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Clifford algebras

DEFINITION: The Clifford algebra of a vector space V with a scalar
product ¢ is an algebra generated by V with a relation zy + yr = —q(z,y)1,
that is, a quotient of T®V =k VAV RV S ... TV & ... by an ideal

TOV - (zy + yz + q(z,y)) - TV

generated by the relation xy + yxr = —q(z,y) for all x,y € V.

EXAMPLE:

EXAMPLE:

EXAMPLE:

EXAMPLE:

EXAMPLE:

If ¢ = 0, Clifford algebra is Grassmann algebra.
CI(R,+) = C (prove it).

CI(R,—) =R®R (prove it).

CI(R2,4++) = H (prove it).

CI(R2, ——) = CI(R?,4+—-) = Mat(2,R) (left as a homework).
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Grading on the Clifford algebra

DEFINITION: A Z/2Z-graded algebra is an algebra A = Aeven ® Agqd
such that Aevendodd C Aodd: AodgdAeven C Aggd, AevenAeven C Aeven and
AoddAodd C Aeven.

EXAMPLE: The Clifford algebra is 7Z/27 graded: CI(V,g) = Cleven(V,g) ®
Clogq(V, 9), with Cloqq(V,g) generated by products of odd number of z; € V,
and Cleven(V, g) by products of even number of z;.

EXAMPLE: The Grassmann algebra A*(V) = CI(V,0) is Z/27 graded
(odd forms are odd, even forms are even). This is a special case of the
previous example.

DEFINITION: Let A = Aeven ® Aoqq be a graded associative algebra. Let
AS'9N be the same vector space with the new multiplication aea’ := (—=1)%® ad’.

EXERCISE: Prove that AS'9" js associative. Construct an isomorphism
/\*(V) o~ /\*(V>S|gn

EXERCISE: Prove that CI(V, ¢)Si9" = CI(V, —g).

EXERCISE: Define G-graded algebras, where G is any group or semigroup.
3



Seiberg-Witten invariants, lecture 1 M. Verbitsky

Associated graded algebra

DEFINITION: Let R be an associative algebra. Filtration on R is a collec-
tion of subspaces Ro C Ry C Ry C ... such that R;R; C R,y ;.

REMARK: Let z € Rg,y € R;. Then the product zy modulo Ry, 1 depends
only on the class of x modulo Ry_q. Indeed, R;_1R; C Ri4;_1. This defines
the product map (Rk/Rk—l) & (Rl/Rl—l) _>Rk—|—l/Rk—|—l—1' We obtained
the associative product structure on the space @2, R;/R;_1.

DEFINITION: Let Rg C Ry C Ry C ... be a filtered algebra. The algebra
D2 Ri/R;—1 is called the associated graded algebra of this filtration.

EXAMPLE: Let Diff*(M) be the space of differential operators of order < k
on a smooth manifold M. Consider the filtration Diffo(M) c Diffl(M) c
Diff2(M) C ... on the ring of differential operators. The associated graded
ring is called the ring of symbols of differential operators.

EXERCISE: Prove that the ring of symbols is isomorphic to the space
Sym*(T'M) of symmetric polyvectors.
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Associated graded algebra of the Clifford algebra

THEOREM: Define a filtration F*CI(V) by induction, FOCI(V) = (1), FICI(V) =
14+V), F2CI(V) =1+ V+V.V), ..., Fitlci(v) = FiCi(V) + FiCI(V) - V.
Then the associated graded algebra of CI(V) is isomorphic to the Grass-
mann algebra.

Proof. Step 1: Let FY(T®V) =k VeV RV P..®T®V. Clearly, this fil-
tration is compatible with the filtration on the Clifford algebra. This implies
that

Firlciv) Fitlrey
: = =3 i , (%)
FiC(V) — FiT®V 4+ FiHlTeyv AT

where I .=T%V @ (z@y+yR@z+q(z,y)) @T®V is the ideal of relations defining
the Clifford algebra.
Step 2: Let Ip =TV R (zQy+yRz)T®V. This is the ideal of relations in
the Grassmann algebra. Clearly, F*T®V 4+ 170y N[ = 7OV 4 pit1l7®yn
Ip. Then (*) implies that the associated graded algebra of CI(V) is

rricvy Fitlpey
FiCl(V) — FiTOV 4 FitlTov NIy’
which is identified with the associated graded of the Grassmann algebra.
Since the relations in the Grassmann algebra is homogeneous, the latter is
iIsomorphic to the Grassmann algebra itself. =
COROLLARY: dimCl(V) =2dmV g
5




Seiberg-Witten invariants, lecture 1 M. Verbitsky

Graded tensor product

DEFINITION: Let A := Aecven ® Aoqq, B := Beven ® Byggq Pbe graded asso-
ciative algebras. Define the graded tensor product ARB as A ® B with
multiplication given by a @ b-a’ @ b = (—1)5a'aa’ ® bb/, where z denotes the
parity of x.

