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Ehresmann connections (reminder)

DEFINITION: Let # : M — Z be a smooth submersion, with T:M the
bundle of vertical tangent vectors (vectors tangent to the fibers of x).
An Ehresmann connection on = is a sub-bundle T}, M C TM such that
TM = T{,,,M & TrM. The parallel transport along the path ~: [0,a] — Z
associated with the Ehresmann connection is a diffeomorphism

Vi w1 ((0)) — 7 (v (1))
smoothly depending on t € [0,a] and satisfying % € Thor M.
CLAIM: Let m: M — Z be a smooth fibration with compact fibers. Then
the parallel transport, associated with the Ehresmann connection, al-

ways exists.

Proof: Follows from existence and uniqueness of solutions of ODEsS. =
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Horizontal lifting (reminder)

DEFINITION: Let 7 : M — Z be a smooth submersion, and T'M = T},,, M @
T-M and Ehresmann connection. Given a vector field X € T Z, it horizontal
lifting is a section X, € T, M such that dr takes Xy, |m to X| () for all
mim M.

CLAIM: For any vector field X € TZ, its horizontal lifting exists and is
unique.
Proof: Clear. m

EXERCISE: Prove that parallel transport along a horizontal lifting mapes
fibers of 7w to fibers.

COROLLARY: (“Ehresmann’s fibration theorem’)
Let 7 : M — M’ be a smooth submersion of compact manifolds. Then =« is
a locally trivial fibration.

Proof: Fix an Ehresmann connection; it always exists, if we fix a Riemannian
metric and write T}, M = (TM)+. Choose a coordinate system in M/, and
let v 1= Zded be the radlal vector field. Then the parallel transport e

along —r as t s ~o defines a diffeomorphism between any fiber of m and the
fiber over zero; this trivializes the fibration in a neighbourhood of zero.

m
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Polynomial functions on Tot(B)

In Lecture 14, we proved that any derivation of C°R" is uniquely determined
by its restriction to polynomials:

CLAIM: Let D be the space of derivations § : R[zq,...,zn] — C*°R". Then
D is the space of derivations of the ring C°°R"., m

The same argument brings the following

CLAIM 1: Let D be the space of derivations § : Sym* B* — C°°(Tot B).
Then D is the space of derivations of the ring C>*°(Tot B).

Proof: Indeed, any derivation which vanishes on fiberwise polynomial func-
tions vanishes everywhere on C*°(TotB). =
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Vector fields on Tot(B)

DEFINITION: Let m : M — Z be a smooth submersion, and X € T'M a
vector field. Its lifting is a vector field X7 € TM such that dn(X71) = X.

EXERCISE: Prove that X is a lifting of X if and only if for any function
feCc>®Z, we have n*(Liey f) = Liex(7*f).

THEOREM: Let (B,V) be a bundle on M with connection, and X € TM a
vector field. Then there exists a vector field ~~(X) on Tot(B) mapping
a section v € Sym* B* to V xu.

Proof: Let u,v € Sym* B*, and uv € Sym™* B* their product. Then Vg (uv) =
uVzv + vVzu because V(b1 ® br) = V(b1) ® bp + b1 ® V(by). Therefore,
Tv(X)(u) ;= Vg(u) is a derivation of the ring of functions on Tot(B) which
are polynomial on fibers. By Claim 1, any such derivation can be uniquely
extended to a vector field on Tot(B). Moreover, it defines a lifting. =

DEFINITION: Let (B,V) be a bundle with connection on M. The cor-
responding Ehresmann connection on Tot(B) is the distribution Ey C

T Tot(B) obtained as v (T M).
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Vector fields on Tot(B) and parallel sections

CLAIM 2: Let (B,V) be a bundle with connection, and = : Tot(B) — M
the standard projection, and T Tot(B) = ker D= is the vertical tangent space
(Lecture 14).

(i) Then T Tot B = Ey®Tr Tot(B), where Ey is constructed as above.

(ii)) Moreover, a section f of B is parallel if an only if its image
f(M) C Tot(B) is tangent to Ey.

