Lecture 19: Riemann-Hilbert correspondence (flat bundles and local systems)

Misha Verbitsky

IMPA, sala 236, 17:00

May 22, 2024

Connections

DEFINITION: Recall that a connection on a bundle *B* is an operator ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ satisfying $\nabla(fb) = b \otimes df + f\nabla(b)$, where $f \longrightarrow df$ is de Rham differential. When *X* is a vector field, we denote by $\nabla_X(b) \in B$ the term $\langle \nabla(b), X \rangle$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b,\beta\rangle) = \langle \nabla b,\beta\rangle + \langle b,\nabla^*\beta\rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Curvature

Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a vector bundle B. We extend ∇ to an operator

$$B \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using the Leibnitz identity $\nabla(\eta \otimes b) = d\eta \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$.

REMARK: This operation is well defined, because

$$\nabla(\eta \otimes fb) = d\eta \otimes fb + (-1)^{\tilde{\eta}} \eta \wedge \nabla(fb) = d\eta \otimes fb + (-1)^{\tilde{\eta}} \eta \wedge df \otimes b + f\eta \wedge \nabla b = d(f\eta) \otimes b + f\eta \wedge \nabla b = \nabla(f\eta \otimes b)$$

REMARK: Sometimes $\Lambda^2(M) \otimes B \xrightarrow{\nabla} \Lambda^3(M) \otimes B$ is denoted d_{∇} .

DEFINITION: The operator ∇^2 : $B \longrightarrow B \otimes \Lambda^2(M)$ is called **the curvature** of ∇ .

REMARK: The algebra of differential forms with coefficients in End *B* acts on $\Lambda^*M \otimes B$ via $\eta \otimes a(\eta' \otimes b) = \eta \wedge \eta' \otimes a(b)$, where $a \in \text{End}(B)$, $\eta, \eta' \in \Lambda^*M$, and $b \in B$. This is the formula expressing the action of ∇^2 on $\Lambda^*M \otimes B$.

Curvature and commutators

CLAIM: Let $X, Y \in TM$ be vector fields, (B, ∇) a bundle with connection, and $b \in B$ its section. Consider the operator

$$\Theta_B^*(X, Y, b) := \nabla_X \nabla_Y b - \nabla_Y \nabla_X b - \nabla_{[X, Y]} b$$

Then $\Theta_B^*(X, Y, b)$ is linear in all three arguments.

Proof. Step 1: The term $\Theta_B^*(X, Y, fb)$ has 3 components: one which is C^{∞} -linear in f, one which takes first derivative and one which takes the second derivative. The first derivative part is

 $\operatorname{Lie}_Y f \nabla_X b + \operatorname{Lie}_X f \nabla_Y b - \operatorname{Lie}_Y f \nabla_X b - \operatorname{Lie}_X f \nabla_Y b - \operatorname{Lie}_{[X,Y]} f b = -\operatorname{Lie}_{[X,Y]} f b$, the second derivative part is $\operatorname{Lie}_X \operatorname{Lie}_Y(f)b - \operatorname{Lie}_Y \operatorname{Lie}_X(f)b = \operatorname{Lie}_{[X,Y]} f$, they cancel. Therefore, $\Theta_B^*(X,Y,b)$ is C^{∞} -linear in b.

Step 2: Since $[X, fY] = \operatorname{Lie}_X fY + f[X, Y]$, we have $\nabla_{[X, fY]}b = f\nabla_{[X, Y]}b + \operatorname{Lie}_X f\nabla_Y b$.

Step 3: The term $\Theta_B^*(X, fY, b)$ has two components, *f*-linear and the component with first derivatives in *f*. Step 2 implies that the component with derivative of first order is $\operatorname{Lie}_X f \nabla_Y b - \operatorname{Lie}_X f \nabla_Y b = 0$.

Curvature and commutators (2)

REMARK:

$$\Theta_B^*(X, Y, b) := \nabla_X \nabla_Y b - \nabla_Y \nabla_X b - \nabla_{[X, Y]} b$$

is another definition of the curvature. The following theorem shows that it is equivalent to the usual definition.

