Lecture 19: Riemann-Hilbert correspondence (flat bundles and local systems)

Misha Verbitsky

IMPA, sala 236, 17:00
May 22, 2024

Connections

DEFINITION: Recall that a connection on a bundle B is an operator ∇ : $B \longrightarrow B \otimes \wedge^{1} M$ satisfying $\nabla(f b)=b \otimes d f+f \nabla(b)$, where $f \longrightarrow d f$ is de Rham differential. When X is a vector field, we denote by $\nabla_{X}(b) \in B$ the term $\langle\nabla(b), X\rangle$.

REMARK: A connection ∇ on B gives a connection $B^{*} \xrightarrow{\nabla^{*}} \wedge^{1} M \otimes B^{*}$ on the dual bundle, by the formula

$$
d(\langle b, \beta\rangle)=\langle\nabla b, \beta\rangle+\left\langle b, \nabla^{*} \beta\right\rangle
$$

These connections are usually denoted by the same letter ∇.

REMARK: For any tensor bundle $\mathcal{B}_{1}:=B^{*} \otimes B^{*} \otimes \ldots \otimes B^{*} \otimes B \otimes B \otimes \ldots \otimes B$ a connection on B defines a connection on \mathcal{B}_{1} using the Leibniz formula:

$$
\nabla\left(b_{1} \otimes b_{2}\right)=\nabla\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \nabla\left(b_{2}\right)
$$

Curvature

Let $\nabla: B \longrightarrow B \otimes \wedge^{1} M$ be a connection on a vector bundle B. We extend ∇ to an operator

$$
B \xrightarrow{\nabla} \wedge^{1}(M) \otimes B \xrightarrow{\nabla} \wedge^{2}(M) \otimes B \xrightarrow{\nabla} \wedge^{3}(M) \otimes B \xrightarrow{\nabla} \ldots
$$

using the Leibnitz identity $\nabla(\eta \otimes b)=d \eta \otimes b+(-1)^{\tilde{\eta}} \eta \wedge \nabla b$.

REMARK: This operation is well defined, because

$$
\begin{aligned}
& \nabla(\eta \otimes f b)=d \eta \otimes f b+(-1)^{\tilde{\eta}} \eta \wedge \nabla(f b)= \\
& \quad d \eta \otimes f b+(-1)^{\tilde{\eta}} \eta \wedge d f \otimes b+f \eta \wedge \nabla b=d(f \eta) \otimes b+f \eta \wedge \nabla b=\nabla(f \eta \otimes b)
\end{aligned}
$$

REMARK: Sometimes $\Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B$ is denoted d_{∇}.
DEFINITION: The operator $\nabla^{2}: B \longrightarrow B \otimes \wedge^{2}(M)$ is called the curvature of ∇.

REMARK: The algebra of differential forms with coefficients in End B acts on $\wedge^{*} M \otimes B$ via $\eta \otimes a\left(\eta^{\prime} \otimes b\right)=\eta \wedge \eta^{\prime} \otimes a(b)$, where $a \in \operatorname{End}(B), \eta, \eta^{\prime} \in \wedge^{*} M$, and $b \in B$. This is the formula expressing the action of ∇^{2} on $\Lambda^{*} M \otimes B$.

Curvature and commutators

CLAIM: Let $X, Y \in T M$ be vector fields, (B, ∇) a bundle with connection, and $b \in B$ its section. Consider the operator

$$
\Theta_{B}^{*}(X, Y, b):=\nabla_{X} \nabla_{Y} b-\nabla_{Y} \nabla_{X} b-\nabla_{[X, Y]} b
$$

