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Ehresmann connections (reminder)

DEFINITION: Let π : M −→ Z be a smooth submersion, with TπM the

bundle of vertical tangent vectors (vectors tangent to the fibers of π).

An Ehresmann connection on π is a sub-bundle ThorM ⊂ TM such that

TM = ThorM ⊕ TπM . The parallel transport along the path γ : [0, a]−→ Z

associated with the Ehresmann connection is a diffeomorphism

Vt : π−1(γ(0))−→ π−1(γ(t))

smoothly depending on t ∈ [0, a] and satisfying dVt
dt ∈ ThorM .

CLAIM: Let π : M −→ Z be a smooth fibration with compact fibers. Then

the parallel transport, associated with the Ehresmann connection, al-

ways exists.

Proof: Follows from existence and uniqueness of solutions of ODEs.
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Horizontal lifting (reminder)

DEFINITION: Let π : M −→ Z be a smooth submersion, and TM = ThorM⊕
TπM and Ehresmann connection. Given a vector field X ∈ TZ, it horizontal
lifting is a section Xhor ∈ ThorM such that dπ takes Xhor|m to X|π(m) for all
m imM .

CLAIM: For any vector field X ∈ TZ, its horizontal lifting exists and is
unique.
Proof: Clear.

EXERCISE: Prove that parallel transport along a horizontal lifting mapes
fibers of π to fibers.

COROLLARY: (“Ehresmann’s fibration theorem”)
Let π : M −→M ′ be a smooth submersion of compact manifolds. Then π is
a locally trivial fibration.

Proof: Fix an Ehresmann connection; it always exists, if we fix a Riemannian
metric and write ThorM := (TπM)⊥. Choose a coordinate system in M ′, and
let ~r :=

∑
xi

d
dxi

be the radial vector field. Then the parallel transport e−t~r

along −~r as t → ∞ defines a diffeomorphism between any fiber of π and the
fiber over zero; this trivializes the fibration in a neighbourhood of zero.
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Polynomial functions on Tot(B)

In Lecture 14, we proved that any derivation of C∞Rn is uniquely determined

by its restriction to polynomials:

CLAIM: Let D be the space of derivations δ : R[x1, ..., xn]−→ C∞Rn. Then

D is the space of derivations of the ring C∞Rn.

The same argument brings the following

CLAIM 1: Let D be the space of derivations δ : Sym∗B∗ −→ C∞(TotB).

Then D is the space of derivations of the ring C∞(TotB).

Proof: Indeed, any derivation which vanishes on fiberwise polynomial func-

tions vanishes everywhere on C∞(TotB).
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Vector fields on Tot(B)

DEFINITION: Let π : M −→ Z be a smooth submersion, and X ∈ TM a

vector field. Its lifting is a vector field X1 ∈ TM such that dπ(X1) = X.

EXERCISE: Prove that X1 is a lifting of X if and only if for any function

f ∈ C∞Z, we have π∗(LieX f) = LieX(π∗f).

THEOREM: Let (B,∇) be a bundle on M with connection, and X ∈ TM a

vector field. Then there exists a vector field τ∇(X) on Tot(B) mapping

a section u ∈ Sym∗B∗ to ∇Xu.

Proof: Let u, v ∈ Sym∗B∗, and uv ∈ Sym∗B∗ their product. Then ∇x(uv) =

u∇xv + v∇xu because ∇(b1 ⊗ b2) = ∇(b1) ⊗ b2 + b1 ⊗ ∇(b2). Therefore,

τ∇(X)(u) := ∇x(u) is a derivation of the ring of functions on Tot(B) which

are polynomial on fibers. By Claim 1, any such derivation can be uniquely

extended to a vector field on Tot(B). Moreover, it defines a lifting.

DEFINITION: Let (B,∇) be a bundle with connection on M . The cor-

responding Ehresmann connection on Tot(B) is the distribution E∇ ⊂
T Tot(B) obtained as τ∇(TM).

5



2024: Riemann surfaces, lecture 20 M. Verbitsky

Vector fields on Tot(B) and parallel sections

CLAIM 2: Let (B,∇) be a bundle with connection, and π : Tot(B)−→M

the standard projection, and Tπ Tot(B) = kerDπ is the vertical tangent space

(Lecture 14).

(i) Then T TotB = E∇⊕Tπ Tot(B), where E∇ is constructed as above.

(ii) Moreover, a section f of B is parallel if an only if its image

f(M) ⊂ Tot(B) is tangent to E∇.

Proof: The second assertion is clear from the definition: a section b is

tangent to E∇ if it is preserved by all vector fields a = τ∇(X) generating

E∇. In this case Liea(̃b) = 0, where b̃ is a function on Tot(B∗) defined by b.