THEOREM: Consider Θ_B^* : $TM \otimes TM \otimes B \longrightarrow B$ as a 2-form with coefficients in End(B). Then $\Theta_B^* = \Theta_B$, where $\Theta_B = \nabla^2$ is the usual curvature.

Proof. Step 1: Since $\Theta_B^*(X, Y)$, $\Theta_B(X, Y)$ are linear in X, Y, it would suffice to prove this equality for coordinate vector fields X, Y.

Step 2: Consider the operator $i_X : \Lambda^i M \otimes B \longrightarrow \Lambda^{i-1} M \otimes B$ of convolution with a vector field X. Writing $\nabla = d + A$, where $A \in \Lambda^1 M \otimes \text{End } B$, we obtain $\nabla_X = \text{Lie}_X + A(X)$, which gives $[\nabla_X, i_Y] = [\text{Lie}_X, i_Y] = 0$ when X, Y are coordinate vector fields.

Step 3:

$$\nabla^2(b)(X,Y) = (i_X i_Y - i_X i_Y) \nabla^2(b) = i_Y \nabla_X \nabla b - i_X \nabla_Y \nabla b = \nabla_X \nabla_Y b - \nabla_Y \nabla_X b.$$

Parallel transport along the connection

REMARK: When M = [0, a] is an interval, any bundle *B* on *M* is trivial. Let $b_1, ..., b_n$ be a basis in *B*. Then ∇ can be written as

$$\nabla_{d/dt} \left(\sum f_i b_i \right) = \sum_i \frac{df_i}{dt} b_i + \sum f_i \nabla_{d/dt} b_i$$

with the last term linear on f.

THEOREM: Let *B* be a vector bundle with connection over \mathbb{R} . Then for each $x \in \mathbb{R}$ and each vector $b_x \in B|_x$ there exists a unique section $b \in B$ such that $\nabla b = 0$, $b|_x = b_x$.

Proof: This is existence and uniqueness of solutions of an ODE $\frac{db}{dt} + A(b) = 0$.

DEFINITION: Let $\gamma : [0,1] \longrightarrow M$ be a smooth path in M connecting x and y, and (B, ∇) a vector bundle with connection. Restricting (B, ∇) to $\gamma([0,1])$, we obtain a bundle with connection on an interval. Solve an equation $\nabla(b) = 0$ for $b \in B|_{\gamma([0,1])}$ and initial condition $b|_x = b_x$. This process is called **parallel** transport along the path via the connection. The vector $b_y := b|_y$ is called vector obtained by parallel transport of b_x along γ .

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla}$: $B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: Let $B_1 = B^{\otimes n} \otimes (B^*)^{\otimes m}$ be a tensor power of B. The connection on B gives the connection on B_1 . Since parallel transport is compatible with the tensor product, **the holonomy representation**, associated with B_1 , is **the corresponding tensor power of** $B|_x$.

DEFINITION: Let *B* be a vector bundle, and Ψ a section of its tensor power. We say that **connection** ∇ **preserves** Ψ if $\nabla(\Psi) = 0$. In this case we also say that the tensor Ψ is **parallel** with respect to the connection.

Flat bundles

REMARK: $\nabla(\Psi) = 0$ is equivalent to Ψ being a solution of $\nabla(\Psi) = 0$ on each path γ . This means that **parallel transport preserves** Ψ .

We obtained

COROLLARY: A section of the tensor power of B is parallel if and only if it is holonomy invariant.

DEFINITION: A bundle is **flat** if its curvature vanishes.

The following theorem will be proven later today.

THEOREM: Let (B, ∇) be a vector bundle with connection over a simply connected manifold. Then *B* is flat if and only if its holonomy group is trivial.

Fiber of a locally free sheaf

DEFINITION: Recall that a vector bundle is a locally free sheaf of modules over $C^{\infty}M$. A vector bundle is called **trivial** if it is isomorphic to $(C^{\infty}M)^n$.

DEFINITION: Let \mathcal{B} be an *n*-dimensional locally free sheaf of C^{∞} -modules on M, $x \in M$ a point, $\mathfrak{m}_x \subset C^{\infty}M$ an ideal of $x \in M$ in $C^{\infty}M$. Define **the fiber** of \mathcal{B} in x as a quotient $\mathcal{B}(M)/\mathfrak{m}\mathcal{B}$. A fiber of \mathcal{B} is denoted $\mathcal{B}|_x$.

