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Kodaira dimension

REMARK: This is an introductory lecture. Kodaira classification will not be
proven in this course (see [BHPV] for its proof); we also assume existence
of minimal models.

DEFINITION: A complex surface is a compact complex manifold M of
complex dimension 2. Let M be a compact complex manifold, and KM its
canonical bundle. The canonical ring

⊕∞
i=0H

0(Ki) is finitely generated for
for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex
surfaces (Kodaira). Conjecturally, it is always finitely generated. Let a ∈
Z>0. Consider the function Pa(N) = H0(KaN). If the canonical ring is finitely
generated, the function N 7→ Pa(N) is polynomial for a which divides all
degrees of its generators (prove this). The degree κ(M) of this polynomial
is called the Kodaira dimension of M . If H0(Ki) = 0 for all i > 0, we set
κ(M) = −∞.

REMARK: Projective surfaces were classified by Enriques; Kodaira explained
his classification, using the Kodaira dimension, and extended it to complex
surfaces.

Today, I will formulate Kodaira classification theorem for non-projective
complex surfaces.
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Nilmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action

of a nilpotent Lie group. Then M is called a nilmanifold.

REMARK: All nilmanifolds are obtained as quotient spaces, M = G/H.

THEOREM: (Malčev)

Let g be a nilpotent Lie algebra defined over Q, and G its Lie group. Then G

contains a discrete subgroup Γ such that G/Γ is compact, and Γ = eΓg,

where Γg is a lattice subalgebra in g. Moreover, g ∼= Γg ⊗Q R. Finally, all

nilmanifolds are obtained this way.

REMARK: Topologically, all simply connected nilpotent Lie groups are

diffeomorphic to Rn, and all nilmanifolds are iterated circle fibrations.
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Complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure

is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM ⊗ C = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,

one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-

erator. A manifold with an integrable almost complex structure is called a

complex manifold.

REMARK: It is sufficient to check the condition [T1,0M,T1,0M ] ⊂ T1,0M

on any set of generators of T1,0M . In particular, if (M, I) is homogeneous

(equipped with a transitive Lie group action preserving I) it suffices to check

it on invariant vector fields.
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Complex nilmanifolds

DEFINITION: An integrable complex structure on a real Lie algebra g is
a subalgebra g1,0 ⊂ g⊗R C such that g1,0 ⊕ g1,0 = g⊗R C

REMARK: Any such decomposition defines a complex structure I on g by
I
∣∣∣g1,0 =

√
−1 and I

∣∣∣g0,1 = −
√
−1 . Integrability of complex structure is given

by [T1,0G,T1,0G] ⊂ T1,0G, which is equivalent to [g1,0, g1,0] ⊂ g1,0.

REMARK: Right-invariant complex structures on a connected real Lie group
are in 1 to 1 correspondence with integrable complex structures on its
Lie algebra.

DEFINITION: A complex nilmanifold is a nilmanifold M = G/Γ equipped
with a complex structure, in such a way that G has a right-invariant complex
structure, and the projection G−→M is holomorphic.

REMARK: The same way one defines complex solvmanifolds M = G/Γ,
where G is a solvable Lie group, Γ a cocompact lattice, and g1,0⊕g1,0 = g⊗RC
a decomposition of its Lie algebra. Indeed, this construction would work
for any Lie group, giving left-invariant complex structures on G and its left
quotients by any discrete subgroup.
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Kodaira surface as a complex nilmanifold

Let G := R × G0, where G0 is the 3-dimensional real Lie group of upper

triangular matrices 3x3. This group contains many cocompact lattices, for

example Γ := Z × Γ0, where Γ0 of integer matrices. The corresponding Lie

algebra g. is generated by x, y, z, t with the only non-zero commutator

[x, y] = z.

DEFINITION: (Primary) Kodaira surface can be defined as M := G/Γ

with the complex structure defined by the subalgebra g1,0 := ⟨x+
√
−1 y, z +√

−1 t⟩, which is actually abelian.
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Kodaira surfaces

DEFINITION: Primary Kodaira surface (also called Kodaira-Thurston
surface) is a complex surface M with b1(M) = 3 admitting locally trivial
holomorphic fibration with the fiber elliptic curve over a base elliptic curve.
Secondary Kodaira surface is a quotient of a primary Kodaira surface by a
free action of a finite group, with b1(M) = 1.