Then $\Theta_{B}^{*}(X, Y, b)$ is linear in all three arguments.
Proof. Step 1: The term $\Theta_{B}^{*}(X, Y, f b)$ has 3 components: one which is C^{∞}-linear in f, one which takes first derivative and one which takes the second derivative. The first derivative part is
$\operatorname{Lie}_{Y} f \nabla_{X} b+\operatorname{Lie}_{X} f \nabla_{Y} b-\operatorname{Lie}_{Y} f \nabla_{X} b-\operatorname{Lie}_{X} f \nabla_{Y} b-\operatorname{Lie}_{[X, Y]} f b=-\operatorname{Lie}_{[X, Y]} f b$, the second derivative part is $\operatorname{Lie}_{X} \operatorname{Lie}_{Y}(f) b-\operatorname{Lie}_{Y} \operatorname{Lie}_{X}(f) b=\operatorname{Lie}_{[X, Y]} f$, they cancel. Therefore, $\Theta_{B}^{*}(X, Y, b)$ is C^{∞}-linear in b.

Step 2: Since $[X, f Y]=\operatorname{Lie}_{X} f Y+f[X, Y]$, we have $\nabla_{[X, f Y]} b=f \nabla_{[X, Y]} b+$ Lie $_{X} f \nabla_{Y} b$.

Step 3: The term $\Theta_{B}^{*}(X, f Y, b)$ has two components, f-linear and the component with first derivatives in f. Step 2 implies that the component with derivative of first order is $\mathrm{Lie}_{X} f \nabla_{Y} b-\mathrm{Lie}_{X} f \nabla_{Y} b=0$.

Curvature and commutators (2)

REMARK:

$$
\Theta_{B}^{*}(X, Y, b):=\nabla_{X} \nabla_{Y} b-\nabla_{Y} \nabla_{X} b-\nabla_{[X, Y]} b
$$

is another definition of the curvature. The following theorem shows that it is equivalent to the usual definition.

THEOREM: Consider $\Theta_{B}^{*}: T M \otimes T M \otimes B \longrightarrow B$ as a 2-form with coefficients in End (B). Then $\Theta_{B}^{*}=\Theta_{B}$, where $\Theta_{B}=\nabla^{2}$ is the usual curvature.

Proof. Step 1: Since $\Theta_{B}^{*}(X, Y), \Theta_{B}(X, Y)$ are linear in X, Y, it would suffice to prove this equality for coordinate vector fields X, Y.

Step 2: Consider the operator $i_{X}: \Lambda^{i} M \otimes B \longrightarrow \Lambda^{i-1} M \otimes B$ of convolution with a vector field X. Writing $\nabla=d+A$, where $A \in \wedge^{1} M \otimes$ End B, we obtain $\nabla_{X}=$ Lie $_{X}+A(X)$, which gives $\left[\nabla_{X}, i_{Y}\right]=\left[\operatorname{Lie}_{X}, i_{Y}\right]=0$ when X, Y are coordinate vector fields.

Step 3:
$\nabla^{2}(b)(X, Y)=\left(i_{X} i_{Y}-i_{X} i_{Y}\right) \nabla^{2}(b)=i_{Y} \nabla_{X} \nabla b-i_{X} \nabla_{Y} \nabla b=\nabla_{X} \nabla_{Y} b-\nabla_{Y} \nabla_{X} b$.

Parallel transport along the connection

REMARK: When $M=[0, a]$ is an interval, any bundle B on M is trivial. Let b_{1}, \ldots, b_{n} be a basis in B. Then ∇ can be written as

$$
\nabla_{d / d t}\left(\sum f_{i} b_{i}\right)=\sum_{i} \frac{d f_{i}}{d t} b_{i}+\sum f_{i} \nabla_{d / d t} b_{i}
$$

with the last term linear on f.

THEOREM: Let B be a vector bundle with connection over \mathbb{R}. Then for each $x \in \mathbb{R}$ and each vector $\left.b_{x} \in B\right|_{x}$ there exists a unique section $b \in B$ such that $\nabla b=0,\left.b\right|_{x}=b_{x}$.

Proof: This is existence and uniqueness of solutions of an ODE $\frac{d b}{d t}+A(b)=0$.