EXAMPLE: Graded tensor product of Grassmann algebras gives the Grass-
mann algebra of a direct sum:

A VRN 2 A*(V @ W)

EXAMPLE: The same is true for Clifford algebras:

CI(V,g)&CI(V,d)y=Cl(Va V' g+ ).
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Pseudoscalar

LEMMA (*): Let A := Aeven®Aogd, B := Beven® Boyqq be graded associative
algebras. Suppose that B contains an even element (pseudoscalar) £ with
the following properties:

g2 =1,eb= (—1)5195.

Then A®RB = A ® B (the graded tensor product is isomorphic to the usual
one).

Proof: Consider a subalgebra A’ ¢ A®B generated by elements a®e? and
B'=1® BC AXB. Then

1. A = A commutes with B’ £ B.
2. A B = A®B as a vector space. =

REMARK (*): If in the definition of pseudoscalar we replace €2 = 1 by
g2 = —1, Lemma (*) will give A®B = AS'9" @ B.

-
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Unit pseudoscalar

DEFINITION: Let (V,g) be an oriented real vector space with orthogonal
basis eq,...,en such that g(e;,e;) = £1. Unit pseudoscalar in CI(V,g) is
€ .= €1€e92€3...en,.

EXERCISE: Prove ce; = (—1)"le,e. In other words, ¢ is a pseudoscalar
when n is even.

(n)(n—1)
EXERCISE: Prove that 2 =(—1)" 2 (—1)4 if g has signature (p,q).

REMARK: Since (p+¢)2 = (p—¢)?2 mod 4, we have (p+¢)(p+q—1)+2¢ =

+a?+2¢-p+a)=0@-0°-@P-a)=@-@E-q-1) mod4. This
gives

e2 = (—1)pra-Dp+9-2)/2+q — (_1)p—D)(p—a-1)/2 _ 41 p—g=0,1 mod4
—1 p—¢q¢g=2,3 mod 4.
COROLLARY: Denote the Clifford algebra of a real vector space of

signature (p,q) by Cl(p,q). Then Cl(p + m,q + m') = Cl(p,q) ® Cl(m,m')
when m +m/ is even, and m —m/ =0 mod 4.

Proof: The pseudoscalar ¢ in Cl(m,m’) satisfies e2 = 1. Applying Lemma
(*), we obtain Cl(p,q) ® Cl(m,m') = Cl(p,q)® Cl(m,m’). Then we apply the
isomorphism CI(V, )& CI(V, ) =CI(Vae V. ,g+4g) m
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Bott periodicity over C

COROLLARY: Let A[i] denote the tensor product A ® Mat(i) = Mat(z, A).
Then Ci(p+ 1,9+ 1) = Cl(p,q)[2].

Proof: Use the previous corollary and an isomorphism CI(1,1) = Mat(2,R)
(prove it). =

THEOREM: (Bott periodicity over C)
Clifford algebra CI(V,q) of a complex vector space V = C" with ¢ non-

n—1
degenerate is isomorphic to Mat (((C)Qn/2> (n even) and Mat (CCQ 2 ) ®

n—1

Mat <C2 2 ) (n odd).

Proof: Use the previous corollary and isomorphisms CI(C) = CoC, CI(0) = C.
m
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Bott periodicity over R.

CLAIM: Cl(p + m,qg + m') £ Cl(q,p) ® Cl(m,m') if m + m' is even, and
m—m/ =2 mod 4.

Proof: In Cl(m,m') the pseudoscalar e satisfies €2 = —1. Applying Remark

(*), we obtain Cl(p, ¢)S'9"® Cl(m,m') = Cl(p, ¢)® Cl(m,m') = Cl(p+m,qg+m).
Then we use an isomorphism Cl(p, ¢)S'9" = Cl(p,q). =

COROLLARY: Cl(p+2,9) £ Cl(q,p)[2] and Cl(p,q+2) = Cl(q,p) ® H.

