Complex surfaces

Lecture 2: Hopf manifolds and algebraic cones

Misha Verbitsky

IMPA, sala 236

January 8, 2024, 17:00

Kodaira dimension (reminder)

DEFINITION: A complex surface is a compact complex manifold *M* of complex dimension 2.

DEFINITION: A complex surface is a compact complex manifold M of complex dimension 2. Let M be a compact complex manifold, and K_M its canonical bundle. The canonical ring $\bigoplus_{i=0}^{\infty} H^0(K^i)$ is finitely generated for for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex surfaces (Kodaira). Conjecturally, it is always finitely generated. Let $a \in \mathbb{Z}^{>0}$. Consider the function $P_a(N) = H^0(K^{aN})$. If the canonical ring is finitely generated, the function $N \mapsto P_a(N)$ is polynomial for a which divides all degrees of its generators (prove this). The degree $\kappa(M)$ of this polynomial is called the Kodaira dimension of M. If $H^0(K^i) = 0$ for all i > 0, we set $\kappa(M) = -\infty$.

Holomorphic contractions and Hopf manifolds

DEFINITION: A holomorphic contraction of a manifold M with center in $x \in M$ is a map $\gamma : M \longrightarrow M$, $\gamma(x) = x$, such that for each compact subset $K \subset M$ and any open neighbourhood $U \ni x$, there exists N > 0 such that $\gamma^n(K) \subset U$ for all n > N.

DEFINITION: Let $\gamma \in Aut(\mathbb{C}^n)$ be an invertible contraction centered in 0, and $H := \frac{\mathbb{C}^n \setminus 0}{\langle \gamma \rangle}$ the corresponding \mathbb{Z} -quiotient. Then H is a complex manifold, called a Hopf manifold. A Hopf manifold H is called a linear Hopf manifold if the contraction γ is linear, and a classical Hopf manifold if $\gamma = \lambda$ Id.

PROPOSITION: A Hopf manifold is diffeomorphic to $S^1 \times S^{2n-1}$. **Proof. Step 1:** If M is a classical Hopf manifold, this is clear (think of polar system of coordinates). If M is linear, we deform γ it to λ Id, obtaining a smooth family of compact manifolds with one of the fibers a classical Hopf manifold; Ehresmann theorem implies that all fibers are diffeomorphic.

Step 2: Finally, if γ is an arbitrary contraction, we approximate γ by a linear contraction A (around 0, such approximation always exists, because γ is smooth), and consider a smooth family of Hopf manifolds defined by the contraction $tA + (1 - t)\gamma$, with $t \in [0, 1]$. Then we use Ehresmann theorem again to show that all fibers of this smooth family are diffeomorphic.

Class VII surfaces (reminder)

DEFINITION: Class VII surface (also called Kodaira class VII surface) is a complex surface with $\kappa(M) = \infty$ and first Betti bumber $b_1(M) = 1$. Minimal class VII surfaces are called **class VII**₀ surfaces.

REMARK: Kodaira defined the "Class VII" in another, non-equivalent way. The current "Class VII" is Kodaira's "class 7" from his version of Kodaira-Enriques classification, published 1966. The term "class VII" with its current meaning is due to Barth, Peters, Van de Ven.

Hopf surfaces are class VII

DEFINITION: A primary Hopf surface is Hopf manifold of dimension 2. A secondary Hopf surface is a quotient of a primary Hopf surface H by a finite group freely and holomorphically acting on H.

CLAIM: Hopf surfaces are class VII_0 .

Proof. Step 1: The Kodaira dimension is stable under finite quotients (prove it). It remains to show only that $H := \mathbb{C}^2 \setminus 0/\langle \gamma \rangle$ is class VII₀.

Step 2: Since $\pi_1(\mathbb{C}P^1) = 0$, covering homotopy implies that any map φ : $\mathbb{C}P^1 \longrightarrow H$ is lifted to $\mathbb{C}^2 \setminus 0$; since $\mathbb{C}^2 \setminus 0$ does not contain compact curves, the Hopf surface does not contain rational curves. This implies that H is minimal.

Hopf surfaces are class VII (2)

Step 3: Let *M* be a complex *n* manifold. For any holomorphic n-form $\alpha \in \Omega^n(H)$, the form $\alpha \wedge \overline{\alpha}$ is a volume form, which is positive outside of the zero divisor of α . For any holomorphic section η of $\Omega^n(H)^{\otimes N}$, one can locally (outside of its zero set) define its *N*-th root α ; then $\alpha \wedge \overline{\alpha}$ is a volume form. It is independent from the choice of the *N*-th root (check this). This volume form is strictly positive outside of zero set of η . One can consider $\eta \wedge \overline{\eta}$ as a section of the real bundle $\Lambda^{2n}(M)^{\otimes N}$, called the bundle of plurivolume forms. The corresponding volume form is denoted $\sqrt[N]{\eta \wedge \overline{\eta}}$

Step 4: It remains to show only that $\kappa(M) = 0$. We argue by contradiction. Let $\eta \in \Omega^2(H)^{\otimes N}$ be a non-zero section of the pluricanonical bundle $K_H^{\otimes N}$. The pullback of η is a holomorphic pluricanonical form $\tilde{\eta} \in \Omega^2(\mathbb{C}^2 \setminus 0)^{\otimes N}$, which is invariant under the contraction γ . By Riemann (or Hartogs) extension theorem, $\tilde{\eta}$ can be extended to a holomorphic pluricanonical form on \mathbb{C}^2 . Let *B* be an open subset with compact closure such that $\gamma(B) \subset B$; then

$$\int_{B} \sqrt[N]{\tilde{\eta} \wedge \overline{\tilde{\eta}}} = \int_{\gamma(B)} \sqrt[N]{\tilde{\eta} \wedge \overline{\tilde{\eta}}}$$

by γ -invariance of $\tilde{\eta}$, and this is impossible, because $\gamma(B)$ is strictly smaller than B, and the volume form $\sqrt[N]{\tilde{\eta} \wedge \overline{\tilde{\eta}}}$ is strictly positive outside of its zeros set.