DEFINITION: Let $\gamma:[0,1] \longrightarrow M$ be a smooth path in M connecting x and y, and (B, ∇) a vector bundle with connection. Restricting (B, ∇) to $\gamma([0,1])$, we obtain a bundle with connection on an interval. Solve an equation $\nabla(b)=0$ for $\left.b \in B\right|_{\gamma([0,1])}$ and initial condition $\left.b\right|_{x}=b_{x}$. This process is called parallel transport along the path via the connection. The vector $b_{y}:=\left.b\right|_{y}$ is called vector obtained by parallel transport of b_{x} along γ.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma, \nabla}:\left.\left.B\right|_{x} \longrightarrow B\right|_{x}$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma, \nabla}$, for all loops γ. If one takes all contractible loops instead, $V_{\gamma, \nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: Let $B_{1}=B^{\otimes n} \otimes\left(B^{*}\right)^{\otimes m}$ be a tensor power of B. The connection on B gives the connection on B_{1}. Since parallel transport is compatible with the tensor product, the holonomy representation, associated with B_{1}, is the corresponding tensor power of $\left.B\right|_{x}$.

DEFINITION: Let B be a vector bundle, and Ψ a section of its tensor power. We say that connection ∇ preserves Ψ if $\nabla(\Psi)=0$. In this case we also say that the tensor Ψ is parallel with respect to the connection.

Flat bundles

REMARK: $\nabla(\Psi)=0$ is equivalent to Ψ being a solution of $\nabla(\Psi)=0$ on each path γ. This means that parallel transport preserves ψ.

We obtained

COROLLARY: A section of the tensor power of B is parallel if and only if it is holonomy invariant.

DEFINITION: A bundle is flat if its curvature vanishes.

The following theorem will be proven later today.

THEOREM: Let (B, ∇) be a vector bundle with connection over a simply connected manifold. Then B is flat if and only if its holonomy group is trivial.

Fiber of a locally free sheaf

DEFINITION: Recall that a vector bundle is a locally free sheaf of modules over $C^{\infty} M$. A vector bundle is called trivial if it is isomorphic to $\left(C^{\infty} M\right)^{n}$.

DEFINITION: Let \mathcal{B} be an n-dimensional locally free sheaf of C^{∞}-modules on $M, x \in M$ a point, $\mathfrak{m}_{x} \subset C^{\infty} M$ an ideal of $x \in M$ in $C^{\infty} M$. Define the fiber of \mathcal{B} in x as a quotient $\mathcal{B}(M) / \mathfrak{m B}$. A fiber of \mathcal{B} is denoted $\left.\mathcal{B}\right|_{x}$.

REMARK: A fiber of a vector bundle of rank n is an n-dimensional vector space.

REMARK: Let $\mathcal{B}=C^{\infty} M^{n}$, and $\left.b \in \mathcal{B}\right|_{x}$ a point of a fiber, represented by a germ $\varphi \in \mathcal{B}_{x}=C_{m}^{\infty} M^{n}, \varphi=\left(f_{1}, \ldots, f_{n}\right)$. Consider a map ψ from the set of all fibers \mathcal{B} to $M \times \mathbb{R}^{n}$, mapping $\left(x, \varphi=\left(f_{1}, \ldots, f_{n}\right)\right.$) to $\left(f_{1}(x), \ldots, f_{n}(x)\right)$. Then ψ is bijective. Indeed, $\left.\mathcal{B}\right|_{x}=\mathbb{R}^{n}$.

Total space of a vector bundle

DEFINITION: Let \mathcal{B} be an n-dimensional locally free sheaf of C^{∞}-modules. Denote the set of all vectors in all fibers of \mathcal{B} over all points of M by Tot \mathcal{B}. Let $U \subset M$ be an open subset of M, with $\left.\mathcal{B}\right|_{U}$ a trivial bundle. Using the local bijection Tot $\mathcal{B}(U)=U \times \mathbb{R}^{n}$ we consider topology on Tot \mathcal{B} induced by open subsets in $\operatorname{Tot} \mathcal{B}(U)=U \times \mathbb{R}^{n}$ for all open subsets $U \subset M$ and all trivializations of $\left.\mathcal{B}\right|_{U}$. Then Tot \mathcal{B} is called a total space of a vector bundle \mathcal{B}.

