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Distributions

DEFINITION: Distribution on a manifold is a sub-bundle B ⊂ TM

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called holonomic, or involutive, if its Frobe-

nius form vanishes.
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Smooth submersions

DEFINITION: Let π : M −→M ′ be a smooth map of manifolds. This map

is called submersion if at each point of M the differential Dπ is surjective,

and immersion if it is injective.

CLAIM: Let π : M −→M ′ be a submersion. Then each m ∈ M has a

neighbourhood U ∼= V ×W , where V,W are smooth and π|U is a projection

of V ×W = U ⊂M to W ⊂M ′ along V .

Proof: Follows from the inverse function theorem.

THEOREM: (“Ehresmann’s fibration theorem”)

Let π : M −→M ′ be a smooth submersion of compact manifolds. Prove

that π is a locally trivial fibration.

Proof: Next slide.

DEFINITION: Vertical tangent space TπM ⊂ TM of a submersion π :

M −→M ′ is the kernel of Dπ.
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Ehresmann connections

DEFINITION: Let π : M −→ Z be a smooth submersion, with TπM the

bundle of vertical tangent vectors (vectors tangent to the fibers of π).

An Ehresmann connection on π is a sub-bundle ThorM ⊂ TM such that

TM = ThorM ⊕ TπM . The parallel transport along the path γ : [0, a]−→ Z

associated with the Ehresmann connection is a diffeomorphism

Vt : π−1(γ(0))−→ π−1(γ(t))

smoothly depending on t ∈ [0, a] and satisfying dVt
dt ∈ ThorM .

CLAIM: Let π : M −→ Z be a smooth fibration with compact fibers. Then

the parallel transport, associated with the Ehresmann connection, al-

ways exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.
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Foliations

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

REMARK: The implication “B = TπM” ⇒ “Frobenius form vanishes” is

clear because of local coordinate form of the submersions.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.

REMARK: To prove the Frobenius theorem for B ⊂ TM , it suffices to

show that each point is contained in an integral submanifold. In this

case, the smooth submersion U
π−→ V is the projection to the leaf space of

B.
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The history of Frobenius theorem

History of Frobenius theorem is explained in “The Mathematics of Frobe-

nius in Context: A Journey Through 18th to 20th Century Mathematics

(Sources and Studies in the History of Mathematics and Physical Sciences)”,

by Thomas Hawkins.

The name “Frobenius theorem” is due to Élie Cartan (1922). Before that

it was known as “Pfaff’s problem”. It was a problem of having “sufficiently

many” solutions for a system of differential equations.

In “generic” case was solved by Clebsch (1866), who generalized a weaker

result of Jacobi (1837). In 1877, Frobenius gave an equivalent reformulation

of Pfaff’s problem and solve it, also taking care of the “non-generic” cases

omitted by Clebsch.

The technical part of the argument of Frobenius is due to Heinrich Wilhelm

Feodor Deahna (1815-1844), who published a version of solution of Pfaff

problem in Crelle’s Journal in 1844.
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From the biography of Clebsch (MacTutor History of Mathematics Archive)

...It was just after Clebsch had produced these new ideas that Felix Klein

arrived in Göttingen to undertake postdoctoral work with him. The ideas

being developed in Clebsh’s school had a highly significant influence on Klein.

Clebsch’s ideas were being rapidly extended by the other talented members

of his school. After spending eight months working in Göttingen, Klein spoke

to Clebsch about broadening his horizons and spending a semester in Berlin.

Clebsch strongly advised him not to go to Berlin and Klein realised that there

were serious tensions between the Göttingen school and the one in Berlin.

However, he went against Clebsch’s advice and spent a semester to Berlin.
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Carl Gustav Jacobi (1804-1851), Alfred Clebsch (1833-1872)

Carl Gustav Jacobi, Alfred Clebsch
1804-1851 1833-1872
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Ferdinand Georg Frobenius (1849-1917)

Ferdinand Georg Frobenius (1849-1917)
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Frobenius theorem (1)

Proof of the Frobenius theorem. Step 1: Suppose that G is a Lie group

acting on a manifold M . Assume that the vector fields from the Lie algebra of

G generate a sub-bundle B ⊂ TM . Then B is integrable, that is, Frobenius

theorem holds of B ⊂ TM. Indeed, the orbits of the G-action are tangent

to B ⊂ TM .