Proof: We use the previous claim and the isomorphisms CI(2,0) = Mat(2,R),
Cl(0,2) =H. =

COROLLARY: (Bott Periodicity modulo 4):

The previous corollary immediately gives Cl(p + 4,q9) = Cl(q,p + 2)[2] =
Cl(p, q) ® Mat(2,H) and Cl(p,q+4) = Cl(¢g + 2,p) ® H = Cl(p, q) ® Mat(2, H).

10
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Bott periodicity modulo 8.
EXERCISE: Prove the isomorphism H ®pr H = Mat(4,R).

COROLLARY: (Bott Periodicity modulo 8):
This isomorphism and the previous corollary give Cl(p + 8,q) = Cl(p, q)[16],

Cl(p,q + 8) = Cl(p, q)[16].

The table of Clifford algebras Cl(p, q)

ez s | 7 ] e | s | 4] s | 2|+ | o | 2] 2] =] 4]-s] 6| 7] 5|
[ o | O N | S O T O N | | |
1 | I T I . e 1 1 1 1 | | | |
2 | 1 1 [men] Me®m | | B |1 | | | |
s | 1 1 1 imeol [ Hi R meol | ® [ | | | | |
e | 1 wem|  [Men] MER | ren]  [MeH] | | | |
5 | | | [vewr|  [meol MR Mol [MeR?|  [MeO] | | |
o | [ Men]  (vem] [ MED | MER | (MeB]  (vem] [ MED ] | |
7 | [MEOl MR [uEO] MERE] [MEOl MR [uEO] MERE] |
s (MR men]  (MeB|  [Mien] [me®]  [MeB]  [MEem|  [MGeD)] [MCe®]
I

N S S N S S I B S N S I B B
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Pseudoscalar on an odd-dimensional space

For any odd-dimensional space V, the pseudoscalar e = ejep...ep, 41 COmmutes
with a multiplication by generators of CI(V), hence defines an automorphism
of CI(V). If V were a complex vector space, we can always chose the basis
€1,€2,...,eo,41 iN SUCh a way that e2 = 1. Indeed,

62 — (_]_)(p-l'Q—l)(p-HI—Q)/Q—I-q — (_1)(p—q)(p—q—1)/2 — {—_|—:i g:gig:é 223 j

This pseudoscalar is central, because V is odd-dimensional. This gives the
eigenvalue decomposition CI(V) = CIT(V) & ClI— (V).

CLAIM: Each of the algebras CIT(V), CI=(V) is isomorphic to Mat(C").

Proof: Eigenvalues of ¢ acting on CI(V) are equal to +1 because €2 =
On the other hand, an automorphism of V which exchanges e; and es
maps € to —e, hence permutes the eigenspaces. Therefore, the subalge-
bras CIT(V), CI—(V) are isomorphic. We obtain that the decomposition
CI(V) = Mat(2",C) @ Mat(2",C) coincides with the eigenspace decompo-
sition defined by -.

REMARK: The center of CI(V) is isomorphic to C @ C. The orthogonal
group O(V) acts on CI(V) by automorphisms, and maps ¢ to +e. In
particular, SO(V) acts on CI=(V) by automorphisms.
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Spinorial group Spin(2n)

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove
that the automorphism group Aut(Mat(V)) is isomorphic to PGL(V) (the
quotient of GL(V') by its center).

REMARK: Let V = C2" be a vector space over C with non-degenerate scalar
product. The group SO(V) acts on CI(V) by automorphisms, giving an
action SO(V) — Aut(Mat(2",C)) = PGL(2"™, C), as shown above.

DEFINITION: CIlifford module is a faithful representation of the Clifford
algebra; when the Clifford algebra is Mat(A,n), its Clifford modules are iso-
morphic to Ak".

DEFINITION: (Elie Cartan, 1913)
Spinor representation of the Lie algebra so(V) is its representation on the
Clifford module C2" induced by the isomorphism pgl(27) = sl(27).

