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Clifford algebras

DEFINITION: The Clifford algebra of a vector space V with a scalar

product q is an algebra generated by V with a relation xy + yx = −q(x, y)1,
that is, a quotient of T⊗V := k ⊕ V ⊕ V ⊗ V ⊕ ...⊕ T⊗iV ⊕ ... by an ideal

T⊗V · (xy+ yx+ q(x, y)) · T⊗V

generated by the relation xy+ yx = −q(x, y) for all x, y ∈ V .

EXAMPLE: If g = 0, Clifford algebra is Grassmann algebra.

EXAMPLE: Cl(R,+) = C (prove it).

EXAMPLE: Cl(R,−) = R⊕ R (prove it).

EXAMPLE: Cl(R2,++) = H (prove it).

EXAMPLE: Cl(R2,−−) = Cl(R2,+−) = Mat(2,R) (left as a homework).
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Grading on the Clifford algebra

DEFINITION: A Z/2Z-graded algebra is an algebra A = Aeven ⊕ Aodd
such that AevenAodd ⊂ Aodd, AoddAeven ⊂ Aodd, AevenAeven ⊂ Aeven and
AoddAodd ⊂ Aeven.

EXAMPLE: The Clifford algebra is Z/2Z graded: Cl(V, g) = Cleven(V, g)⊕
Clodd(V, g), with Clodd(V, g) generated by products of odd number of xi ∈ V ,
and Cleven(V, g) by products of even number of xi.

EXAMPLE: The Grassmann algebra Λ∗(V ) = Cl(V,0) is Z/2Z graded
(odd forms are odd, even forms are even). This is a special case of the
previous example.

DEFINITION: Let A = Aeven ⊕ Aodd be a graded associative algebra. Let
Asign be the same vector space with the new multiplication a•a′ := (−1)ãã

′
aa′.

EXERCISE: Prove that Asign is associative. Construct an isomorphism
Λ∗(V ) ∼= Λ∗(V )sign

EXERCISE: Prove that Cl(V, g)sign = Cl(V,−g).

EXERCISE: Define G-graded algebras, where G is any group or semigroup.
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Associated graded algebra

DEFINITION: Let R be an associative algebra. Filtration on R is a collec-

tion of subspaces R0 ⊂ R1 ⊂ R2 ⊂ ... such that RiRj ⊂ Ri+j.

REMARK: Let x ∈ Rk, y ∈ Rl. Then the product xy modulo Rk+l−1 depends

only on the class of x modulo Rk−1. Indeed, Rk−1Rl ⊂ Rk+l−1. This defines

the product map (Rk/Rk−1) ⊗ (Rl/Rl−1)−→Rk+l/Rk+l−1. We obtained

the associative product structure on the space
⊕∞
i=0Ri/Ri−1.

DEFINITION: Let R0 ⊂ R1 ⊂ R2 ⊂ ... be a filtered algebra. The algebra⊕∞
i=0Ri/Ri−1 is called the associated graded algebra of this filtration.

EXAMPLE: Let Diffk(M) be the space of differential operators of order ⩽ k

on a smooth manifold M . Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂
Diff2(M) ⊂ ... on the ring of differential operators. The associated graded

ring is called the ring of symbols of differential operators.

EXERCISE: Prove that the ring of symbols is isomorphic to the space

Sym∗(TM) of symmetric polyvectors.
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Associated graded algebra of the Clifford algebra

THEOREM: Define a filtration F iCl(V ) by induction, F0Cl(V ) = ⟨1⟩, F1Cl(V ) =
⟨1 + V ⟩, F2Cl(V ) = ⟨1 + V + V · V ⟩, ..., F i+1Cl(V ) = F iCl(V ) + F iCl(V ) · V .
Then the associated graded algebra of Cl(V ) is isomorphic to the Grass-
mann algebra.
Proof. Step 1: Let F i(T⊗V ) := k ⊕ V ⊕ V ⊗ V ⊕ ...⊕ T⊗iV . Clearly, this fil-
tration is compatible with the filtration on the Clifford algebra. This implies
that

F i+1Cl(V )

F iCl(V )
=

F i+1T⊗V

F iT⊗V + F i+1T⊗V ∩ I
, (∗)

where I := T⊗V ⊗(x⊗y+y⊗x+q(x, y))⊗T⊗V is the ideal of relations defining
the Clifford algebra.
Step 2: Let I0 := T⊗V ⊗(x⊗y+y⊗x)⊗T⊗V . This is the ideal of relations in
the Grassmann algebra. Clearly, F iT⊗V +F i+1T⊗V ∩I = F iT⊗V +F i+1T⊗V ∩
I0. Then (*) implies that the associated graded algebra of Cl(V ) is

F i+1Cl(V )

F iCl(V )
=

F i+1T⊗V

F iT⊗V + F i+1T⊗V ∩ I0
,

which is identified with the associated graded of the Grassmann algebra.
Since the relations in the Grassmann algebra is homogeneous, the latter is
isomorphic to the Grassmann algebra itself.
COROLLARY: dimCl(V ) = 2dimV .
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Graded tensor product

DEFINITION: Let A := Aeven ⊕ Aodd, B := Beven ⊕ Bodd be graded asso-

ciative algebras. Define the graded tensor product A⊗̃B as A ⊗ B with

multiplication given by a ⊗ b · a′ ⊗ b′ = (−1)b̃ã
′
aa′ ⊗ bb′, where x̃ denotes the

parity of x.