Step 2: Let u, v be commuting vector fields on a manifold M , and etu, etv be

corresponding diffeomorphism flows. Then etu, etv commute. This easily

follows by taking a coordinate system such that u is the coordinate vector

field (do this as an exercise).

Step 3: The commutator of vector fields in B belongs to B, however, this

does not immediately produce any finite-dimensional Lie algebra: it is not ob-

vious that any subalgebra generated by such vector fields is finite-dimensional.

To produce a Lie group with orbits tangent to B, we need to find a collec-

tion ξ1, ..., ξk ∈ B of vector fields generating B and make sure that the

ξ1, ..., ξk generate a finite-dimensional Lie algebra.
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Frobenius theorem (2)

Step 4: The statement of Frobenius Theorem is local, hence we may replace

M be a small neighbourhood of a given point. We are going to show that

B locally has a basis of commuting vector fields. By Step 2, these vector

fields can be locally integrated to a commutative group action, and Frobenius

Theorem follows from Step 1.

Step 5: Let σ : M −→M1 be a smooth submersion, dσ : TxM −→ Tσ(x)M1

its differential, and v ∈ TM a vector field which satisfies

dσ(v)|x = dσ(v)|y (∗)

for any x, y ∈ σ−1(z) and any z ∈ M1. In this case, the vector field dσ(v) is

well-defined on M1. Given two vector fields u and v which satisfy (*),

we can easily check that the commutator [u, v] also satisfies (*), and,

moreover, dσ([u, v]) = [dσ(u), dσ(v)].
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Frobenius theorem (3)

Step 6: Now we can finish the proof of Frobenius theorem. We need to

produce, locally in M , a basis of commuting vector fields ξi ∈ B. We start

with producing (locally in M) an auxiliary submersion σ, with the fibers

which are complementary to B. To define such a submersion, we put

coordinates locally on M , identifying M with an open subset in Rn, and take

a linear map σ : M −→M1 = RdimB such that dσ : B|x −→ Tσ(x)M1 is an

isomorphism at some x ∈M .

Step 7: Then dσ : B|x −̃→ Tσ(x)M1 is an isomorphism in a neighbour-

hood of x; replacing M by a smaller open set, we may assume that dσ :

B|x −̃→ Tσ(x)M1 is an isomorphism everywhere on M . Let ζ1, ..., ζk be the

coordinate vector fields on M1.

Since dσ : B|x −→ Tσ(x)M1 is an isomorphism, there exist unique vector fields

ξ1, ..., ξk ∈ B ⊂ TM such that dσ(ξi) = ζi. By Step 5, dσ([ξi, ξj]) = [ζi, ζj] = 0.

Since B is involutive, the commutator [ξi, ξj] is a section of B. Now, the

map dσ : B|x −→ Tσ(x)M1 is an isomorphism, and therefore the vanishing of

dσ([ξ1, ξj]) implies [ξ1, ξj] = 0. We have constructed a basis of commuting

vector fields in B and finished the proof of Frobenius theorem.
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Connections

DEFINITION: Recall that a connection on a bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on

the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Curvature

Let ∇ : B −→B ⊗ Λ1M be a connection on a vector bundle B. We extend

∇ to an operator

B
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using the Leibnitz identity ∇(η ⊗ b) = dη ⊗ b+ (−1)η̃η ∧∇b.

REMARK: This operation is well defined, because

∇(η ⊗ fb) = dη ⊗ fb+ (−1)η̃η ∧∇(fb) =

dη ⊗ fb+ (−1)η̃η ∧ df ⊗ b+ fη ∧∇b = d(fη)⊗ b+ fη ∧∇b = ∇(fη ⊗ b)

REMARK: Sometimes Λ2(M)⊗B ∇−→ Λ3(M)⊗B is denoted d∇.

DEFINITION: The operator ∇2 : B −→B ⊗ Λ2(M) is called the curvature

of ∇.