CLAIM: The space $\operatorname{Tot} \mathcal{B}$ with this topology is a locally trivial fibration over M, with fiber \mathbb{R}^{n}.

REMARK: Let B be a vector bundle on M, and $\psi \in B^{*}$ a section of its dual. Then ψ defines a function $x \longrightarrow\langle\psi, x\rangle$ on its total space $\operatorname{Tot}(B) \xrightarrow{\pi} M$, linear on fibers of π. This gives a bijective correspondence between sections of B^{*} and functions on $\operatorname{Tot}(B)$ linear on fibers.

This gives the following claim

CLAIM: Let B be a vector bundle and Sym* B^{*} the direct sum of all symmetric tensor powers of B^{*}. Then the ring of sections of sym* B^{*} is identified with the ring of all smooth functions on Tot $B \xrightarrow{\pi} M$ which are polynomial on fibers of π.

Ehresmann connections

DEFINITION: Let $\pi: M \longrightarrow Z$ be a smooth submersion, with $T_{\pi} M$ the bundle of vertical tangent vectors (vectors tangent to the fibers of π). An Ehresmann connection on π is a sub-bundle $T_{\text {hor }} M \subset T M$ such that $T M=T_{\text {hor }} M \oplus T_{\pi} M$. The parallel transport along the path $\gamma:[0, a] \longrightarrow Z$ associated with the Ehresmann connection is a diffeomorphism

$$
V_{t}: \pi^{-1}(\gamma(0)) \longrightarrow \pi^{-1}(\gamma(t))
$$

smoothly depending on $t \in[0, a]$ and satisfying $\frac{d V_{t}}{d t} \in T_{\text {hor }} M$.
CLAIM: Let $\pi: M \longrightarrow Z$ be a smooth fibration with compact fibers. Then the parallel transport, associated with the Ehresmann connection, always exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.

Horizontal lifting

DEFINITION: Let $\pi: M \longrightarrow Z$ be a smooth submersion, and $T M=T_{\text {hor }} M \oplus$ $T_{\pi} M$ and Ehresmann connection. Given a vector field $X \in T Z$, it horizontal lifting is a section $X_{\text {hor }} \in T_{\text {hor }} M$ such that $d \pi$ takes $\left.X_{\text {hor }}\right|_{m}$ to $\left.X\right|_{\pi(m)}$ for all $m \mathrm{im} M$.

CLAIM: For any vector field $X \in T Z$, its horizontal lifting exists and is unique.
Proof: Clear.
EXERCISE: Prove that parallel transport along a horizontal lifting mapes fibers of π to fibers.

COROLLARY: ("Ehresmann's fibration theorem")
Let $\pi: M \longrightarrow M^{\prime}$ be a smooth submersion of compact manifolds. Then π is a locally trivial fibration.

Proof: Fix an Ehresmann connection; it always exists, if we fix a Riemannian metric and write $T_{\text {hor }} M:=\left(T_{\pi} M\right)^{\perp}$. Choose a coordinate system in M^{\prime}, and let $\vec{r}:=\sum x_{i} \frac{d}{d x_{i}}$ be the radial vector field. Then the parallel transport $e^{-t \vec{r}}$ along $-\vec{r}$ as $t \rightarrow \infty$ defines a diffeomorphism between any fiber of π and the fiber over zero; this trivializes the fibration in a neighbourhood of zero.

Polynomial functions on $\operatorname{Tot}(B)$
In Lecture 14 , we proved that any derivation of $\mathbb{C}^{\infty} \mathbb{R}^{n}$ is uniquely determined by its restriction to polynomials:

CLAIM: Let D be the space of derivations $\delta: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \longrightarrow \mathbb{C}^{\infty} \mathbb{R}^{n}$. Then D is the space of derivations of the ring $\mathbb{C}^{\infty} \mathbb{R}^{n}$.