REMARK: A fiber of a vector bundle of rank *n* is an *n*-dimensional vector space.

REMARK: Let $\mathcal{B} = C^{\infty}M^n$, and $b \in \mathcal{B}|_x$ a point of a fiber, represented by a germ $\varphi \in \mathcal{B}_x = C_m^{\infty}M^n$, $\varphi = (f_1, ..., f_n)$. Consider a map Ψ from the set of all fibers \mathcal{B} to $M \times \mathbb{R}^n$, mapping $(x, \varphi = (f_1, ..., f_n))$ to $(f_1(x), ..., f_n(x))$. Then Ψ is bijective. Indeed, $\mathcal{B}|_x = \mathbb{R}^n$.

Total space of a vector bundle

DEFINITION: Let \mathcal{B} be an *n*-dimensional locally free sheaf of C^{∞} -modules. Denote the set of all vectors in all fibers of \mathcal{B} over all points of M by Tot \mathcal{B} . Let $U \subset M$ be an open subset of M, with $\mathcal{B}|_U$ a trivial bundle. Using the local bijection Tot $\mathcal{B}(U) = U \times \mathbb{R}^n$ we consider topology on Tot \mathcal{B} induced by open subsets in Tot $\mathcal{B}(U) = U \times \mathbb{R}^n$ for all open subsets $U \subset M$ and all trivializations of $\mathcal{B}|_U$. Then Tot \mathcal{B} is called a total space of a vector bundle \mathcal{B} .

CLAIM: The space Tot \mathcal{B} with this topology is a locally trivial fibration over M, with fiber \mathbb{R}^n .

REMARK: Let *B* be a vector bundle on *M*, and $\psi \in B^*$ a section of its dual. Then ψ defines a function $x \longrightarrow \langle \psi, x \rangle$ on its total space $\text{Tot}(B) \xrightarrow{\pi} M$, linear on fibers of π . This gives a **bijective correspondence between sections of** B^* and functions on Tot(B) linear on fibers.

This gives the following claim

CLAIM: Let *B* be a vector bundle and $\text{Sym}^* B^*$ the direct sum of all symmetric tensor powers of B^* . Then the ring of sections of $\text{Sym}^* B^*$ is identified with the ring of all smooth functions on $\text{Tot } B \xrightarrow{\pi} M$ which are polynomial on fibers of π .

Ehresmann connections

DEFINITION: Let π : $M \longrightarrow Z$ be a smooth submersion, with $T_{\pi}M$ the bundle of vertical tangent vectors (vectors tangent to the fibers of π). An Ehresmann connection on π is a sub-bundle $T_{hor}M \subset TM$ such that $TM = T_{hor}M \oplus T_{\pi}M$. The parallel transport along the path γ : $[0, a] \longrightarrow Z$ associated with the Ehresmann connection is a diffeomorphism

$$V_t: \pi^{-1}(\gamma(0)) \longrightarrow \pi^{-1}(\gamma(t))$$

smoothly depending on $t \in [0, a]$ and satisfying $\frac{dV_t}{dt} \in T_{hor}M$.

CLAIM: Let π : $M \longrightarrow Z$ be a smooth fibration with compact fibers. Then the parallel transport, associated with the Ehresmann connection, always exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.

Horizontal lifting

DEFINITION: Let $\pi : M \longrightarrow Z$ be a smooth submersion, and $TM = T_{hor}M \oplus T_{\pi}M$ and Ehresmann connection. Given a vector field $X \in TZ$, it horizontal lifting is a section $X_{hor} \in T_{hor}M$ such that $d\pi$ takes $X_{hor}|_m$ to $X|_{\pi(m)}$ for all m im M.

CLAIM: For any vector field $X \in TZ$, its horizontal lifting exists and is unique.

Proof: Clear. ■

EXERCISE: Prove that **parallel transport along a horizontal lifting mapes fibers of** π **to fibers.**

COROLLARY: ("Ehresmann's fibration theorem")

Let $\pi : M \longrightarrow M'$ be a smooth submersion of compact manifolds. Then π is a locally trivial fibration.