REMARK: The algebra of differential forms with coefficients in EndB

acts on Λ∗M⊗B via η⊗a(η′⊗b) = η∧η′⊗a(b), where a ∈ End(B), η, η′ ∈ Λ∗M ,

and b ∈ B. This is the formula expressing the action of ∇2 on Λ∗M ⊗B.
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Curvature and commutators

CLAIM: Let X,Y ∈ TM be vector fields, (B,∇) a bundle with connection,
and b ∈ B its section. Consider the operator

Θ∗B(X,Y, b) := ∇X∇Y b−∇Y∇Xb−∇[X,Y ]b

Then Θ∗B(X,Y, b) is linear in all three arguments.

Proof. Step 1: The term Θ∗B(X,Y, fb) has 3 components: one which is

C∞-linear in f, one which takes first derivative and one which takes

the second derivative. The first derivative part is

LieY f∇Xb+ LieX f∇Y b− LieY f∇Xb− LieX f∇Y b− Lie[X,Y ] fb = −Lie[X,Y ] fb,

the second derivative part is LieX LieY (f)b− LieY LieX(f)b = Lie[X,Y ] f , they
cancel. Therefore, Θ∗B(X,Y, b) is C∞-linear in b.

Step 2: Since [X, fY ] = LieX fY + f [X,Y ], we have ∇[X,fY ]b = f∇[X,Y ]b +
LieX f∇Y b.

Step 3: The term Θ∗B(X, fY, b) has two components, f-linear and the com-
ponent with first derivatives in f . Step 2 implies that the component with
derivative of first order is LieX f∇Y b− LieX f∇Y b = 0.
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Curvature and commutators (2)

REMARK:

Θ∗B(X,Y, b) := ∇X∇Y b−∇Y∇Xb−∇[X,Y ]b

is another definition of the curvature. The following theorem shows that
it is equivalent to the usual definition.

THEOREM: Consider Θ∗B : TM⊗TM⊗B −→B as a 2-form with coefficients
in End(B). Then Θ∗B = ΘB, where ΘB = ∇2 is the usual curvature.

Proof. Step 1: Since Θ∗B(X,Y ), ΘB(X,Y ) are linear in X,Y , it would suffice
to prove this equality for coordinate vector fields X,Y .

Step 2: Consider the operator iX : ΛiM ⊗ B −→ Λi−1M ⊗ B of convolution
with a vector field X. Writing ∇ = d + A, where A ∈ Λ1M ⊗ EndB, we
obtain ∇X = LieX +A(X), which gives [∇X , iY ] = [LieX , iY ] = 0 when X,Y

are coordinate vector fields.

Step 3:

∇2(b)(X,Y ) = (iXiY − iXiY )∇2(b) = iY∇X∇b− iX∇Y∇b = ∇X∇Y b−∇Y∇Xb.
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Parallel transport along the connection

REMARK: When M = [0, a] is an interval, any bundle B on M is trivial. Let
b1, ..., bn be a basis in B. Then ∇ can be written as

∇d/dt
(∑

fibi
)

=
∑
i

dfi
dt
bi +

∑
fi∇d/dtbi

with the last term linear on f .

THEOREM: Let B be a vector bundle with connection over R. Then for
each x ∈ R and each vector bx ∈ B|x there exists a unique section b ∈ B
such that ∇b = 0, b|x = bx.

Proof: This is existence and uniqueness of solutions of an ODE db
dt+A(b) = 0.

DEFINITION: Let γ : [0,1]−→M be a smooth path in M connecting x and
y, and (B,∇) a vector bundle with connection. Restricting (B,∇) to γ([0,1]),
we obtain a bundle with connection on an interval. Solve an equation ∇(b) = 0
for b ∈ B

∣∣∣γ([0,1]) and initial condition b|x = bx. This process is called parallel

transport along the path via the connection. The vector by := b|y is called
vector obtained by parallel transport of bx along γ.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-

tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be

the corresponding parallel transport along the connection. The holonomy

group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes

all contractible loops instead, Vγ,∇ generates the local holonomy, or the

restricted holonomy group.

REMARK: Let B1 = B⊗n⊗ (B∗)⊗m be a tensor power of B. The connection

on B gives the connection on B1. Since parallel transport is compatible with

the tensor product, the holonomy representation, associated with B1, is

the corresponding tensor power of B|x.

DEFINITION: Let B be a vector bundle, and Ψ a section of its tensor power.