Proof: The second assertion is clear from the definition: a section b is
tangent to Ey if it is preserved by all vector fields a = 7v(X) generating
Ev. In this case Lies(b) = 0, where b is a function on Tot(B*) defined by b.

However, Lieq(b) = V x(b) where Vx(b) is a function on Tot(B*) associated
with V x(b). Therefore, Lieg(b) =0 < V(b)) = 0.

To prove (i), we notice that D7r|Ev . Fy — T'M is an isomorphism at every
point of TotB. Indeed, these bundles have the same rank, and for each
mv(X) € Ey, this vector field acts on functions pulled back from M as Liey,
hence DW’EV IS injective. =
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T he Lasso lemma

DEFINITION: A lasso is a loop of the following form:

,,/

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma’”) Let {U;} be a covering of a manifold,
and v a loop. Then any contractible loop v is a product of several lasso,
with working part of each inside some U,.
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Bundles with trivial holonomy

THEOREM: Let (B,V) be a vector bundle with connection over a simply
connected manifold. Then B is flat if and only if its holonomy group is
trivial.

Proof: Let B be a flat bundle on M, and X,Y € T'M commuting vector fields.
Then Vy : B— B commutes with Vy. Then the Ehresmann connection
bundle Ey is generated by commuting vector fields v (X), mv(Y), ..., hence
it is involutive. By Frobenius theorem, every point b € Tot(B) is contained
in a leaf of the corresponding foliation, tangent to Ey. By Claim 2, such a
leaf is a parallel section of B. Therefore, the holonomy of V around any
sufficiently small loop is trivial. Since m1(M) = 0, any contractible loop L
can be represented by a composition of lasso with sufficiently small working
part. All of them have trivial holonomy, hence L has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then Tot(B) = M X Bz
because each point is contained in a unique parallel section, hence the bundle
Ev is involutive. Then [Vx,Vy] = 0 for any commuting X,Y € TM, and the
curvature vanishes. m

Corollary 1: Let B be a flat vector bundle on a simply connected, connected
manifold M. Then for each x € M and each b € B|;, there exists a unique
parallel section of B passing through 6. =
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Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is
naturally equivalent to the category of vector bundles on M equipped
with flat connection.

Proof. Step 1: Consider a constant sheaf Ry, on M. This is a sheaf of
rings, and any locally constant sheaf is a sheaf of Ry,-modules.

Let V be a locally constant sheaf, and B = V@RM C°°M . Since V is locally
constant, the sheaf B is a locally free sheaf of C°°-modules, that is, a vector
bundle. Let U C M be an open set such that V| is constant. If vq,...,vp iS
a basis in V(U), all sections of B(U) have a form Y '*_; f;v;, where f; € C*°U.
Define the connection V by V (Z?=1 fz'vz') = > df; ® v;. This connection is flat

because d2 = 0. It is independent from the choice of v; because v; is defined
canonically up to a matrix with constant coefficients. We have constructed
a functor from locally constant sheaves to flat vector bundiles.

Step 2: Let now (B,V) be a flat bundle over M. The functor to locally
constant sheaves takes U C M and maps it to the space of parallel sections
of B over U. This defines a sheaf B(U). For any simply connected U, and
any x € M, the space B(U) is identified with a vector space B|, (Corollary
1), hence B(U) is locally constant. Clearly, B = B ®g,, C°M, hence this
construction gives an inverse functor to V— Vg, C*M. =
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Torsion

REMARK: “Connection on a manifold M” denotes a connection on the
bundle TM or AYM. Such a connection induces a connection on all its
tensor powers TM® @ ALM®J by Leibnitz rule.
DEFINITION: Let V be a connection on AlM,

AL Y Alpr o AL

The torsion of V is a map Ty : A'M — A2M defined as V o Alt —d, where
Alt : ALM @ ALM — A2M is exterior multiplication.

REMARK:

Ty (fn) =At(fVn+df ®n) —d(fn)
=f[Alt(V?7) — dn] +df An—df An= fTg(n).

