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Kodaira dimension (reminder)

DEFINITION: A complex surface is a compact complex manifold M of

complex dimension 2.

DEFINITION: A complex surface is a compact complex manifold M of

complex dimension 2. Let M be a compact complex manifold, and KM its

canonical bundle. The canonical ring
⊕∞

i=0H
0(Ki) is finitely generated for

for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex

surfaces (Kodaira). Conjecturally, it is always finitely generated. Let a ∈
Z>0. Consider the function Pa(N) = H0(KaN). If the canonical ring is finitely

generated, the function N 7→ Pa(N) is polynomial for a which divides all

degrees of its generators (prove this). The degree κ(M) of this polynomial

is called the Kodaira dimension of M . If H0(Ki) = 0 for all i > 0, we set

κ(M) = −∞.
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Holomorphic contractions and Hopf manifolds

DEFINITION: A holomorphic contraction of a manifold M with center in
x ∈ M is a map γ : M −→M , γ(x) = x, such that for each compact subset
K ⊂ M and any open neighbourhood U ∋ x, there exists N > 0 such that
γn(K) ⊂ U for all n > N .

DEFINITION: Let γ ∈ Aut(Cn) be an invertible contraction centered in 0,
and H := Cn\0

⟨γ⟩ the corresponding Z-quiotient. Then H is a complex manifold,
called a Hopf manifold. A Hopf manifold H is called a linear Hopf manifold
if the contraction γ is linear, and a classical Hopf manifold if γ = λ Id.

PROPOSITION: A Hopf manifold is diffeomorphic to S1 × S2n−1.
Proof. Step 1: If M is a classical Hopf manifold, this is clear (think of polar
system of coordinates). If M is linear, we deform γ it to λ Id, obtaining a
smooth family of compact manifolds with one of the fibers a classical
Hopf manifold; Ehresmann theorem implies that all fibers are diffeomorphic.

Step 2: Finally, if γ is an arbitrary contraction, we approximate γ by a
linear contraction A (around 0, such approximation always exists, because γ

is smooth), and consider a smooth family of Hopf manifolds defined by the
contraction tA + (1 − t)γ, with t ∈ [0,1]. Then we use Ehresmann theorem
again to show that all fibers of this smooth family are diffeomorphic.
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Class VII surfaces (reminder)

DEFINITION: Class VII surface (also called Kodaira class VII surface) is a

complex surface with κ(M) = ∞ and first Betti bumber b1(M) = 1. Minimal

class VII surfaces are called class VII0 surfaces.

REMARK: Kodaira defined the “Class VII” in another, non-equivalent way.

The current “Class VII” is Kodaira’s “class 7” from his version of Kodaira-

Enriques classification, published 1966. The term “class VII” with its current

meaning is due to Barth, Peters, Van de Ven.
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Hopf surfaces are class VII

DEFINITION: A primary Hopf surface is Hopf manifold of dimension 2.

A secondary Hopf surface is a quotient of a primary Hopf surface H by a

finite group freely and holomorphically acting on H.

CLAIM: Hopf surfaces are class VII0.

Proof. Step 1: The Kodaira dimension is stable under finite quotients (prove

it). It remains to show only that H := C2\0/⟨γ⟩ is class VII0.

Step 2: Since π1(CP1) = 0, covering homotopy implies that any map φ :

CP1 −→H is lifted to C2\0; since C2\0 does not contain compact curves,

the Hopf surface does not contain rational curves. This implies that H is

minimal.
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Hopf surfaces are class VII (2)

Step 3: Let M be a complex n manifold. For any holomorphic n-form
α ∈ Ωn(H), the form α ∧ α is a volume form, which is positive outside of the
zero divisor of α. For any holomorphic section η of Ωn(H)⊗N , one can locally
(outside of its zero set) define its N-th root α; then α∧α is a volume form. It
is independent from the choice of the N-th root (check this). This volume
form is strictly positive outside of zero set of η. One can consider η ∧ η as
a section of the real bundle Λ2n(M)⊗N , called the bundle of plurivolume
forms. The corresponding volume form is denoted N

√
η ∧ η

Step 4: It remains to show only that κ(M) = 0. We argue by contradiction.
Let η ∈ Ω2(H)⊗N be a non-zero section of the pluricanonical bundle K⊗N