Proof: Fix an Ehresmann connection; it always exists, if we fix a Riemannian metric and write $T_{hor}M := (T_{\pi}M)^{\perp}$. Choose a coordinate system in M', and let $\vec{r} := \sum x_i \frac{d}{dx_i}$ be the radial vector field. Then the parallel transport $e^{-t\vec{r}}$ along $-\vec{r}$ as $t \to \infty$ defines a diffeomorphism between any fiber of π and the fiber over zero; this trivializes the fibration in a neighbourhood of zero.

Polynomial functions on Tot(B)

In Lecture 14, we proved that any derivation of $\mathbb{C}^{\infty}\mathbb{R}^n$ is uniquely determined by its restriction to polynomials:

CLAIM: Let *D* be the space of derivations δ : $\mathbb{R}[x_1, ..., x_n] \longrightarrow \mathbb{C}^{\infty} \mathbb{R}^n$. Then *D* is the space of derivations of the ring $\mathbb{C}^{\infty} \mathbb{R}^n$.

The same argument brings the following

CLAIM 1: Let *D* be the space of derivations δ : Sym^{*} $B^* \longrightarrow \mathbb{C}^{\infty}(\text{Tot } B)$. **Then** *D* is the space of derivations of the ring $\mathbb{C}^{\infty}(\text{Tot } B)$.

Proof: Indeed, any derivation which vanishes on fiberwise polynomial functions vanishes everywhere on $\mathbb{C}^{\infty}(\text{Tot }B)$.

Vector fields on Tot(B)

DEFINITION: Let π : $M \longrightarrow Z$ be a smooth submersion, and $X \in TM$ a vector field. Its lifting is a vector field $X_1 \in TM$ such that $d\pi(X_1) = X$.

EXERCISE: Prove that X_1 is a lifting of X if and only if for any function $f \in C^{\infty}Z$, we have $\pi^*(\text{Lie}_X f) = \text{Lie}_X(\pi^*f)$.

THEOREM: Let (B, ∇) be a bundle on M with connection, and $X \in TM$ a vector field. Then there exists a vector field $\tau_{\nabla}(X)$ on $\operatorname{Tot}(B)$ mapping a section $u \in \operatorname{Sym}^* B^*$ to $\nabla_X u$.

Proof: Let $u, v \in \text{Sym}^* B^*$, and $uv \in \text{Sym}^* B^*$ their product. Then $\nabla_x(uv) = u\nabla_x v + v\nabla_x u$ because $\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2)$. Therefore, $\tau_{\nabla}(X)(u) := \nabla_x(u)$ is a derivation of the ring of functions on Tot(B) which are polynomial on fibers. By Claim 1, **any such derivation can be uniquely extended to a vector field on** Tot(B). Moreover, it defines a lifting.

DEFINITION: Let (B, ∇) be a bundle with connection on M. The corresponding **Ehresmann connection** on Tot(B) is the distribution $E_{\nabla} \subset T Tot(B)$ obtained as $\tau_{\nabla}(TM)$.

Vector fields on Tot(B) and parallel sections

CLAIM 2: Let (B, ∇) be a bundle with connection, and π : Tot $(B) \rightarrow M$ the standard projection, and T_{π} Tot $(B) = \ker D\pi$ is the vertical tangent space (Lecture 14).

(i) Then $T \operatorname{Tot} B = E_{\nabla} \oplus T_{\pi} \operatorname{Tot}(B)$, where E_{∇} is constructed as above.

(ii) Moreover, a section f of B is parallel if an only if its image $f(M) \subset Tot(B)$ is tangent to E_{∇} .

Proof: The second assertion is clear from the definition: **a section** b is tangent to E_{∇} if it is preserved by all vector fields $a = \tau_{\nabla}(X)$ generating E_{∇} . In this case $\text{Lie}_a(\tilde{b}) = 0$, where \tilde{b} is a function on $\text{Tot}(B^*)$ defined by b. However, $\text{Lie}_a(\tilde{b}) = \nabla_X(b)$ where $\nabla_X(b)$ is a function on $\text{Tot}(B^*)$ associated with $\nabla_X(b)$. Therefore, $\text{Lie}_a(\tilde{b}) = 0 \Leftrightarrow \nabla_X(b) = 0$.