However, Liea(̃b) = ∇̃X(b) where ∇̃X(b) is a function on Tot(B∗) associated

with ∇X(b). Therefore, Liea(̃b) = 0 ⇔ ∇X(b) = 0.

To prove (i), we notice that Dπ
∣∣∣E∇ : E∇ −→ TM is an isomorphism at every

point of TotB. Indeed, these bundles have the same rank, and for each

τ∇(X) ∈ E∇, this vector field acts on functions pulled back from M as LieX,

hence Dπ
∣∣∣E∇ is injective.

6



2024: Riemann surfaces, lecture 20 M. Verbitsky

The Lasso lemma

DEFINITION: A lasso is a loop of the following form:

The round part is called a working part of a loop.

REMARK: (“The Lasso Lemma”) Let {Ui} be a covering of a manifold,

and γ a loop. Then any contractible loop γ is a product of several lasso,

with working part of each inside some Ui.
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Bundles with trivial holonomy

THEOREM: Let (B,∇) be a vector bundle with connection over a simply
connected manifold. Then B is flat if and only if its holonomy group is
trivial.

Proof: Let B be a flat bundle on M , and X,Y ∈ TM commuting vector fields.
Then ∇X : B −→B commutes with ∇Y . Then the Ehresmann connection
bundle E∇ is generated by commuting vector fields τ∇(X), τ∇(Y ), ..., hence
it is involutive. By Frobenius theorem, every point b ∈ Tot(B) is contained
in a leaf of the corresponding foliation, tangent to E∇. By Claim 2, such a
leaf is a parallel section of B. Therefore, the holonomy of ∇ around any
sufficiently small loop is trivial. Since π1(M) = 0, any contractible loop L
can be represented by a composition of lasso with sufficiently small working
part. All of them have trivial holonomy, hence L has trivial holonomy as well.

Conversely, assume that B has trivial holonomy. Then Tot(B) = M × B|x
because each point is contained in a unique parallel section, hence the bundle
E∇ is involutive. Then [∇X ,∇Y ] = 0 for any commuting X,Y ∈ TM , and the
curvature vanishes.

Corollary 1: Let B be a flat vector bundle on a simply connected, connected
manifold M . Then for each x ∈M and each b ∈ B|x, there exists a unique
parallel section of B passing through b.
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Riemann-Hilbert correspondence

THEOREM: The category of locally constant sheaves of vector spaces is
naturally equivalent to the category of vector bundles on M equipped
with flat connection.
Proof. Step 1: Consider a constant sheaf RM on M . This is a sheaf of
rings, and any locally constant sheaf is a sheaf of RM-modules.

Let V be a locally constant sheaf, and B := V ⊗RM C∞M . Since V is locally
constant, the sheaf B is a locally free sheaf of C∞-modules, that is, a vector
bundle. Let U ⊂ M be an open set such that V|U is constant. If v1, ..., vn is
a basis in V(U), all sections of B(U) have a form

∑n
i=1 fivi, where fi ∈ C∞U .

Define the connection ∇ by ∇
(∑n

i=1 fivi
)

=
∑
dfi⊗ vi. This connection is flat

because d2 = 0. It is independent from the choice of vi because vi is defined
canonically up to a matrix with constant coefficients. We have constructed
a functor from locally constant sheaves to flat vector bundles.

Step 2: Let now (B,∇) be a flat bundle over M . The functor to locally
constant sheaves takes U ⊂ M and maps it to the space of parallel sections
of B over U . This defines a sheaf B(U). For any simply connected U , and
any x ∈ M , the space B(U) is identified with a vector space B|x (Corollary
1), hence B(U) is locally constant. Clearly, B = B ⊗RM C∞M , hence this
construction gives an inverse functor to V 7→ V⊗RM C∞M.
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Torsion

REMARK: “Connection on a manifold M” denotes a connection on the

bundle TM or Λ1M . Such a connection induces a connection on all its

tensor powers TM⊗i ⊗ Λ1M⊗j by Leibnitz rule.

DEFINITION: Let ∇ be a connection on Λ1M ,

Λ1 ∇−→ Λ1M ⊗ Λ1M.

The torsion of ∇ is a map T∇ : Λ1M −→ Λ2M defined as ∇ ◦ Alt−d, where

Alt : Λ1M ⊗ Λ1M −→ Λ2M is exterior multiplication.

REMARK:

T∇(fη) = Alt(f∇η + df ⊗ η)− d(fη)

=f

[
Alt(∇η)− dη

]
+ df ∧ η − df ∧ η = fT∇(η).