H .
The pullback of η is a holomorphic pluricanonical form η̃ ∈ Ω2(C2\0)⊗N , which
is invariant under the contraction γ. By Riemann (or Hartogs) extension
theorem, η̃ can be extended to a holomorphic pluricanonical form on C2. Let
B be an open subset with compact closure such that γ(B) ⊂ B; then∫

B

N
√
η̃ ∧ η̃ =

∫
γ(B)

N
√
η̃ ∧ η̃

by γ-invariance of η̃, and this is impossible, because γ(B) is strictly smaller
than B, and the volume form N

√
η̃ ∧ η̃ is strictly positive outside of its

zeros set.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle

on P . Assume that the total space Tot◦(L) of all non-zero vectors in L is

smooth. An open algebraic cone is Tot◦(L).

EXAMPLE: Let P ⊂ CPn, and L = O(1)|P . Then the open algebraic cone

Tot◦(L) can be identified with the set π−1(P ) of all v ∈ Cn+1\0 projected

to P under the standard map π : Cn+1\0 → CPn. The closed algebraic

cone is its closure in Cn+1. It is an affine subvariety in Cn+1 given by the

same collection of homogeneous equations as P . Its origin is zero.

REMARK: Clearly, an algebraic cone is equipped with an invertible holo-

morphic contraction to its origin.
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Vaisman manifolds defined in terms of algebraic cones

DEFINITION: An automorphism A : P −→ P is L-linearizable L admits an

A-equivariant structure, in other words, if A can be lifted to an automorphism

of the cone Tot◦(L) which is linear on fibers.

DEFINITION: Fix a Hermitian metric on L, and let A : Tot◦(L)−→ Tot◦(L)
be an automorphism which is linear on fibers and satisfies |A(v)| = λ|v| for

some number λ < 1. Then A acts on the closed cone as a holomorphic

contraction, and the quotient space Tot◦(L)/⟨A⟩ is Hausdorff for the same

reason as it is Hausdorff for a Hopf manifold (an action of an invertible

contraction is always totally discontinuous outside of the origin; prove this

as an exercise). The quotient manifold Tot◦(L)/⟨A⟩ is called a Vaisman

manifold.

REMARK: This is not the standard definition of a Vaisman manifold;

we will discuss several standard definitions in lecture 4. We will also prove

that Vaisman manifolds are never Kähler.
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Examples of Vaisman surfaces

EXAMPLE: The classical Hopf manifold is Vaisman. Indeed, C2\0 is iden-

tified with the total space Tot◦(O(1)) of O(1) on CP1, and v 7→ λv is a

contraction which acts linearly on the fibers.

EXAMPLE: The following result is non-trivial (it is due to Gauduchon-

Ornea, Belgun and others). Let H := C2\0
⟨A⟩ be a linear Hopf surface. Then H

is Vaisman if and only if A is semisimple (that is, diagonalizable). In particular,

H is not Vaisman if A is a Jordan cell.

EXAMPLE: Let L be an ample bundle over a compact orbi-curve S, and

v
A7→ λv the contraction of Tot◦(L), where |λ| < 1. The corresponding quotient

manifold Tot◦(L)/⟨A⟩ is a Vaisman manifold, which is elliptically fibered

over S.

THEOREM: (Ornea-Vuletescu-V.) All non-Kähler elliptic surfaces are

Vaisman and obtained from this construction.
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Kodaira surfaces are Vaisman

EXAMPLE: Let L be an ample bundle over an elliptic curve S, and M :=

Tot◦(L)/⟨A⟩ obtained as above. Consider the exact sequence

0−→H1(S)
π∗
−→ H1(M)

τ∗−→ H1(F )
d2−→ H2(S)

π∗
−→ H2(M)−→H2(F )−→ 0

where F is the fiber (also an elliptic curve). This exact sequence is ob-

tained from the Leray-Serre spectral sequence (see http://verbit.ru/IMPA/K3-2024/

assign-02-K3-2024.pdf). Since d2 is the first Chern class of L, it has rank 1, hence

b2(M) = 3. Therefore, M is a Kodaira surface. The same argument as

proves Ornea-Vuletescu-V. theorem implies that all primary Kodaira sur-

faces are obtained this way.

REMARK: A smooth finite quotient of a Vaisman manifold is Vaisman; this

includes the secondary Hopf and secondary Kodaira surfaces.
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