Complex surfaces, 2025, lecture 2 M. Verbitsky

Complex surfaces

Lecture 2: Hopf manifolds and algebraic cones

Misha Verbitsky

IMPA, sala 236

January 8, 2024, 17:00



Complex surfaces, 2025, lecture 2 M. Verbitsky

Kodaira dimension (reminder)

DEFINITION: A complex surface is a compact complex manifold M of
complex dimension 2.

DEFINITION: A complex surface is a compact complex manifold M of
complex dimension 2. Let M be a compact complex manifold, and K, its
canonical bundle. The canonical ring @2, HO(K") is finitely generated for
for all projective varieties (Birkar, Cascini, Hacon, McKernan), for complex
surfaces (Kodaira). Conjecturally, it is always finitely generated. Let a €
7>9. Consider the function P,(N) = HO(KN). If the canonical ring is finitely
generated, the function N — P,(N) is polynomial for a which divides all
degrees of its generators (prove this). The degree x(M) of this polynomial
is called the Kodaira dimension of M. If HO(K%) = 0 for all 4 > 0, we set

k(M) = —oo0.
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Holomorphic contractions and Hopf manifolds

DEFINITION: A holomorphic contraction of a manifold M with center in
x € Misamapvy: M — M, v(x) = x, such that for each compact subset
K C M and any open neighbourhood U > x, there exists N > 0 such that
~*(K) C U for all n > N.

DEFINITION: Let v € Aut(C™) be an invertible contraction centered in 0,
and H := (C”\O the corresponding Z-quiotient. Then H is a complex manifold,
called a Hopf manifold. A Hopf manifold H is called a linear Hopf manifold
if the contraction ~ is linear, and a classical Hopf manifold if v = \Id.

PROPOSITION: A Hopf manifold is diffeomorphic to S1 x s2n—1,

Proof. Step 1: If M is a classical Hopf manifold, this is clear (think of polar
system of coordinates). If M is linear, we deform ~ it to AId, obtaining a
smooth family of compact manifolds with one of the fibers a classical
Hopf manifold; Ehresmann theorem implies that all fibers are diffeomorphic.

Step 2: Finally, if v is an arbitrary contraction, we approximate v by a
linear contraction A (around O, such approximation always exists, because ~
is smooth), and consider a smooth family of Hopf manifolds defined by the
contraction tA + (1 — t)~, with ¢t € [0,1]. Then we use Ehresmann theorem
again to show that all fibers of this smooth family are diffeomorphic. m
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Class VII surfaces (reminder)

DEFINITION: Class VII surface (also called Kodaira class VII surface) is a
complex surface with k(M) = oo and first Betti bumber b1(M) = 1. Minimal
class VII surfaces are called class VIIy surfaces.

REMARK: Kodaira defined the “Class VII" in another, non-equivalent way.
The current “Class VII" is Kodaira's ‘class 7" from his version of Kodaira-
Enriques classification, published 1966. The term “class VII" with its current
meaning is due to Barth, Peters, Van de Ven.
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Hopf surfaces are class VII

DEFINITION: A primary Hopf surface is Hopf manifold of dimension 2.
A secondary Hopf surface is a quotient of a primary Hopf surface H by a
finite group freely and holomorphically acting on H.

CLAIM: Hopf surfaces are class VII.

Proof. Step 1: The Kodaira dimension is stable under finite quotients (prove
it). It remains to show only that H := C2\0/(v) is class VIIj.

Step 2: Since 71 (CP1) = 0, covering homotopy implies that any map ¢ :
CcPl — H is lifted to CQ\O; since (CQ\O does not contain compact curves,
the Hopf surface does not contain rational curves. This implies that H is

minimal.
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Hopf surfaces are class VII (2)

Step 3: Let M be a complex n manifold. For any holomorphic n-form
a € QU(H), the form a A@ is a volume form, which is positive outside of the
zero divisor of a. For any holomorphic section n of Q”(H)®N, one can locally
(outside of its zero set) define its N-th root «; then aA@ is a volume form. It
is independent from the choice of the N-th root (check this). This volume
form is strictly positive outside of zero set of n. One can consider n A7 as
a section of the real bundle A2"(M)®N called the bundle of plurivolume
forms. The corresponding volume form is denoted Y/n A7