To prove (i), we notice that $D\pi|_{E_{\nabla}}: E_{\nabla} \longrightarrow TM$ is an isomorphism at every point of Tot *B*. Indeed, these bundles have the same rank, and for each $\tau_{\nabla}(X) \in E_{\nabla}$, this vector field acts on functions pulled back from *M* as Lie_X , hence $D\pi|_{E_{\nabla}}$ is injective.

The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: ("The Lasso Lemma") Let $\{U_i\}$ be a covering of a manifold, and γ a loop. Then any contractible loop γ is a product of several lasso, with working part of each inside some U_i .

Bundles with trivial holonomy

THEOREM: Let (B, ∇) be a vector bundle with connection over a simply connected manifold. Then *B* is flat if and only if its holonomy group is trivial.

Proof: Let *B* be a flat bundle on *M*, and $X, Y \in TM$ commuting vector fields. Then $\nabla_X : B \longrightarrow B$ commutes with ∇_Y . Then the Ehresmann connection bundle E_{∇} is generated by commuting vector fields $\tau_{\nabla}(X)$, $\tau_{\nabla}(Y)$, ..., hence it is involutive. By Frobenius theorem, every point $b \in \text{Tot}(B)$ is contained in a leaf of the corresponding foliation, tangent to E_{∇} . By Claim 2, such a leaf is a parallel section of *B*. Therefore, **the holonomy of** ∇ **around any sufficiently small loop is trivial**. Since $\pi_1(M) = 0$, any contractible loop *L* can be represented by a composition of lasso with sufficiently small working part. All of them have trivial holonomy, hence *L* has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then $Tot(B) = M \times B|_x$ because each point is contained in a unique parallel section, hence the bundle E_{∇} is involutive. Then $[\nabla_X, \nabla_Y] = 0$ for any commuting $X, Y \in TM$, and the curvature vanishes.

Corollary 1: Let *B* be a flat vector bundle on a simply connected, connected manifold *M*. Then for each $x \in M$ and each $b \in B|_x$, there exists a unique parallel section of *B* passing through *b*.

Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is naturally equivalent to the category of vector bundles on *M* equipped with flat connection.

Proof. Step 1: Consider a constant sheaf \mathbb{R}_M on M. This is a sheaf of rings, and any locally constant sheaf is a sheaf of \mathbb{R}_M -modules.

Let \mathbb{V} be a locally constant sheaf, and $B := \mathbb{V} \otimes_{\mathbb{R}_M} \mathbb{C}^{\infty} M$. Since \mathbb{V} is locally constant, the sheaf B is a locally free sheaf of C^{∞} -modules, that is, a vector bundle. Let $U \subset M$ be an open set such that $\mathbb{V}|_U$ is constant. If $v_1, ..., v_n$ is a basis in $\mathbb{V}(U)$, all sections of B(U) have a form $\sum_{i=1}^n f_i v_i$, where $f_i \in C^{\infty} U$. Define the connection ∇ by $\nabla \left(\sum_{i=1}^n f_i v_i \right) = \sum df_i \otimes v_i$. This connection is flat because $d^2 = 0$. It is independent from the choice of v_i because v_i is defined canonically up to a matrix with constant coefficients. We have constructed a functor from locally constant sheaves to flat vector bundles.

Step 2: Let now (B, ∇) be a flat bundle over M. The functor to locally constant sheaves takes $U \subset M$ and maps it to the space of parallel sections of B over U. This defines a sheaf $\mathbb{B}(U)$. For any simply connected U, and any $x \in M$, the space $\mathbb{B}(U)$ is identified with a vector space $B|_x$ (Corollary 1), hence $\mathbb{B}(U)$ is locally constant. Clearly, $B = \mathbb{B} \otimes_{\mathbb{R}_M} \mathbb{C}^{\infty} M$, hence **this construction gives an inverse functor to** $\mathbb{V} \mapsto \mathbb{V} \otimes_{\mathbb{R}_M} \mathbb{C}^{\infty} M$.