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Connections

DEFINITION: Recall that a connection on a bundle B is an operator ∇ :

B −→B ⊗ Λ1M satisfying ∇(fb) = b⊗ df + f∇(b), where f −→ df is de Rham

differential. When X is a vector field, we denote by ∇X(b) ∈ B the term

〈∇(b), X〉.

REMARK: A connection ∇ on B gives a connection B∗ ∇∗−→ Λ1M ⊗ B∗ on

the dual bundle, by the formula

d(〈b, β〉) = 〈∇b, β〉+ 〈b,∇∗β〉

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle B1 := B∗⊗B∗⊗ ...⊗B∗⊗B ⊗B ⊗ ...⊗B a

connection on B defines a connection on B1 using the Leibniz formula:

∇(b1 ⊗ b2) = ∇(b1)⊗ b2 + b1 ⊗∇(b2).
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Curvature

Let ∇ : B −→B ⊗ Λ1M be a connection on a vector bundle B. We extend

∇ to an operator

B
∇−→ Λ1(M)⊗B ∇−→ Λ2(M)⊗B ∇−→ Λ3(M)⊗B ∇−→ ...

using the Leibnitz identity ∇(η ⊗ b) = dη ⊗ b+ (−1)η̃η ∧∇b.

REMARK: This operation is well defined, because

∇(η ⊗ fb) = dη ⊗ fb+ (−1)η̃η ∧∇(fb) =

dη ⊗ fb+ (−1)η̃η ∧ df ⊗ b+ fη ∧∇b = d(fη)⊗ b+ fη ∧∇b = ∇(fη ⊗ b)

REMARK: Sometimes Λ2(M)⊗B ∇−→ Λ3(M)⊗B is denoted d∇.

DEFINITION: The operator ∇2 : B −→B ⊗ Λ2(M) is called the curvature

of ∇.

REMARK: The algebra of differential forms with coefficients in EndB

acts on Λ∗M⊗B via η⊗a(η′⊗b) = η∧η′⊗a(b), where a ∈ End(B), η, η′ ∈ Λ∗M ,

and b ∈ B. This is the formula expressing the action of ∇2 on Λ∗M ⊗B.
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Curvature and commutators

CLAIM: Let X,Y ∈ TM be vector fields, (B,∇) a bundle with connection,
and b ∈ B its section. Consider the operator

Θ∗B(X,Y, b) := ∇X∇Y b−∇Y∇Xb−∇[X,Y ]b

Then Θ∗B(X,Y, b) is linear in all three arguments.

Proof. Step 1: The term Θ∗B(X,Y, fb) has 3 components: one which is

C∞-linear in f, one which takes first derivative and one which takes

the second derivative. The first derivative part is

LieY f∇Xb+ LieX f∇Y b− LieY f∇Xb− LieX f∇Y b− Lie[X,Y ] fb = −Lie[X,Y ] fb,

the second derivative part is LieX LieY (f)b− LieY LieX(f)b = Lie[X,Y ] f , they
cancel. Therefore, Θ∗B(X,Y, b) is C∞-linear in b.

Step 2: Since [X, fY ] = LieX fY + f [X,Y ], we have ∇[X,fY ]b = f∇[X,Y ]b +
LieX f∇Y b.

Step 3: The term Θ∗B(X, fY, b) has two components, f-linear and the com-
ponent with first derivatives in f . Step 2 implies that the component with
derivative of first order is LieX f∇Y b− LieX f∇Y b = 0.
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Curvature and commutators (2)

REMARK:

Θ∗B(X,Y, b) := ∇X∇Y b−∇Y∇Xb−∇[X,Y ]b

is another definition of the curvature. The following theorem shows that
it is equivalent to the usual definition.

THEOREM: Consider Θ∗B : TM⊗TM⊗B −→B as a 2-form with coefficients
in End(B). Then Θ∗B = ΘB, where ΘB = ∇2 is the usual curvature.

Proof. Step 1: Since Θ∗B(X,Y ), ΘB(X,Y ) are linear in X,Y , it would suffice
to prove this equality for coordinate vector fields X,Y .

Step 2: Consider the operator iX : ΛiM ⊗ B −→ Λi−1M ⊗ B of convolution
with a vector field X. Writing ∇ = d + A, where A ∈ Λ1M ⊗ EndB, we
obtain ∇X = LieX +A(X), which gives [∇X , iY ] = [LieX , iY ] = 0 when X,Y

are coordinate vector fields.