The same argument brings the following

CLAIM 1: Let D be the space of derivations $\delta: \operatorname{Sym}^{*} B^{*} \longrightarrow \mathbb{C}^{\infty}(\operatorname{Tot} B)$. Then D is the space of derivations of the ring $\mathbb{C}^{\infty}(\operatorname{Tot} B)$.

Proof: Indeed, any derivation which vanishes on fiberwise polynomial functions vanishes everywhere on $\mathbb{C}^{\infty}(\operatorname{Tot} B)$.

Vector fields on $\operatorname{Tot}(B)$

DEFINITION: Let $\pi: M \longrightarrow Z$ be a smooth submersion, and $X \in T M$ a vector field. Its lifting is a vector field $X_{1} \in T M$ such that $d \pi\left(X_{1}\right)=X$.

EXERCISE: Prove that X_{1} is a lifting of X if and only if for any function $f \in C^{\infty} Z$, we have $\pi^{*}\left(\operatorname{Lie}_{X} f\right)=\operatorname{Lie}_{X}\left(\pi^{*} f\right)$.

THEOREM: Let (B, ∇) be a bundle on M with connection, and $X \in T M$ a vector field. Then there exists a vector field $\tau_{\nabla}(X)$ on $\operatorname{Tot}(B)$ mapping a section $u \in$ Sym* * to $\nabla_{X} u$.

Proof: Let $u, v \in \operatorname{Sym}^{*} B^{*}$, and $u v \in \operatorname{Sym}^{*} B^{*}$ their product. Then $\nabla_{x}(u v)=$ $u \nabla_{x} v+v \nabla_{x} u$ because $\nabla\left(b_{1} \otimes b_{2}\right)=\nabla\left(b_{1}\right) \otimes b_{2}+b_{1} \otimes \nabla\left(b_{2}\right)$. Therefore, $\tau_{\nabla}(X)(u):=\nabla_{x}(u)$ is a derivation of the ring of functions on $\operatorname{Tot}(B)$ which are polynomial on fibers. By Claim 1, any such derivation can be uniquely extended to a vector field on $\operatorname{Tot}(B)$. Moreover, it defines a lifting.

DEFINITION: Let (B, ∇) be a bundle with connection on M. The corresponding Ehresmann connection on $\operatorname{Tot}(B)$ is the distribution $E_{\nabla} \subset$ $T \operatorname{Tot}(B)$ obtained as $\tau_{\nabla}(T M)$.

Vector fields on $\operatorname{Tot}(B)$ and parallel sections

CLAIM 2: Let (B, ∇) be a bundle with connection, and $\pi: \operatorname{Tot}(B) \longrightarrow M$ the standard projection, and $T_{\pi} \operatorname{Tot}(B)=\operatorname{ker} D \pi$ is the vertical tangent space (Lecture 14).
(i) Then T Tot $B=E_{\nabla} \oplus T_{\pi} \operatorname{Tot}(B)$, where E_{∇} is constructed as above.
(ii) Moreover, a section f of B is parallel if an only if its image $f(M) \subset \operatorname{Tot}(B)$ is tangent to E_{∇}.

Proof: The second assertion is clear from the definition: a section b is tangent to E_{∇} if it is preserved by all vector fields $a=\tau_{\nabla}(X)$ generating E_{∇}. In this case $\operatorname{Lie}_{a}(\tilde{b})=0$, where \tilde{b} is a function on $\operatorname{Tot}\left(B^{*}\right)$ defined by b. However, $\operatorname{Lie}_{a}(\tilde{b})=\widehat{\nabla_{X}(b)}$ where $\widehat{\nabla_{X}(b)}$ is a function on $\operatorname{Tot}\left(B^{*}\right)$ associated with $\nabla_{X}(b)$. Therefore, $\operatorname{Lie}_{a}(\widetilde{b})=0 \Leftrightarrow \nabla_{X}(b)=0$.

