Complex surfaces, lecture 3:

Chern connection

IMPA, sala 236

Misha Verbitsky, January 10, 2023, 17:00

http://verbit.ru/IMPA/Surfaces-2025/

Connections

DEFINITION: Recall that a connection on a bundle *B* is an operator ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ satisfying $\nabla(fb) = b \otimes df + f\nabla(b)$, where $f \longrightarrow df$ is de Rham differential. When *X* is a vector field, we denote by $\nabla_X(b) \in B$ the term $\langle \nabla(b), X \rangle$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b,\beta\rangle) = \langle \nabla b,\beta\rangle + \langle b,\nabla^*\beta\rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Parallel transport along the connection

THEOREM: Let *B* be a vector bundle with connection over \mathbb{R} . Then for each $x \in \mathbb{R}$ and each vector $b_x \in B|_x$ there exists a unique section $b \in B$ such that $\nabla b = 0$, $b|_x = b_x$.

Proof: This is existence and uniqueness of solutions of an ODE $\frac{db}{dt} + A(b) = 0$.

DEFINITION: Let $\gamma : [0,1] \longrightarrow M$ be a smooth path in M connecting x and y, and (B, ∇) a vector bundle with connection. Restricting (B, ∇) to $\gamma([0,1])$, we obtain a bundle with connection on an interval. Solve an equation $\nabla(b) = 0$ for $b \in B|_{\gamma([0,1])}$ and initial condition $b|_x = b_x$. This process is called **parallel transport** along the path via the connection. The vector $b_y := b|_y$ is called **vector obtained by parallel transport of** b_x along γ . Holonomy group of γ is the group of endomorphisms of the fiber B_x obtained from parallel transports along all paths starting and ending in $x \in M$

M. Verbitsky

Curvature

Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a vector bundle B. We extend ∇ to an operator

$$B \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using the Leibnitz identity $\nabla(\eta \otimes b) = d\eta \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$.

REMARK: This operation is well defined, because

$$\nabla(\eta \otimes fb) = d\eta \otimes fb + (-1)^{\tilde{\eta}} \eta \wedge \nabla(fb) = d\eta \otimes fb + (-1)^{\tilde{\eta}} \eta \wedge df \otimes b + f\eta \wedge \nabla b = d(f\eta) \otimes b + f\eta \wedge \nabla b = \nabla(f\eta \otimes b)$$

REMARK: Sometimes $\Lambda^2(M) \otimes B \xrightarrow{\nabla} \Lambda^3(M) \otimes B$ is denoted d_{∇} .

DEFINITION: The operator ∇^2 : $B \longrightarrow B \otimes \Lambda^2(M)$ is called **the curvature** of ∇ .

REMARK: The algebra of differential forms with coefficients in End *B* acts on $\Lambda^*M \otimes B$ via $\eta \otimes a(\eta' \otimes b) = \eta \wedge \eta' \otimes a(b)$, where $a \in \text{End}(B)$, $\eta, \eta' \in \Lambda^*M$, and $b \in B$. This is the formula expressing the action of ∇^2 on $\Lambda^*M \otimes B$.

Bianchi identity

REMARK: The algebra of End(*B*)-valued forms naturally acts on $\Lambda^* M \otimes B$. The curvature satisfies $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b = f\nabla^2 b$, hence it is $C^{\infty}M$ -linear. We consider it as an End(*B*)-valued 2-form on *M*.

REMARK: (Bianchi identity)

Clearly, $[\nabla, \nabla^2] = 0$. This gives the Bianchi identity: $d_{\nabla}(\Theta_B) = 0$, where Θ is considered as a section of $\Lambda^2(M) \otimes \text{End}(B)$, and $d_{\nabla} \colon \Lambda^2(M) \otimes \text{End}(B) \longrightarrow \Lambda^3(M) \otimes \text{End}(B)$ the operator defined above.

REMARK: This implies that $d(\operatorname{Tr}_B(\Theta_B^n)) = 0$, hence $\operatorname{Tr}_B(\Theta_B^n)$ is a closed differential form on M. This form is used to define the Chern classes and Pontryagin classes ("Chern-Weil formula").

Riemann-Hilbert correspondence

DEFINITION: A connection is **flat** if its curvature vanishes.

THEOREM: Let *M* be a simply connected manifold, and (B, ∇) a bundle with connection. Then ∇ is flat if and only if the holonomy of ∇ is trivial.

THEOREM: Let M be a connected manifold, C_1 the category of representations of $\pi_1(M)$, and C_2 the category of locally constant sheaves. Then the categories C_1 and C_2 are naturally equivalent.

THEOREM: The categories C_1 and C_2 are naturally equivalent to the category of vector bundles on M equipped with flat connection.

Holomorphic bundles

DEFINITION: Holomorphic vector bundle on a complex manifold M is a locally trivial sheaf of \mathcal{O}_M -modules.

DEFINITION: The total space Tot(B) of a holomorphic bundle B over M is the space of all pairs $\{x \in M, b \in B_x/\mathfrak{m}_x B\}$, where B_x is the stalk of B in $x \in M$ and \mathfrak{m}_x the maximal ideal of x. We equip Tot(B) with the natural topology and holomorphic structure, in such a way that Tot(B) becomes a locally trivial holomorphic fibration with fiber \mathbb{C}^r , $r = \operatorname{rk} B$.

REMARK: The set of holomorphic sections of a map $Tot(B) \rightarrow M$ is naturally identified with the set of sections of the sheaf B.