Step 3:

∇2(b)(X,Y ) = (iXiY − iXiY )∇2(b) = iY∇X∇b− iX∇Y∇b = ∇X∇Y b−∇Y∇Xb.
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Parallel transport along the connection

REMARK: When M = [0, a] is an interval, any bundle B on M is trivial. Let
b1, ..., bn be a basis in B. Then ∇ can be written as

∇d/dt
(∑

fibi
)

=
∑
i

dfi
dt
bi +

∑
fi∇d/dtbi

with the last term linear on f .

THEOREM: Let B be a vector bundle with connection over R. Then for
each x ∈ R and each vector bx ∈ B|x there exists a unique section b ∈ B
such that ∇b = 0, b|x = bx.

Proof: This is existence and uniqueness of solutions of an ODE db
dt+A(b) = 0.

DEFINITION: Let γ : [0,1]−→M be a smooth path in M connecting x and
y, and (B,∇) a vector bundle with connection. Restricting (B,∇) to γ([0,1]),
we obtain a bundle with connection on an interval. Solve an equation ∇(b) = 0
for b ∈ B

∣∣∣γ([0,1]) and initial condition b|x = bx. This process is called parallel

transport along the path via the connection. The vector by := b|y is called
vector obtained by parallel transport of bx along γ.
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Holonomy group

DEFINITION: (Cartan, 1923) Let (B,∇) be a vector bundle with connec-

tion over M . For each loop γ based in x ∈ M , let Vγ,∇ : B|x −→B|x be

the corresponding parallel transport along the connection. The holonomy

group of (B,∇) is a group generated by Vγ,∇, for all loops γ. If one takes

all contractible loops instead, Vγ,∇ generates the local holonomy, or the

restricted holonomy group.

REMARK: Let B1 = B⊗n⊗ (B∗)⊗m be a tensor power of B. The connection

on B gives the connection on B1. Since parallel transport is compatible with

the tensor product, the holonomy representation, associated with B1, is

the corresponding tensor power of B|x.

DEFINITION: Let B be a vector bundle, and Ψ a section of its tensor power.

We say that connection ∇ preserves Ψ if ∇(Ψ) = 0. In this case we also

say that the tensor Ψ is parallel with respect to the connection.
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Flat bundles

REMARK: ∇(Ψ) = 0 is equivalent to Ψ being a solution of ∇(Ψ) = 0 on

each path γ. This means that parallel transport preserves Ψ.

We obtained

COROLLARY: A section of the tensor power of B is parallel if and

only if it is holonomy invariant.

DEFINITION: A bundle is flat if its curvature vanishes.

The following theorem will be proven later today.

THEOREM: Let (B,∇) be a vector bundle with connection over a simply

connected manifold. Then B is flat if and only if its holonomy group is

trivial.
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Fiber of a locally free sheaf

DEFINITION: Recall that a vector bundle is a locally free sheaf of modules

over C∞M . A vector bundle is called trivial if it is isomorphic to (C∞M)n.

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules

on M , x ∈ M a point, mx ⊂ C∞M an ideal of x ∈ M in C∞M . Define the

fiber of B in x as a quotient B(M)/mB. A fiber of B is denoted B|x.

REMARK: A fiber of a vector bundle of rank n is an n-dimensional

vector space.

REMARK: Let B = C∞Mn, and b ∈ B|x a point of a fiber, represented by a

germ ϕ ∈ Bx = C∞mM
n, ϕ = (f1, ..., fn). Consider a map Ψ from the set of all

fibers B to M ×Rn, mapping (x, ϕ = (f1, ..., fn)) to (f1(x), ..., fn(x)). Then Ψ

is bijective. Indeed, B|x = Rn.
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Total space of a vector bundle

DEFINITION: Let B be an n-dimensional locally free sheaf of C∞-modules.
Denote the set of all vectors in all fibers of B over all points of M by TotB.
Let U ⊂M be an open subset of M , with B|U a trivial bundle. Using the local
bijection TotB(U) = U × Rn we consider topology on TotB induced by open
subsets in TotB(U) = U×Rn for all open subsets U ⊂M and all trivializations
of B|U . Then TotB is called a total space of a vector bundle B.