We say that connection ∇ preserves Ψ if ∇(Ψ) = 0. In this case we also

say that the tensor Ψ is parallel with respect to the connection.
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Flat bundles

REMARK: ∇(Ψ) = 0 is equivalent to Ψ being a solution of ∇(Ψ) = 0 on

each path γ. This means that parallel transport preserves Ψ.

We obtained

COROLLARY: A section of the tensor power of B is parallel if and

only if it is holonomy invariant.

DEFINITION: A bundle is flat if its curvature vanishes.

The following theorem will be proven later today.

THEOREM: Let (B,∇) be a vector bundle with connection over a simply

connected manifold. Then B is flat if and only if its holonomy group is

trivial.
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Fiber of a locally free sheaf

DEFINITION: Recall that a vector bundle is a locally free sheaf of modules

over C∞M . A vector bundle is called trivial if it is isomorphic to (C∞M)n.

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules

on M , x ∈ M a point, mx ⊂ C∞M an ideal of x ∈ M in C∞M . Define the

fiber of B in x as a quotient B(M)/mB. A fiber of B is denoted B|x.

REMARK: A fiber of a vector bundle of rank n is an n-dimensional

vector space.

REMARK: Let B = C∞Mn, and b ∈ B|x a point of a fiber, represented by a

germ ϕ ∈ Bx = C∞mM
n, ϕ = (f1, ..., fn). Consider a map Ψ from the set of all

fibers B to M ×Rn, mapping (x, ϕ = (f1, ..., fn)) to (f1(x), ..., fn(x)). Then Ψ

is bijective. Indeed, B|x = Rn.
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Total space of a vector bundle

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules.
Denote the set of all vectors in all fibers of B over all points of M by TotB.
Let U ⊂M be an open subset of M , with B|U a trivial bundle. Using the local
bijection TotB(U) = U × Rn we consider topology on TotB induced by open
subsets in TotB(U) = U×Rn for all open subsets U ⊂M and all trivializations
of B|U . Then TotB is called a total space of a vector bundle B.

CLAIM: The space TotB with this topology is a locally trivial fibration
over M, with fiber Rn.

REMARK: Let B be a vector bundle on M , and ψ ∈ B∗ a section of its dual.
Then ψ defines a function x−→ 〈ψ, x〉 on its total space Tot(B)

π−→ M, linear
on fibers of π. This gives a bijective correspondence between sections of
B∗ and functions on Tot(B) linear on fibers.

This gives the following claim

CLAIM: Let B be a vector bundle and Sym∗B∗ the direct sum of all sym-
metric tensor powers of B∗. Then the ring of sections of Sym∗B∗ is
identified with the ring of all smooth functions on TotB

π−→ M which
are polynomial on fibers of π.
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Polynomial functions on Tot(B)

In Lecture 14, we proved that any derivation of C∞Rn is uniquely determined

by its restriction to polynomials:

CLAIM: Let D be the space of derivations δ : R[x1, ..., xn]−→ C∞Rn. Then

D is the space of derivations of the ring C∞Rn.

The same argument brings the following

CLAIM 1: Let D be the space of derivations δ : Sym∗B∗ −→ C∞(TotB).

Then D is the space of derivations of the ring C∞(TotB).

Proof: Indeed, any derivation which vanishes on fiberwise polynomial func-

tions vanishes everywhere on C∞(TotB).
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Vector fields on Tot(B)

THEOREM: Let (B,∇) be a bundle on M with connection, and X ∈ TM a

vector field. Then there exists a vector field τ∇(X) on Tot(B) mapping

a section u ∈ Sym∗B∗ to ∇Xu.

Proof: Let u, v ∈ Sym∗B∗, and uv ∈ Sym∗B∗ their product. Then ∇x(uv) =

u∇xv + v∇xu because ∇(b1 ⊗ b2) = ∇(b1) ⊗ b2 + b1 ⊗ ∇(b2). Therefore,

τ∇(X)(u) := ∇x(u) is a derivation of the ring of functions on Tot(B) which

are polynomial on fibers. By Claim 1, any such derivation can be uniquely

extended to a vector field on Tot(B).