Algebraic cones

DEFINITION: Let *P* be a projective orbifold, and *L* an ample line bundle on *P*. Assume that the total space $Tot^{\circ}(L)$ of all non-zero vectors in *L* is smooth. An open algebraic cone is $Tot^{\circ}(L)$.

EXAMPLE: Let $P \subset \mathbb{C}P^n$, and $L = \mathcal{O}(1)|_P$. Then the open algebraic cone Tot^o(L) can be identified with the set $\pi^{-1}(P)$ of all $v \in \mathbb{C}^{n+1}\setminus 0$ projected to P under the standard map $\pi : \mathbb{C}^{n+1}\setminus 0 \to \mathbb{C}P^n$. The closed algebraic cone is its closure in \mathbb{C}^{n+1} . It is an affine subvariety in \mathbb{C}^{n+1} given by the same collection of homogeneous equations as P. Its origin is zero.

REMARK: Clearly, an algebraic cone is equipped with an invertible holomorphic contraction to its origin.

Vaisman manifolds defined in terms of algebraic cones

DEFINITION: An automorphism $A : P \longrightarrow P$ is *L*-linearizable *L* admits an *A*-equivariant structure, in other words, if *A* can be lifted to an automorphism of the cone $Tot^{\circ}(L)$ which is linear on fibers.

DEFINITION: Fix a Hermitian metric on L, and let A: $Tot^{\circ}(L) \rightarrow Tot^{\circ}(L)$ be an automorphism which is linear on fibers and satisfies $|A(v)| = \lambda |v|$ for some number $\lambda < 1$. Then A acts on the closed cone as a holomorphic contraction, and the quotient space $Tot^{\circ}(L)/\langle A \rangle$ is Hausdorff for the same reason as it is Hausdorff for a Hopf manifold (an action of an invertible contraction is always totally discontinuous outside of the origin; **prove this as an exercise).** The quotient manifold $Tot^{\circ}(L)/\langle A \rangle$ is called a Vaisman manifold.

REMARK: This is not the standard definition of a Vaisman manifold; we will discuss several standard definitions in lecture 4. We will also prove that **Vaisman manifolds are never Kähler**.

Examples of Vaisman surfaces

EXAMPLE: The classical Hopf manifold is Vaisman. Indeed, $\mathbb{C}^2\setminus 0$ is identified with the total space $\operatorname{Tot}^{\circ}(\mathcal{O}(1))$ of $\mathcal{O}(1)$ on $\mathbb{C}P^1$, and $v \mapsto \lambda v$ is a contraction which acts linearly on the fibers.

EXAMPLE: The following result is non-trivial (it is due to Gauduchon-Ornea, Belgun and others). Let $H := \frac{\mathbb{C}^2 \setminus 0}{\langle A \rangle}$ be a linear Hopf surface. Then H is Vaisman if and only if A is semisimple (that is, diagonalizable). In particular, H is not Vaisman if A is a Jordan cell.

EXAMPLE: Let *L* be an ample bundle over a compact orbi-curve *S*, and $v \stackrel{A}{\mapsto} \lambda v$ the contraction of $\text{Tot}^{\circ}(L)$, where $|\lambda| < 1$. The corresponding quotient manifold $\text{Tot}^{\circ}(L)/\langle A \rangle$ is a Vaisman manifold, which is elliptically fibered over *S*.

THEOREM: (Ornea-Vuletescu-V.) All non-Kähler elliptic surfaces are Vaisman and obtained from this construction.

Kodaira surfaces are Vaisman

EXAMPLE: Let L be an ample bundle over an elliptic curve S, and $M := Tot^{\circ}(L)/\langle A \rangle$ obtained as above. Consider the exact sequence

$$0 \longrightarrow H^{1}(S) \xrightarrow{\pi^{*}} H^{1}(M) \xrightarrow{\tau^{*}} H^{1}(F) \xrightarrow{d_{2}} H^{2}(S) \xrightarrow{\pi^{*}} H^{2}(M) \longrightarrow H^{2}(F) \longrightarrow 0$$

where F is the fiber (also an elliptic curve). This exact sequence is obtained from the Leray-Serre spectral sequence (see http://verbit.ru/IMPA/K3-2024/ assign-02-K3-2024.pdf). Since d_2 is the first Chern class of L, it has rank 1, hence $b_2(M) = 3$. Therefore, M is a Kodaira surface. The same argument as proves Ornea-Vuletescu-V. theorem implies that all primary Kodaira surfaces are obtained this way.

REMARK: A smooth finite quotient of a Vaisman manifold is Vaisman; this includes the secondary Hopf and secondary Kodaira surfaces.