CLAIM: The space TotB with this topology is a locally trivial fibration
over M, with fiber Rn.

REMARK: Let B be a vector bundle on M , and ψ ∈ B∗ a section of its dual.
Then ψ defines a function x−→ 〈ψ, x〉 on its total space Tot(B)

π−→ M, linear
on fibers of π. This gives a bijective correspondence between sections of
B∗ and functions on Tot(B) linear on fibers.

This gives the following claim

CLAIM: Let B be a vector bundle and Sym∗B∗ the direct sum of all sym-
metric tensor powers of B∗. Then the ring of sections of Sym∗B∗ is
identified with the ring of all smooth functions on TotB

π−→ M which
are polynomial on fibers of π.
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Ehresmann connections

DEFINITION: Let π : M −→ Z be a smooth submersion, with TπM the

bundle of vertical tangent vectors (vectors tangent to the fibers of π).

An Ehresmann connection on π is a sub-bundle ThorM ⊂ TM such that

TM = ThorM ⊕ TπM . The parallel transport along the path γ : [0, a]−→ Z

associated with the Ehresmann connection is a diffeomorphism

Vt : π−1(γ(0))−→ π−1(γ(t))

smoothly depending on t ∈ [0, a] and satisfying dVt
dt ∈ ThorM .

CLAIM: Let π : M −→ Z be a smooth fibration with compact fibers. Then

the parallel transport, associated with the Ehresmann connection, al-

ways exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.
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Horizontal lifting

DEFINITION: Let π : M −→ Z be a smooth submersion, and TM = ThorM⊕
TπM and Ehresmann connection. Given a vector field X ∈ TZ, it horizontal
lifting is a section Xhor ∈ ThorM such that dπ takes Xhor|m to X|π(m) for all
m imM .

CLAIM: For any vector field X ∈ TZ, its horizontal lifting exists and is
unique.
Proof: Clear.

EXERCISE: Prove that parallel transport along a horizontal lifting mapes
fibers of π to fibers.

COROLLARY: (“Ehresmann’s fibration theorem”)
Let π : M −→M ′ be a smooth submersion of compact manifolds. Then π is
a locally trivial fibration.

Proof: Fix an Ehresmann connection; it always exists, if we fix a Riemannian
metric and write ThorM := (TπM)⊥. Choose a coordinate system in M ′, and
let ~r :=

∑
xi

d
dxi

be the radial vector field. Then the parallel transport e−t~r

along −~r as t → ∞ defines a diffeomorphism between any fiber of π and the
fiber over zero; this trivializes the fibration in a neighbourhood of zero.
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Polynomial functions on Tot(B)

In Lecture 14, we proved that any derivation of C∞Rn is uniquely determined

by its restriction to polynomials:

CLAIM: Let D be the space of derivations δ : R[x1, ..., xn]−→ C∞Rn. Then

D is the space of derivations of the ring C∞Rn.

The same argument brings the following

CLAIM 1: Let D be the space of derivations δ : Sym∗B∗ −→ C∞(TotB).

Then D is the space of derivations of the ring C∞(TotB).

Proof: Indeed, any derivation which vanishes on fiberwise polynomial func-

tions vanishes everywhere on C∞(TotB).
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Vector fields on Tot(B)

DEFINITION: Let π : M −→ Z be a smooth submersion, and X ∈ TM a

vector field. Its lifting is a vector field X1 ∈ TM such that dπ(X1) = X.

EXERCISE: Prove that X1 is a lifting of X if and only if for any function

f ∈ C∞Z, we have π∗(LieX f) = LieX(π∗f).

THEOREM: Let (B,∇) be a bundle on M with connection, and X ∈ TM a

vector field. Then there exists a vector field τ∇(X) on Tot(B) mapping

a section u ∈ Sym∗B∗ to ∇Xu.

Proof: Let u, v ∈ Sym∗B∗, and uv ∈ Sym∗B∗ their product. Then ∇x(uv) =

u∇xv + v∇xu because ∇(b1 ⊗ b2) = ∇(b1) ⊗ b2 + b1 ⊗ ∇(b2). Therefore,

τ∇(X)(u) := ∇x(u) is a derivation of the ring of functions on Tot(B) which

are polynomial on fibers. By Claim 1, any such derivation can be uniquely

extended to a vector field on Tot(B). Moreover, it defines a lifting.