EXAMPLE: Graded tensor product of Grassmann algebras gives the Grass-

mann algebra of a direct sum:

Λ∗V ⊗̃Λ∗W ∼= Λ∗(V ⊕W )

EXAMPLE: The same is true for Clifford algebras:

Cl(V, g)⊗̃Cl(V ′, g′) = Cl(V ⊕ V ′, g+ g′).
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Pseudoscalar

LEMMA (*): Let A := Aeven⊕Aodd, B := Beven⊕Bodd be graded associative

algebras. Suppose that B contains an even element (pseudoscalar) ε with

the following properties:

ε2 = 1, εb = (−1)b̃bε.

Then A⊗̃B ∼= A ⊗ B (the graded tensor product is isomorphic to the usual

one).

Proof: Consider a subalgebra A′ ⊂ A⊗̃B generated by elements a⊗̃εã and

B′ = 1⊗B ⊂ A⊗̃B. Then

1. A′ ∼= A commutes with B′ ∼= B.

2. A′ ⊗B′ = A⊗̃B as a vector space.

REMARK (*): If in the definition of pseudoscalar we replace ε2 = 1 by

ε2 = −1, Lemma (*) will give A⊗̃B ∼= Asign ⊗B.
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Unit pseudoscalar

DEFINITION: Let (V, g) be an oriented real vector space with orthogonal
basis e1, ..., en such that g(ei, ei) = ±1. Unit pseudoscalar in Cl(V, g) is
ε := e1e2e3...en.

EXERCISE: Prove εei = (−1)n−1eiε. In other words, ε is a pseudoscalar
when n is even.

EXERCISE: Prove that ε2 = (−1)
(n)(n−1)

2 (−1)q if g has signature (p, q).

REMARK: Since (p+q)2 = (p−q)2 mod 4, we have (p+q)(p+q−1)+2q =
(p+ q)2 + 2q − (p+ q) = (p − q)2 − (p − q) = (p − q)(p − q − 1) mod 4. This
gives

ε2 = (−1)(p+q−1)(p+q−2)/2+q = (−1)(p−q)(p−q−1)/2 =

+1 p− q ≡ 0,1 mod 4

−1 p− q ≡ 2,3 mod 4.

COROLLARY: Denote the Clifford algebra of a real vector space of
signature (p, q) by Cl(p, q). Then Cl(p + m, q + m′) ∼= Cl(p, q) ⊗ Cl(m,m′)
when m+m′ is even, and m−m′ ≡ 0 mod 4.

Proof: The pseudoscalar ε in Cl(m,m′) satisfies ε2 = 1. Applying Lemma
(*), we obtain Cl(p, q) ⊗ Cl(m,m′) ∼= Cl(p, q)⊗̃Cl(m,m′). Then we apply the
isomorphism Cl(V, g)⊗̃Cl(V ′, g′) = Cl(V ⊕ V ′, g+ g′).
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Bott periodicity over C

COROLLARY: Let A[i] denote the tensor product A⊗Mat(i) ∼= Mat(i, A).

Then Cl(p+1, q+1) ∼= Cl(p, q)[2].

Proof: Use the previous corollary and an isomorphism Cl(1,1) = Mat(2,R)
(prove it).

THEOREM: (Bott periodicity over C)
Clifford algebra Cl(V, q) of a complex vector space V = Cn with q non-

degenerate is isomorphic to Mat
(
(C)2n/2

)
(n even) and Mat

(
C2

n−1
2

)
⊕

Mat

(
C2

n−1
2

)
(n odd).

Proof: Use the previous corollary and isomorphisms Cl(C) = C⊕C, Cl(0) = C.
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Bott periodicity over R.

CLAIM: Cl(p + m, q + m′) ∼= Cl(q, p) ⊗ Cl(m,m′) if m + m′ is even, and

m−m′ ≡ 2 mod 4.

Proof: In Cl(m,m′) the pseudoscalar ε satisfies ε2 = −1. Applying Remark

(*), we obtain Cl(p, q)sign⊗Cl(m,m′) ∼= Cl(p, q)⊗̃Cl(m,m′) ∼= Cl(p+m, q+m′).
Then we use an isomorphism Cl(p, q)sign = Cl(p, q).