EXERCISE: Prove that 71(SO(n)) = Z/2Z, for n > 3.
DEFINITION: Spinor group Spin(2n) is the double cover of SO(2n) ob-

tained as a Lie group of so(V) acting on its spinor representation.
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Spinorial group Spin(2n + 1)

REMARK: Let V = C2"t+1 pe a vector space over C with non-degenerate
scalar product. The group SO(V) acts on CI(V) be automorphisms, and
defines a homomorphism

SO(V) — Aut(Mat(2",C) & Mat(2",C)) = PGL(2",C) x PGL(2", C).

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra so(V), V = C2"t+1 s its represen-
tation on the Clifford module C2" induced by the isomorphism pgl(2", C) =
s[(2™, C).

DEFINITION: Spinor group Spin(2n + 1) is a double cover of SO(2n + 1)
obtained as a Lie group of so(V) acting on its spinorial representation.

EXERCISE: In even- and odd-dimensional case, prove that Spin(r) is, in-
deed, a double cover of SO(r).

REMARK: Later today we will see that the Spin group is embedded as
a multiplicative subgroup in the Clifford algebra, and acts faithfully in

each Clifford module.
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An isomorphism so(V) = A2(V)

CLAIM: Let g be a non-degenerate scalar product on V. Then the Lie algebra
so(V) is naturally isomorphic to A2(V).

Proof: Consider gasamap g: V — V* andlet VvV : V®V — End(V)
take z®y to z®gly) € VV*¥ = End(V). Then for any v € V, we have
Yv(n)(v) = iy(n), where 4, is the contraction with the 1-form ¢g(v). Then for
any n € V®V, we have g(W(n)(x),y) = g(iz(n),y) = iziy(n). Clearly, this
map is skew-symmetric if and only if n € A2V. =

15
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so(V)-action on CI(V)

Remark 1: Let aj,an,... be derivations acting on an associative algebra A
and preserving its set of generators W. Then [ozz-,ozj] IS also a derivation, and
its action on A is extended from W. In particular, all Lie relations between
a; which are true on W remains true on A.

CLAIM: Consider the map V®V — CI(V) taking x®y to xy+g(x,y). Clifford
identities zy + g(x,y) = —yx — g(x,y) imply that this map is antisymmetric,
hence defines a linear operator W : A2(V) — CI(V). Then its image is a
Lie subalgebra of CI(V). Moreover, it is isomorphic to so(V)

Proof. Step 1: Let x,y € V be orthogonal vectors. Then xy = —yx, by
Clifford identities, hence V(x®y) = zy. Clearly, xyt —tzy = xzg(y,t) —yg(x,y),
hence a — [zy,a] acts on V C CI(V) as an element of so(V) corresponding
to x N y.

Step 2: The operation a — [zy,a] Is a derivation, hence the so(V)-action
on V defined above extends to the action of the same Lie algebra on CI(V)
(Remark 1). =
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Spin group as a subgroup in the group of invertible elements of CI(V)

REMARK: For any element z € CI(V), we define exp(x) = sz—f Clearly,
exp(xz) acts on CI(V) as matrix exponents of the map v —+ xzv. T herefore,
for any Lie subalgebra g C Der(CI(V)) of derivations of CI(V), its expo-
nent acts on CI(V) by automorphisms. Moreover, exp(g) generates a Lie
group G which satisfies Lie(G) = g.

THEOREM: Consider the Lie algebra embedding so(V) — Der(CI(V)) con-
structed above. Then its exponent is the Spin group acting on CI(V) by
automorphisms.

Proof. Step 1: Clearly, an exponent of a derivation is an automorphism, and
the exponent of so(V) is SO(V) or its covering. It remains to show that
this subgroup is the Spin group, and not its quotient SO(V).

Step 2: Since CI(R3,4 + +) = H?, and its spinorial representation is H.
This gives Spin(3) = SU(2), where SU(2) = U(1,H) is the group of unit
quaternions. This proves the claim when V = R3.

Step 3: Forany V =R", n > 3, thereis a 3-dimensional subspace W C V/, and
the corresponding subgroup G(V) C CI(V) is isomorphic to SU(2), while
its Lie algebra is isomorphic to so(3). This is impossible if G(V) = SO(V)
hence G(V) is the 2-sheeted covering of SO(V). =

REMARK: By construction, for any n € A2(V), the element of Spin(V)

corresponding to n is the map =z — elxe~". Therefore, Spin(V) C CI(V)* is

the multiplicative subgroup of CI(V) generated by ¢”, for all n € A2(V).
17



