft)gt + ftv(gt)

and

d

dt

(
Ψt(f)Ψt(g)

)
= vt(ft)gt + ftv(gt)

Therefore, both Ψt(fg) and Ψt(f)Ψt(g) are solition of a differential equation
d
dt(χt) = vt(χt) with the same initial value χ0 = fg. They are equal by
uniqueness of solutions.

The same argument proves the following lemma.

LEMMA: Let v, v′ be commuting vector fields. Then the corresponding
diffeomorphisms commute. Moreover, Vt(v′) = v′, where Vt is the diffeo-
morphism flow associated with v.

Proof: Indeed, exponents of commuting linear operators commute.
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