Therefore T∇ is linear.
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Torsion and commutator of vector fields

REMARK: Cartan formula gives

T∇(η)(X,Y ) =∇X(η)(Y )−∇Y (η)(X)− dη(X,Y )

=∇X(η)(Y )−∇Y (η)(X)− η([X,Y ])− LieX(η(Y )) + LieY (η(X)).

On the other hand, ∇X(η)(Y ) = LieX(η(Y )) − η(∇X(Y )). Comparing the

equations, we obtain

T∇(η)(X,Y ) = η

(
∇X(Y )−∇Y (X)− [X,Y ]

)
.

Torsion is often defined as a map Λ2TM −→ TM using the formula

∇X(Y )−∇Y (X)− [X,Y ].

We have just proved

CLAIM: The tensor ∇X(Y )−∇Y (X)− [X,Y ] is dual to the torsion map

∇ ◦Alt−d : Λ1M −→ Λ2M defined above.
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Flat affine manifolds

DEFINITION: Affine map from Rn to Rm is a composition of a linear map

and a parallel translation.

DEFINITION: A flat affine manifold is a manifold M equipped with an

atlas {Ui} such that all transition maps are affine. In this case, Ui are called

affine charts.

REMARK: Let M be a flat affine manifold, U an affine chart. Consider

the basis in Λ1U given by the coordinate 1-forms dx1, ..., dxn. Any affine map

puts dxi to a linear combination of coordinate 1-forms, hence the subsheaf

in Λ1M sheaf generated by dxi is locally constant. Riemann-Hilbert corre-

spondence gives a natural flat connection ∇ : Λ1M −→ Λ1M ⊗Λ1M such

that ∇(dxi) = 0.

THEOREM: Let M be a flat affine manifold, and ∇ a flat connection on M

constructed above. Then ∇ is torsion-free. Moreover, every torsion-free

flat connection is obtained from a flat affine structure this way.
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Flat affine manifolds and torsion-free connections

THEOREM: Let M be a flat affine manifold, and ∇ a flat connection on M

constructed above. Then ∇ is torsion-free. Moreover, every torsion-free

flat connection is obtained from a flat affine structure this way.

Proof. Step 1: Consider a bundle B over M trivialized by a frame b1, ..., bn.

Then there exists a unique connection ∇ such that ∇(bi) = 0. Indeed,

∇
(∑n

i=1 fibi
)

=
∑
dfi ⊗ bi.

Step 2: An affine structure gives a torsion-free flat connection as follows.

Let x1, ..., xn be flat affine coordinates on U ⊂M . Then dx1, ..., dxn is a frame

trivializing Λ1U , and we can define a connection ∇ such that ∇(dxi) = 0 as

in Step 1. Any affine transform maps the form dxi to a linear combination of

dxi. Therefore, for any other set of coordinates y1, ..., yn defining the same

affine structure, one has ∇(dyi) = 0. This implies that ∇ is independent on

the choice of coordinates. It is flat because ∇2(dxi) = 0 and torsion-free

because Alt(∇
(∑n

i=1 fidxi
)

=
∑
dfi ∧ dxi = d

(∑n
i=1 fidxi

)
.
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Flat affine manifolds and torsion-free connections (2)

THEOREM: Let M be a flat affine manifold, and ∇ a flat connection on TM
constructed above. Then ∇ is torsion-free. Moreover, every torsion-free
flat connection is obtained from a flat affine structure this way.

Step 3: It remains to show that every torsion-free, flat connection ∇ on
M is obtained this way. By Riemann-Hilbert correspondence (Lecture 17)
in a neighbourhood of each point there exists a frame b1, ..., bn ∈ Λ1M such
that ∇(bi) = 0. Since Alt(∇bi) = dbi = 0, each form bi is closed. Poincaré
lemma implies that bi = dxi. Since the forms dxi are linearly independent,
the derivative of the map κ(m) := (x1(m), ..., xn(m)) is invertible. Then κ
is locally a diffeomorphism to Rn, and xi are coordinates. Clearly, ∇ is a
connection constructed from these coordinates as in Step 2. We obtained an
atlas on M such that ∇(dxi) = 0 for each coordinate function xi. It remains
only to show that this atlas defines a flat affine structure.

Step 4: Clearly, ∇
(∑n

i=1 fidxi
)

= 0 if and only if all fi are constant. The tran-
sition functions between coordinates map m = (x1, ..., xn) to yi =

∑n
i=1ϕi(m)

such that ∇(dyi) = 0. Expressing each dyi as dyi =
∑n
i=1 fijdxi and us-

ing 0 = ∇
(∑n

i=1 fijdxi
)

= dfik ⊗ dxi, we obtain that all functions fij (partial
derivatives of the transition functions ϕi(m)) are constant. A function with
constant partial derivatives is always affine, hence the transition functions
between charts are affine.
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