Complex surfaces

lecture 1: Kodaira-Enriques classification for non-algebraic surfaces

Misha Verbitsky

IMPA, sala 236

January 6, 2024, 17:00

M. Verbitsky

Kodaira dimension

REMARK: This is an introductory lecture. Kodaira classification will not be proven in this course (see [BHPV] for its proof); we also assume existence of minimal models.

DEFINITION: A complex surface is a compact complex manifold M of complex dimension 2. Let M be a compact complex manifold, and K_M its canonical bundle. The canonical ring $\bigoplus_{i=0}^{\infty} H^0(K^i)$ is finitely generated for for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex surfaces (Kodaira). Conjecturally, it is always finitely generated. Let $a \in \mathbb{Z}^{>0}$. Consider the function $P_a(N) = H^0(K^{aN})$. If the canonical ring is finitely generated, the function $N \mapsto P_a(N)$ is polynomial for a which divides all degrees of its generators (prove this). The degree $\kappa(M)$ of this polynomial is called the Kodaira dimension of M. If $H^0(K^i) = 0$ for all i > 0, we set $\kappa(M) = -\infty$.

REMARK: Projective surfaces were classified by Enriques; Kodaira explained his classification, using the Kodaira dimension, and extended it to complex surfaces.

Today, I will formulate Kodaira classification theorem for non-projective complex surfaces.

Nilmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action of a nilpotent Lie group. Then M is called a nilmanifold.

REMARK: All nilmanifolds are obtained as quotient spaces, M = G/H.

THEOREM: (Malčev)

Let \mathfrak{g} be a nilpotent Lie algebra defined over \mathbb{Q} , and G its Lie group. Then G contains a discrete subgroup Γ such that G/Γ is compact, and $\Gamma = e^{\Gamma \mathfrak{g}}$, where $\Gamma_{\mathfrak{g}}$ is a lattice subalgebra in \mathfrak{g} . Moreover, $\mathfrak{g} \cong \Gamma_{\mathfrak{g}} \otimes_{\mathbb{Q}} \mathbb{R}$. Finally, all nilmanifolds are obtained this way.

REMARK: Topologically, all simply connected nilpotent Lie groups are diffeomorphic to \mathbb{R}^n , and all nilmanifolds are iterated circle fibrations.

Complex structures

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X, Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

REMARK: It is sufficient to check the condition $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$ on any set of generators of $T^{1,0}M$. In particular, if (M, I) is homogeneous (equipped with a transitive Lie group action preserving I) it suffices to check it on invariant vector fields.

Complex nilmanifolds

DEFINITION: An integrable complex structure on a real Lie algebra \mathfrak{g} is a subalgebra $\mathfrak{g}^{1,0} \subset \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ such that $\mathfrak{g}^{1,0} \oplus \overline{\mathfrak{g}^{1,0}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$

REMARK: Any such decomposition defines a complex structure I on \mathfrak{g} by $I|_{\mathfrak{g}^{1,0}} = \sqrt{-1}$ and $I|_{\mathfrak{g}^{0,1}} = -\sqrt{-1}$. Integrability of complex structure is given by $[T^{1,0}G, T^{1,0}G] \subset T^{1,0}G$, which is equivalent to $[\mathfrak{g}^{1,0}, \mathfrak{g}^{1,0}] \subset \mathfrak{g}^{1,0}$.

REMARK: Right-invariant complex structures on a connected real Lie group **are in 1 to 1 correspondence with integrable complex structures** on its Lie algebra.

DEFINITION: A complex nilmanifold is a nilmanifold $M = G/\Gamma$ equipped with a complex structure, in such a way that G has a right-invariant complex structure, and the projection $G \longrightarrow M$ is holomorphic.

REMARK: The same way one defines complex solvmanifolds $M = G/\Gamma$, where G is a solvable Lie group, Γ a cocompact lattice, and $\mathfrak{g}^{1,0} \oplus \overline{\mathfrak{g}^{1,0}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ a decomposition of its Lie algebra. Indeed, this construction would work for any Lie group, giving left-invariant complex structures on G and its left quotients by any discrete subgroup.

Kodaira surface as a complex nilmanifold

Let $G := \mathbb{R} \times G_0$, where G_0 is the 3-dimensional real Lie group of upper triangular matrices 3x3. This group contains many cocompact lattices, for example $\Gamma := \mathbb{Z} \times \Gamma_0$, where Γ_0 of integer matrices. The corresponding Lie algebra \mathfrak{g} . is generated by x, y, z, t with the only non-zero commutator [x, y] = z.

DEFINITION: (Primary) Kodaira surface can be defined as $M := G/\Gamma$ with the complex structure defined by the subalgebra $\mathfrak{g}^{1,0} := \langle x + \sqrt{-1} y, z + \sqrt{-1} t \rangle$, which is actually abelian.