DEFINITION: Let (B,∇) be a bundle with connection on M . The cor-

responding Ehresmann connection on Tot(B) is the distribution E∇ ⊂
T Tot(B) obtained as τ∇(TM).
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Vector fields on Tot(B) and parallel sections

CLAIM 2: Let (B,∇) be a bundle with connection, and π : Tot(B)−→M

the standard projection, and Tπ Tot(B) = kerDπ is the vertical tangent space

(Lecture 14).

(i) Then T TotB = E∇ ⊕ Tπ Tot(B), where E∇ is the Ehresmann

connection.

(ii) Moreover, a section f of B is parallel if an only if its image

f(M) ⊂ Tot(B) is tangent to E∇.

Proof: The second assertion is clear from the definition: a section b is

tangent to E∇ if it is preserved by all vector fields a = τ∇(X) generating

E∇. In this case Liea(̃b) = 0, where b̃ is a function on Tot(B∗) defined by b.

However, Liea(̃b) = ∇̃X(b) where ∇̃X(b) is a function on Tot(B∗) associated

with ∇X(b). Therefore, Liea(̃b) = 0 ⇔ ∇X(b) = 0.

To prove (i), we notice that Dπ
∣∣∣E∇ : E∇ −→ TM is an isomorphism at every

point of TotB. Indeed, these bundles have the same rank, and for each

τ∇(X) ∈ E∇, this vector field acts on functions pulled back from M as LieX,

hence Dπ
∣∣∣E∇ is injective.
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The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma”) Let {Ui} be a covering of a manifold,

and γ a loop. Then any contractible loop γ is a product of several lasso,

with working part of each inside some Ui.
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Bundles with trivial holonomy

THEOREM: Let (B,∇) be a vector bundle with connection over a simply
connected manifold. Then B is flat if and only if its holonomy group is
trivial.

Proof: Let B be a flat bundle on M , and X,Y ∈ TM commuting vector fields.
Then ∇X : B −→B commutes with ∇Y . Then the Ehresmann connection
bundle E∇ is generated by commuting vector fields τ∇(X), τ∇(Y ), ..., hence
it is involutive. By Frobenius theorem, every point b ∈ Tot(B) is contained
in a leaf of the corresponding foliation, tangent to E∇. By Claim 2, such a
leaf is a parallel section of B. Therefore, the holonomy of ∇ around any
sufficiently small loop is trivial. Since π1(M) = 0, any contractible loop L
can be represented by a composition of lasso with sufficiently small working
part. All of them have trivial holonomy, hence L has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then Tot(B) = M × B|x
because each point is contained in a unique parallel section, hence the bundle
E∇ is involutive. Then [∇X ,∇Y ] = 0 for any commuting X,Y ∈ TM , and the
curvature vanishes.

Corollary 1: Let B be a flat vector bundle on a simply connected, connected
manifold M . Then for each x ∈M and each b ∈ B|x, there exists a unique
parallel section of B passing through b.
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Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is
naturally equivalent to the category of vector bundles on M equipped
with flat connection.
Proof. Step 1: Consider a constant sheaf RM on M . This is a sheaf of
rings, and any locally constant sheaf is a sheaf of RM-modules.

Let V be a locally constant sheaf, and B := V ⊗RM C∞M . Since V is locally
constant, the sheaf B is a locally free sheaf of C∞-modules, that is, a vector
bundle. Let U ⊂ M be an open set such that V|U is constant. If v1, ..., vn is
a basis in V(U), all sections of B(U) have a form

∑n
i=1 fivi, where fi ∈ C∞U .

Define the connection ∇ by ∇
(∑n

i=1 fivi
)

=
∑
dfi⊗ vi. This connection is flat

because d2 = 0. It is independent from the choice of vi because vi is defined
canonically up to a matrix with constant coefficients. We have constructed
a functor from locally constant sheaves to flat vector bundles.

Step 2: Let now (B,∇) be a flat bundle over M . The functor to locally
constant sheaves takes U ⊂ M and maps it to the space of parallel sections
of B over U . This defines a sheaf B(U). For any simply connected U , and
any x ∈ M , the space B(U) is identified with a vector space B|x (Corollary
1), hence B(U) is locally constant. Clearly, B = B ⊗RM C∞M , hence this
construction gives an inverse functor to V 7→ V⊗RM C∞M.
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