COROLLARY: Cl(p+2, q) ∼= Cl(q, p)[2] and Cl(p, q+2) ∼= Cl(q, p)⊗ H.

Proof: We use the previous claim and the isomorphisms Cl(2,0) = Mat(2,R),
Cl(0,2) = H.

COROLLARY: (Bott Periodicity modulo 4):

The previous corollary immediately gives Cl(p + 4, q) ∼= Cl(q, p + 2)[2] =

Cl(p, q)⊗Mat(2,H) and Cl(p, q+4) ∼= Cl(q+2, p)⊗H = Cl(p, q)⊗Mat(2,H).
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Bott periodicity modulo 8.

EXERCISE: Prove the isomorphism H⊗R H = Mat(4,R).

COROLLARY: (Bott Periodicity modulo 8):

This isomorphism and the previous corollary give Cl(p+ 8, q) = Cl(p, q)[16],

Cl(p, q+8) = Cl(p, q)[16].

The table of Clifford algebras Cl(p, q)

aaaaaaaaaa
p+ q

q − p 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8

0 R
1 R2 C
2 M(2,R) M(2,R) H
3 M(2,C) M(2,R)2 M(2,C) H2

4 M(2,H) M(4,R) M(4,R) M(2,H) M(2,H)

5 M(2,H)2 M(4,C) M(4,R)2 M(4,C) M(2,H)2 M(4,C)
6 M(4,H) M(4,H) M(8,R) M(8,R) M(4,H) M(4,H) M(8,R)
7 M(8,C) M(4,H)2 M(8,C) M(8,R)2 M(8,C) M(4,H)2 M(8,C) M(8,R)2

8 M(16,R) M(8,H) M(8,H) M(16,R) M(16,R) M(8,H) M(8,H) M(16,R) M(16,R)

ε2 + − − + + − − + + − − + + − − + +
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Pseudoscalar on an odd-dimensional space

For any odd-dimensional space V , the pseudoscalar ε = e1e2...e2n+1 commutes
with a multiplication by generators of Cl(V ), hence defines an automorphism
of Cl(V ). If V were a complex vector space, we can always chose the basis
e1, e2, ..., e2n+1 in such a way that ε2 = 1. Indeed,

ε2 = (−1)(p+q−1)(p+q−2)/2+q = (−1)(p−q)(p−q−1)/2 =
{
+1 p− q ≡ 0,1 mod 4
−1 p− q ≡ 2,3 mod 4.

This pseudoscalar is central, because V is odd-dimensional. This gives the
eigenvalue decomposition Cl(V ) = Cl+(V )⊕Cl−(V ).

CLAIM: Each of the algebras Cl+(V ), Cl−(V ) is isomorphic to Mat(Cr).

Proof: Eigenvalues of ε acting on Cl(V ) are equal to ±1 because ε2 = 1.
On the other hand, an automorphism of V which exchanges e1 and e2
maps ε to −ε, hence permutes the eigenspaces. Therefore, the subalge-
bras Cl+(V ), Cl−(V ) are isomorphic. We obtain that the decomposition
Cl(V ) = Mat(2n,C)⊕Mat(2n,C) coincides with the eigenspace decompo-
sition defined by ε.

REMARK: The center of Cl(V ) is isomorphic to C ⊕ C. The orthogonal
group O(V ) acts on Cl(V ) by automorphisms, and maps ε to ±ε. In
particular, SO(V ) acts on Cl±(V ) by automorphisms.
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Spinorial group Spin(2n)

EXERCISE: Let V be a vector space over a field of characteristic 0. Prove
that the automorphism group Aut(Mat(V )) is isomorphic to PGL(V ) (the
quotient of GL(V ) by its center).

REMARK: Let V = C2n be a vector space over C with non-degenerate scalar
product. The group SO(V ) acts on Cl(V ) by automorphisms, giving an
action SO(V ) ↪→ Aut(Mat(2n,C)) = PGL(2n,C), as shown above.

DEFINITION: Clifford module is a faithful representation of the Clifford
algebra; when the Clifford algebra is Mat(A,n), its Clifford modules are iso-
morphic to Akn.

DEFINITION: (Elie Cartan, 1913)
Spinor representation of the Lie algebra so(V ) is its representation on the
Clifford module C2n induced by the isomorphism pgl(2n) = sl(2n).

EXERCISE: Prove that π1(SO(n)) = Z/2Z, for n ⩾ 3.

DEFINITION: Spinor group Spin(2n) is the double cover of SO(2n) ob-
tained as a Lie group of so(V ) acting on its spinor representation.