Kodaira surfaces

DEFINITION: Primary Kodaira surface (also called Kodaira-Thurston surface) is a complex surface M with $b_1(M) = 3$ admitting locally trivial holomorphic fibration with the fiber elliptic curve over a base elliptic curve. Secondary Kodaira surface is a quotient of a primary Kodaira surface by a free action of a finite group, with $b_1(M) = 1$.

EXAMPLE: Let $G := \mathbb{R} \times G_0$ be as above, and consider the fibration $G/\Gamma \longrightarrow \frac{G}{Z} / \frac{\Gamma}{\mathbb{Z}^2}$, where Z is the center of G, and \mathbb{Z}^2 in the second term is its intersection with the lattice. On the level of Lie algebras, this projection corresponds to the map $\mathfrak{g} = \langle x, y, z, t \rangle \longrightarrow \langle x, y \rangle$.

REMARK: From the construction of the complex structure on M, it is apparent that this projection is holomorphic; its fibers and its base is 2-dimensional nilmanifolds, that is, elliptic curves. This implies that G/Γ is a primary Kodaira surface.

REMARK: For a complete classification of 2-dimensional complex nilmanifolds and solvmanifolds, see *Keizo Hasegawa*, *Complex and Kahler structures on Compact Solvmanifolds*, *J. Symplectic Geom. Volume 3*, *Number 4* (2005), 749-767, https://arxiv.org/abs/0804.4223.

Minimal models

REMARK: It is not hard to see that **bimeromorphic complex surfaces** have the same Kodaira dimension.

DEFINITION: Let M be a complex surface. It is called **minimal** if it does not contain a smooth rational curve with self-intersection -1.

THEOREM: (Castelnuovo) For any complex surface M, there exists a minimal surface M_1 and a holomorphic, bimeromorphic map $M \rightarrow M_1$.

DEFINITION: In this situation, M_1 is called a minimal model for M.

EXERCISE: Observe that a minimal model is not unique; discuss examples.

Neron-Severi lattice for non-algebraic complex surfaces

DEFINITION: Let M be a compact Kähler manifold. The Neron-Severi lattice is $NS(M) := H^{1,1}(M) \cap H^2(M,\mathbb{Z})$.

THEOREM: (Kodaira)

A complex surface is projective if any of these equivalent statements holds.

(i) The field of meromorphic functions on M has trancendental dimension 2.

(ii) M admits a holomorphic line bundle L with $c_1(L)^2 > 0$.

(iii) The Neron-Severi lattice of M contains a class with positive self-intersection.

REMARK: This statement is not hard to deduce from Kodaira vanishing theorem and Nakai-Moishezon theorem.

Remark 1: From this theorem it follows immediately that for any nonalgebraic surface, the intersection form on NS(M) is non-positive definite. In particular, for any $a, b \in NS(M)$ with $a^2 = 0$, we have ab = 0. Indeed, if ab > 0, the square $(na + b)^2$ is positive for $n \gg 0$.

Class VII surfaces

DEFINITION: Class VII surface (also called Kodaira class VII surface) is a complex surface with $\kappa(M) = \infty$ and first Betti bumber $b_1(M) = 1$. Minimal class VII surfaces are called **class VII**₀ surfaces.

REMARK: Kodaira defined the "Class VII" in another, non-equivalent way. The current "Class VII" is Kodaira's "class 7" from his version of Kodaira-Enriques classification, published 1966. The term "class VII" with its current meaning is due to Barth, Peters, Van de Ven.

Kodaira classification for non-algebraic surfaces

THEOREM: Let M be a minimal complex surface which is not projective. Then M belongs to one of the following mutually exclusive classes.

 $[\kappa(M) = 1]$ *M* is equipped with a folomorphic fibration $\pi : M \longrightarrow S$ over a complex curve *S* of genus > 1. All fibers of π are elliptic curves, and general fibers are isomorphic.

 $[\kappa(M) = 0] M$ is a K3 surface, torus, primary or secondary Kodaira surface. $[\kappa(M) = -\infty] M$ is a class VII₀ surface.

REMARK: If $\kappa(M) = 1$, the surface M admits infinitely many curves in the same homology class [C]. Since the self-intersection form on NS(M) is non-positive definite, we have $[C]^2 = 0$. This means that these curves do not intersect, and M is holomorphically fibered over a curve. The canonical class of the general fiber C of this fibration is obtained by adjunction formula, $K_C = K_M|_C$, because the normal bundle is trivial. Since $[C]^2 = 0$, $x \cdot [C] = 0$ for any $x \in NS(M)$ (Remark 1), which implies that $K_C = K_M|_C$ has degree 0. Therefore, C is an elliptic curve, and M is an elliptic surface. This proves that any non-algebraic surface with $\kappa(M) = 1$ is elliptic.

REMARK: The same argument also implies that the elliptic fibration on M is unique, for any non-projective elliptic surface M.