DEFINITION: Let (B,∇) be a bundle with connection on M . The cor-

responding Ehresmann connection on Tot(B) is the distribution E∇ ⊂
T Tot(B) obtained as τ∇(TM).
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Vector fields on Tot(B) and parallel sections

CLAIM 2: Let (B,∇) be a bundle with connection, and π : Tot(B)−→M

the standard projection, and Tπ Tot(B) = kerDπ is the vertical tangent space

(Lecture 14).

(i) Then T TotB = E∇⊕Tπ Tot(B), where E∇ is constructed as above.

(ii) Moreover, a section f of B is parallel if an only if its image

f(M) ⊂ Tot(B) is tangent to E∇.

Proof: The second assertion is clear from the definition: a section b is

tangent to E∇ if it is preserved by all vector fields a = τ∇(X) generating

E∇. In this case Liea(̃b) = 0, where b̃ is a function on Tot(B∗) defined by b.

However, Liea(̃b) = ∇̃X(b) where ∇̃X(b) is a function on Tot(B∗) associated

with ∇X(b). Therefore, Liea(̃b) = 0 ⇔ ∇X(b) = 0.

To prove (i), we notice that Dπ
∣∣∣E∇ : E∇ −→ TM is an isomorphism at every

point of TotB. Indeed, these bundles have the same rank, and for each

τ∇(X) ∈ E∇, this vector field acts on functions pulled back from M as LieX,

hence Dπ
∣∣∣E∇ is injective.
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The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma”) Let {Ui} be a covering of a manifold,

and γ a loop. Then any contractible loop γ is a product of several lasso,

with working part of each inside some Ui.
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Bundles with trivial holonomy

THEOREM: Let (B,∇) be a vector bundle with connection over a simply
connected manifold. Then B is flat if and only if its holonomy group is
trivial.

Proof: Let B be a flat bundle on M , and X,Y ∈ TM commuting vector fields.
Then ∇X : B −→B commutes with ∇Y . Then the Ehresmann connection
bundle E∇ is generated by commuting vector fields τ∇(X), τ∇(Y ), ..., hence
it is involutive. By Frobenius theorem, every point b ∈ Tot(B) is contained
in a leaf of the corresponding foliation, tangent to E∇. By Claim 2, such a
leaf is a parallel section of B. Therefore, the holonomy of ∇ around any
sufficiently small loop is trivial. Since π1(M) = 0, any contractible loop L
can be represented by a composition of lasso with sufficiently small working
part. All of them have trivial holonomy, hence L has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then Tot(B) = M × B|x
because each point is contained in a unique parallel section, hence the bundle
E∇ is involutive. Then [∇X ,∇Y ] = 0 for any commuting X,Y ∈ TM , and the
curvature vanishes.

Corollary 1: Let B be a flat vector bundle on a simply connected, connected
manifold M . Then for each x ∈M and each b ∈ B|x, there exists a unique
parallel section of B passing through b.
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Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is
naturally equivalent to the category of vector bundles on M equipped
with flat connection.
Proof. Step 1: Consider a constant sheaf RM on M . This is a sheaf of
rings, and any locally constant sheaf is a sheaf of RM-modules.

Let V be a locally constant sheaf, and B := V ⊗RM C∞M . Since V is locally
constant, the sheaf B is a locally free sheaf of C∞-modules, that is, a vector
bundle. Let U ⊂ M be an open set such that V|U is constant. If v1, ..., vn is
a basis in V(U), all sections of B(U) have a form

∑n
i=1 fivi, where fi ∈ C∞U .

Define the connection ∇ by ∇
(∑n

i=1 fivi
)

=
∑
dfi⊗ vi. This connection is flat

because d2 = 0. It is independent from the choice of vi because vi is defined
canonically up to a matrix with constant coefficients. We have constructed
a functor from locally constant sheaves to flat vector bundles.

Step 2: Let now (B,∇) be a flat bundle over M . The functor to locally
constant sheaves takes U ⊂ M and maps it to the space of parallel sections
of B over U . This defines a sheaf B(U). For any simply connected U , and
any x ∈ M , the space B(U) is identified with a vector space B|x (Corollary
1), hence B(U) is locally constant. Clearly, B = B ⊗RM C∞M , hence this
construction gives an inverse functor to V 7→ V⊗RM C∞M.
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