Therefore Iy is linear.
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Torsion and commutator of vector fields

REMARK: Cartan formula gives

Ty(m(X,Y) =Vx(m)(Y) = Vy(n)(X) —dn(X,Y)
=Vx(m ) = Vy(n)(X) —n(X,Y]) — Liex(n(Y)) + Liey (n(X)).

On the other hand, Vx(n)(Y) = Liex(n(Y)) — n(Vx(Y)). Comparing the
equations, we obtain

Tv(m(X,Y) = n(Vx(Y) — Vy(X) - [X, Y])-

Torsion is often defined as a map A?TM — TM using the formula
Vx(Y) - Vy(X) - [X,Y].

We have just proved

CLAIM: The tensor V(YY) — Vy(X) — [X,Y] is dual to the torsion map
VoAlt—d: A'M — A?M defined above.
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Flat affine manifolds

DEFINITION: Affine map from R" to R™ is a composition of a linear map
and a parallel translation.

DEFINITION: A flat affine manifold is a manifold M equipped with an
atlas {U;} such that all transition maps are affine. In this case, U; are called
affine charts.

REMARK: Let M be a flat affine manifold, U an affine chart. Consider
the basis in ALU given by the coordinate 1-forms drq,....,dxrn. Any affine map
puts dx; to a linear combination of coordinate 1-forms, hence the subsheaf
in ALM sheaf generated by dx; is locally constant. Riemann-Hilbert corre-
spondence gives a natural flat connection V: A1M — A1M @ A1 M such
that V(dz;) = 0.

THEOREM: Let M be a flat affine manifold, and V a flat connection on M
constructed above. Then V is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.
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Flat affine manifolds and torsion-free connections

THEOREM: Let M be a flat affine manifold, and V a flat connection on M
constructed above. Then V is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.

Proof. Step 1: Consider a bundle B over M trivialized by a frame b1, ...,bn.
Then there exists a unique connection V such that V(b;) = 0. Indeed,

V(S fibi) = L dfi @b

Step 2: An affine structure gives a torsion-free flat connection as follows.
Let 1, ...,z De flat affine coordinates on U C M. Then dzq,...,dzy is a frame
trivializing AU, and we can define a connection V such that V(dz;) = 0 as
in Step 1. Any affine transform maps the form dz; to a linear combination of
dx;. Therefore, for any other set of coordinates yq,...,yn defining the same
affine structure, one has V(dy;) = 0. This implies that V is independent on
the choice of coordinates. It is flat because VQ(de'Z-) = 0 and torsion-free

because AIt(V (X fide;) = S df; Ada; = d (S fida;) .
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Flat affine manifolds and torsion-free connections (2)

THEOREM: Let M be a flat affine manifold, and V a flat connection on T'M
constructed above. Then V is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.

Step 3: It remains to show that every torsion-free, flat connection V on
M is obtained this way. By Riemann-Hilbert correspondence (Lecture 17)
in @ neighbourhood of each point there exists a frame bq,...,bn € ALM such
that V(b;) = 0. Since Alt(Vb;) = db; = 0, each form b; is closed. Poincaré
lemma implies that b, = dx;. Since the forms dx; are linearly independent,
the derivative of the map s(m) := (x1(m),...,xzn(m)) is invertible. Then &«
is locally a diffeomorphism to R"™, and z; are coordinates. Clearly, V is a
connection constructed from these coordinates as in Step 2. We obtained an
atlas on M such that V(dz;) = O for each coordinate function z;. It remains
only to show that this atlas defines a flat affine structure.

Step 4: Clearly, V (Z?zl fz-d:ci) = 0 if and only if all f; are constant. The tran-
sition functions between coordinates map m = (z1,...,xn) 10 y; = X1 @;(m)
such that V(dy;) = 0. Expressing each dy; as dy; = > fi;dr; and us-
ing 0 =V (Z?zl fijdxi) = df;;, ® dx;, we obtain that all functions f;; (partial
derivatives of the transition functions ;(m)) are constant. A function with
constant partial derivatives is always affine, hence the transition functions
between charts are affine. m
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