Step 4: It remains to show only that k(M) = 0. We argue by contradiction.
Let n € Q2(H)®N be a non-zero section of the pluricanonical bundle K&V
The pullback of 5 is a holomorphic pluricanonical form 77 € Q2(C2\0)®", which
is invariant under the contraction . By Riemann (or Hartogs) extension
theorem, 77 can be extended to a holomorphic pluricanonical form on C2. Let
B be an open subset with compact closure such that v(B) C B; then

N/ ~ = N/ ~ =
| Nani= [ Ving
B v(B)
by v-invariance of 77, and this is impossible, because ~(B) is strictly smaller
than B, and the volume form N\/ﬁ/\ﬁ iIs strictly positive outside of its

zeros set. m
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle
on P. Assume that the total space Tot°(L) of all non-zero vectors in L is
smooth. An open algebraic cone is Tot°(L).

EXAMPLE: Let P C CP™, and L = ©(1)|p. Then the open algebraic cone
Tot°(L) can be identified with the set =~ 1(P) of all v € C*T1\0 projected
to P under the standard map = : C”‘H\O — CP"™. The closed algebraic
cone is its closure in C*1T1. It is an affine subvariety in C*t1 given by the
same collection of homogeneous equations as P. Its origin is zero.

REMARK: Clearly, an algebraic cone is equipped with an invertible holo-
morphic contraction to its origin.
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Vaisman manifolds defined in terms of algebraic cones

DEFINITION: An automorphism A: P — P is L-linearizable L admits an
A-equivariant structure, in other words, if A can be lifted to an automorphism
of the cone Tot°(L) which is linear on fibers.

DEFINITION: Fix a Hermitian metricon L, and let A: Tot°(L) — Tot°(L)
be an automorphism which is linear on fibers and satisfies |A(v)| = A|v| for
some number X < 1. Then A acts on the closed cone as a holomorphic
contraction, and the quotient space Tot°(L)/(A) is Hausdorff for the same
reason as it is Hausdorff for a Hopf manifold (an action of an invertible
contraction is always totally discontinuous outside of the origin; prove this
as an exercise). The quotient manifold Tot°(L)/(A) is called a Vaisman
manifold.

REMARK: This is not the standard definition of a Vaisman manifold;
we will discuss several standard definitions in lecture 4. We will also prove
that Vaisman manifolds are never Kahler.
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Examples of VVaisman surfaces

EXAMPLE: The classical Hopf manifold is Vaisman. Indeed, C2\0 is iden-
tified with the total space Tot°(©(1)) of ©(1) on CPL, and v — Xv is a
contraction which acts linearly on the fibers.

EXAMPLE: The following result is non-trivial (it is due to Gauduchon-
2

Ornea, Belgun and others). Let H .= % be a linear Hopf surface. Then H

is Vaisman if and only if A is semisimple (that is, diagonalizable). In particular,

H is not VVaisman if A is a Jordan caell.

EXAMPLE: Let L be an ample bundle over a compact orbi-curve S, and
v % \v the contraction of Tot°(L), where |A\| < 1. The corresponding quotient
manifold Tot°(L)/(A) is a Vaisman manifold, which is elliptically fibered
over S.

THEOREM: (Ornea-Vuletescu-V.) All non-Kahler elliptic surfaces are
Vaisman and obtained from this construction.
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Kodaira surfaces are Vaisman

EXAMPLE: Let L be an ample bundle over an elliptic curve S, and M =
Tot°(L)/(A) obtained as above. Consider the exact sequence

0— HY(S) =5 HY(M) =5 HY(F) %2, g2(S) &% H2(M) — H2(F) —s 0

where F is the fiber (also an elliptic curve). This exact sequence is oOb-
tained from the Leray-Serre spectral sequence (S€€ nttp://verbit.ru/IMPA/K3-2024/
assign-02-K3-2024.pdf ). Since do is the first Chern class of L, it has rank 1, hence
b>(M) = 3. Therefore, M is a Kodaira surface. The same argument as
proves Ornea-Vuletescu-V. theorem implies that all primary Kodaira sur-
faces are obtained this way.

REMARK: A smooth finite quotient of a Vaisman manifold is Vaisman; this
includes the secondary Hopf and secondary Kodaira surfaces.
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