13



Seiberg-Witten invariants, lecture 1 M. Verbitsky

Spinorial group Spin(2n+1)

REMARK: Let V = C2n+1 be a vector space over C with non-degenerate

scalar product. The group SO(V ) acts on Cl(V ) be automorphisms, and

defines a homomorphism

SO(V ) ↪→ Aut(Mat(2n,C)⊕Mat(2n,C)) = PGL(2n,C)× PGL(2n,C).

DEFINITION: (Elie Cartan, 1913)

Spinor representation of the Lie algebra so(V ), V = C2n+1, is its represen-

tation on the Clifford module C2n induced by the isomorphism pgl(2n,C) =

sl(2n,C).

DEFINITION: Spinor group Spin(2n+1) is a double cover of SO(2n+1)

obtained as a Lie group of so(V ) acting on its spinorial representation.

EXERCISE: In even- and odd-dimensional case, prove that Spin(r) is, in-

deed, a double cover of SO(r).

REMARK: Later today we will see that the Spin group is embedded as

a multiplicative subgroup in the Clifford algebra, and acts faithfully in

each Clifford module.
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An isomorphism so(V ) = Λ2(V )

CLAIM: Let g be a non-degenerate scalar product on V . Then the Lie algebra

so(V ) is naturally isomorphic to Λ2(V ).

Proof: Consider g as a map ĝ : V → V ∗, and let Ψ : V ⊗ V → End(V )

take x ⊗ y to x ⊗ ĝ(y) ∈ V ⊗ V ∗ = End(V ). Then for any v ∈ V , we have

ψ(η)(v) = iv(η), where iv is the contraction with the 1-form g(v). Then for

any η ∈ V ⊗ V , we have g(Ψ(η)(x), y) = g(ix(η), y) = ixiy(η). Clearly, this

map is skew-symmetric if and only if η ∈ Λ2V .
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so(V )-action on Cl(V )

Remark 1: Let α1, α2, ... be derivations acting on an associative algebra A

and preserving its set of generators W . Then [αi, αj] is also a derivation, and

its action on A is extended from W . In particular, all Lie relations between

αi which are true on W remains true on A.

CLAIM: Consider the map V ⊗V → Cl(V ) taking x⊗y to xy+g(x, y). Clifford

identities xy + g(x, y) = −yx − g(x, y) imply that this map is antisymmetric,

hence defines a linear operator Ψ : Λ2(V ) → Cl(V ). Then its image is a

Lie subalgebra of Cl(V ). Moreover, it is isomorphic to so(V )

Proof. Step 1: Let x, y ∈ V be orthogonal vectors. Then xy = −yx, by

Clifford identities, hence Ψ(x⊗ y) = xy. Clearly, xyt− txy = xg(y, t)− yg(x, y),

hence a→ [xy, a] acts on V ⊂ Cl(V ) as an element of so(V ) corresponding

to x ∧ y.

Step 2: The operation a → [xy, a] is a derivation, hence the so(V )-action

on V defined above extends to the action of the same Lie algebra on Cl(V )

(Remark 1).
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Spin group as a subgroup in the group of invertible elements of Cl(V )

REMARK: For any element x ∈ Cl(V ), we define exp(x) :=
∑
i
xi

i! . Clearly,
exp(x) acts on Cl(V ) as matrix exponents of the map v → xv. T herefore,
for any Lie subalgebra g ⊂ Der(Cl(V )) of derivations of Cl(V ), its expo-
nent acts on Cl(V ) by automorphisms. Moreover, exp(g) generates a Lie
group G which satisfies Lie(G) = g.
THEOREM: Consider the Lie algebra embedding so(V ) → Der(Cl(V )) con-
structed above. Then its exponent is the Spin group acting on Cl(V ) by
automorphisms.
Proof. Step 1: Clearly, an exponent of a derivation is an automorphism, and
the exponent of so(V ) is SO(V ) or its covering. It remains to show that
this subgroup is the Spin group, and not its quotient SO(V ).
Step 2: Since Cl(R3,+ + +) = H2, and its spinorial representation is H.
This gives Spin(3) = SU(2), where SU(2) = U(1,H) is the group of unit
quaternions. This proves the claim when V = R3.
Step 3: For any V = Rn, n > 3, there is a 3-dimensional subspace W ⊂ V , and
the corresponding subgroup G(V ) ⊂ Cl(V ) is isomorphic to SU(2), while
its Lie algebra is isomorphic to so(3). This is impossible if G(V ) = SO(V )
hence G(V ) is the 2-sheeted covering of SO(V ).

REMARK: By construction, for any η ∈ Λ2(V ), the element of Spin(V )
corresponding to η is the map x → eηxe−η. Therefore, Spin(V ) ⊂ Cl(V )∗ is
the multiplicative subgroup of Cl(V ) generated by eη, for all η ∈ Λ2(V ).
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