To prove (i), we notice that $\left.D \pi\right|_{E_{\nabla}}: E_{\nabla} \longrightarrow T M$ is an isomorphism at every point of Tot B. Indeed, these bundles have the same rank, and for each $\tau_{\nabla}(X) \in E_{\nabla}$, this vector field acts on functions pulled back from M as Lie ${ }_{X}$, hence $\left.D \pi\right|_{E_{\nabla}}$ is injective.

The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: ("The Lasso Lemma") Let $\left\{U_{i}\right\}$ be a covering of a manifold, and γ a loop. Then any contractible loop γ is a product of several lasso, with working part of each inside some U_{i}.

Bundles with trivial holonomy

THEOREM: Let (B, ∇) be a vector bundle with connection over a simply connected manifold. Then B is flat if and only if its holonomy group is trivial.

Proof: Let B be a flat bundle on M, and $X, Y \in T M$ commuting vector fields. Then $\nabla_{X}: B \longrightarrow B$ commutes with ∇_{Y}. Then the Ehresmann connection bundle E_{∇} is generated by commuting vector fields $\tau_{\nabla}(X), \tau_{\nabla}(Y), \ldots$, hence it is involutive. By Frobenius theorem, every point $b \in \operatorname{Tot}(B)$ is contained in a leaf of the corresponding foliation, tangent to E_{∇}. By Claim 2, such a leaf is a parallel section of B. Therefore, the holonomy of ∇ around any sufficiently small loop is trivial. Since $\pi_{1}(M)=0$, any contractible loop L can be represented by a composition of lasso with sufficiently small working part. All of them have trivial holonomy, hence L has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then $\operatorname{Tot}(B)=M \times\left. B\right|_{x}$ because each point is contained in a unique parallel section, hence the bundle E_{∇} is involutive. Then $\left[\nabla_{X}, \nabla_{Y}\right]=0$ for any commuting $X, Y \in T M$, and the curvature vanishes.

Corollary 1: Let B be a flat vector bundle on a simply connected, connected manifold M. Then for each $x \in M$ and each $\left.b \in B\right|_{x}$, there exists a unique parallel section of B passing through b.

Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is naturally equivalent to the category of vector bundles on M equipped with flat connection.
Proof. Step 1: Consider a constant sheaf \mathbb{R}_{M} on M. This is a sheaf of rings, and any locally constant sheaf is a sheaf of $\mathbb{R}_{M^{-}}$-modules.

Let \mathbb{V} be a locally constant sheaf, and $B:=\mathbb{V} \otimes_{\mathbb{R}_{M}} \mathbb{C}^{\infty} M$. Since \mathbb{V} is locally constant, the sheaf B is a locally free sheaf of C^{∞}-modules, that is, a vector bundle. Let $U \subset M$ be an open set such that $\left.\mathbb{V}\right|_{U}$ is constant. If v_{1}, \ldots, v_{n} is a basis in $\mathbb{V}(U)$, all sections of $B(U)$ have a form $\sum_{i=1}^{n} f_{i} v_{i}$, where $f_{i} \in C^{\infty} U$. Define the connection ∇ by $\nabla\left(\sum_{i=1}^{n} f_{i} v_{i}\right)=\sum d f_{i} \otimes v_{i}$. This connection is flat because $d^{2}=0$. It is independent from the choice of v_{i} because v_{i} is defined canonically up to a matrix with constant coefficients. We have constructed a functor from locally constant sheaves to flat vector bundles.

Step 2: Let now (B, ∇) be a flat bundle over M. The functor to locally constant sheaves takes $U \subset M$ and maps it to the space of parallel sections of B over U. This defines a sheaf $\mathbb{B}(U)$. For any simply connected U, and any $x \in M$, the space $\mathbb{B}(U)$ is identified with a vector space $\left.B\right|_{x}$ (Corollary 1), hence $\mathbb{B}(U)$ is locally constant. Clearly, $B=\mathbb{B} \otimes_{\mathbb{R}_{M}} \mathbb{C}^{\infty} M$, hence this construction gives an inverse functor to $\mathbb{V} \mapsto \mathbb{V} \otimes_{\mathbb{R}_{M}} \mathbb{C}^{\infty} M$.