EXAMPLE: Let G := R × G0 be as above, and consider the fibration
G/Γ−→ G

Z

/
Γ
Z2, where Z is the center of G, and Z2 in the second term is

its intersection with the lattice. On the level of Lie algebras, this projection
corresponds to the map g = ⟨x, y, z, t⟩ −→ ⟨x, y⟩.

REMARK: From the construction of the complex structure on M , it is
apparent that this projection is holomorphic; its fibers and its base is
2-dimensional nilmanifolds, that is, elliptic curves. This implies that
G/Γ is a primary Kodaira surface.

REMARK: For a complete classification of 2-dimensional complex nilman-
ifolds and solvmanifolds, see Keizo Hasegawa, Complex and Kahler struc-
tures on Compact Solvmanifolds, J. Symplectic Geom. Volume 3, Number 4
(2005), 749-767, https://arxiv.org/abs/0804.4223.
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Minimal models

REMARK: It is not hard to see that bimeromorphic complex surfaces

have the same Kodaira dimension.

DEFINITION: Let M be a complex surface. It is called minimal if it does

not contain a smooth rational curve with self-intersection -1.

THEOREM: (Castelnuovo) For any complex surface M , there exists a

minimal surface M1 and a holomorphic, bimeromorphic map M −→M1.

DEFINITION: In this situation, M1 is called a minimal model for M .

EXERCISE: Observe that a minimal model is not unique; discuss exam-

ples.

8



Complex surfaces, 2025, lecture 1 M. Verbitsky

Neron-Severi lattice for non-algebraic complex surfaces

DEFINITION: Let M be a compact Kähler manifold. The Neron-Severi

lattice is NS(M) := H1,1(M) ∩H2(M,Z).

THEOREM: (Kodaira)

A complex surface is projective if any of these equivalent statements

holds.

(i) The field of meromorphic functions on M has trancendental dimension 2.

(ii) M admits a holomorphic line bundle L with c1(L)
2 > 0.

(iii) The Neron-Severi lattice of M contains a class with positive self-intersection.

REMARK: This statement is not hard to deduce from Kodaira vanishing

theorem and Nakai-Moishezon theorem.

Remark 1: From this theorem it follows immediately that for any non-

algebraic surface, the intersection form on NS(M) is non-positive definite. In

particular, for any a, b ∈ NS(M) with a2 = 0, we have ab = 0. Indeed, if

ab > 0, the square (na+ b)2 is positive for n ≫ 0.

9



Complex surfaces, 2025, lecture 1 M. Verbitsky

Class VII surfaces

DEFINITION: Class VII surface (also called Kodaira class VII surface) is a

complex surface with κ(M) = ∞ and first Betti bumber b1(M) = 1. Minimal

class VII surfaces are called class VII0 surfaces.

REMARK: Kodaira defined the “Class VII” in another, non-equivalent way.

The current “Class VII” is Kodaira’s “class 7” from his version of Kodaira-

Enriques classification, published 1966. The term “class VII” with its current

meaning is due to Barth, Peters, Van de Ven.

10



Complex surfaces, 2025, lecture 1 M. Verbitsky

Kodaira classification for non-algebraic surfaces

THEOREM: Let M be a minimal complex surface which is not projective.
Then M belongs to one of the following mutually exclusive classes.

[κ(M) = 1] M is equipped with a folomorphic fibration π : M −→ S over a
complex curve S of genus > 1. All fibers of π are elliptic curves, and general
fibers are isomorphic.

[κ(M) = 0] M is a K3 surface, torus, primary or secondary Kodaira surface.
[κ(M) = −∞] M is a class VII0 surface.

REMARK: If κ(M) = 1, the surface M admits infinitely many curves in the
same homology class [C]. Since the self-intersection form on NS(M) is non-
positive definite, we have [C]2 = 0. This means that these curves do not
intersect, and M is holomorphically fibered over a curve. The canonical
class of the general fiber C of this fibration is obtained by adjunction formula,
KC = KM |C , because the normal bundle is trivial. Since [C]2 = 0, x · [C] = 0
for any x ∈ NS(M) (Remark 1), which implies that KC = KM |C has degree
0. Therefore, C is an elliptic curve, and M is an elliptic surface. This
proves that any non-algebraic surface with κ(M) = 1 is elliptic.

REMARK: The same argument also implies that the elliptic fibration on
M is unique, for any non-projective elliptic surface M .
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