CLAIM: Let *B* be a holomorphic bundle. Consider the sheaf $B_{C^{\infty}} := B \otimes_{\mathcal{O}_M} C^{\infty} M$. Then $B_{C^{\infty}}$ is a locally trivial sheaf of $C^{\infty}M$ -modules.

DEFINITION: $B_{C^{\infty}}$ is called **smooth vector bundle underlying the holomorphic vector bundle** *B*.

REMARK: The natural map $Tot(B) \rightarrow Tot(B_{C^{\infty}})$ is a diffeomorphism.

$\overline{\partial}$ -operator on vector bundles

REMARK: Let *M* be a complex manifold. Then **the operator** $\overline{\partial}$: $C^{\infty}M \longrightarrow \Lambda^{0,1}(M)$ is \mathcal{O}_M -linear.

DEFINITION: Let *B* be a holomorphic vector bundle on *M*. Consider an operator $\overline{\partial}$: $B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ mapping $b \otimes f$ to $b \otimes \overline{\partial} f$, where *b* is a holomorphic section of *B*, and *f* smooth. This operator is called a holomorphic structure operator on *B*. It is well-defined because $\overline{\partial}$ is \mathcal{O}_M -linear, and $B_{C^{\infty}} = B \otimes_{\mathcal{O}_M} C^{\infty} M$.

REMARK: The kernel of $\overline{\partial}$: $B_{C^{\infty}} \longrightarrow B_{C^{\infty}} \otimes \Lambda^{0,1}(M)$ coincides with the image of *B* under the natural sheaf embedding $B \hookrightarrow B_{C^{\infty}}$, with $b \longrightarrow b \otimes 1$.

DEFINITION: A $\overline{\partial}$ -operator on a smooth complex vector bundle V over a complex manifold is a differential operator $V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V$ satisfying $\overline{\partial}(fb) = \overline{\partial}(f) \otimes b + f\overline{\partial}(b)$ for any $f \in C^{\infty}M, b \in V$.

REMARK: A $\overline{\partial}$ -operator can be extended to

 $\overline{\partial}: \Lambda^{0,i}(M) \otimes V \longrightarrow \Lambda^{0,i+1}(M) \otimes V,$

using the Leibnitz identity $\overline{\partial}(\eta \otimes b) = \overline{\partial}(\eta) \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \overline{\partial}(b)$, for all $b \in V$ and $\eta \in \Lambda^{0,i}(M)$.

M. Verbitsky

Holomorphic structure operator

REMARK: For any holomorphic bundle, one has $\overline{\partial}^2 = 0$. Indeed, a holomorphic bundle admits a local trivialization.

THEOREM: (Koszul-Malgrange) Let $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a $\overline{\partial}$ operator on a complex vector bundle, satisfying $\overline{\partial}^2 = 0$, where $\overline{\partial}$ is extended
to

$$V \xrightarrow{\overline{\partial}} \Lambda^{0,1}(M) \otimes V \xrightarrow{\overline{\partial}} \Lambda^{0,2}(M) \otimes V \xrightarrow{\overline{\partial}} \Lambda^{0,3}(M) \otimes V \xrightarrow{\overline{\partial}} \dots$$

as above. Then $B := \ker \overline{\partial} \subset V$ is a holomorphic bundle of the same rank, and $V = B_{\mathbb{C}^{\infty}}$.

Proof: The proof uses the same argument as used to prove the Newlander-Nirenberg theorem. ■

DEFINITION: A holomorphic structure operator on a bundle V is a $\overline{\partial}$ operator $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ which satisfies $\overline{\partial}^2 = 0$.

COROLLARY: The category of holomorphic vector bundles is equivalent to the category of complex vector bundles equipped with a holomorphic structure operator.

Connections and holomorphic structures

DEFINITION: Let V be a smooth complex vector bundle with connection $\nabla : V \longrightarrow \Lambda^1(M) \otimes V$ and holomorphic structure $\overline{\partial} : V \longrightarrow \Lambda^{0,1}(M) \otimes V$. Consider the Hodge type decomposition of ∇ , $\nabla = \nabla^{0,1} + \nabla^{1,0}$, where

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that the connection ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: A holomorphic Hermitian vector buncle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure.

DEFINITION: Let (B, ∇) be a bundle with connection, and h a Hermitian form on B. Extending ∇ to the tensor powers of B, we can apply it to h; the result can be obtained explicitly from the formula

 $(\nabla h)(X,Y) = d(h(X,Y)) - h(\nabla X,Y) - h(X,\nabla Y).$

The connection ∇ is called **unitary** if $\nabla(h) = 0$.

DEFINITION: Chern connection on a holomorphic Hermitian vector bundle is a unitary connection compatible with the holomorphic structure.

Chern connection

THEOREM: Every holomorphic Hermitian vector bundle **admits a Chern connection, which is unique.**

Proof. Step 1: Given a complex vector bundle *B*, define complex conjugate **bundle** \overline{B} as the same \mathbb{R} -bundle with complex conjugate \mathbb{C} -action. Then a connection ∇ on *B* defines a connection $\overline{\nabla}$ on \overline{B} , with $\overline{\nabla}^{1,0} = \overline{\nabla^{0,1}}$ and $\overline{\nabla}^{0,1} = \overline{\nabla^{1,0}}$.

Step 2: Define $\nabla^{1,0}$ -operator on a complex vector bundle *B* as a map $B \xrightarrow{\nabla^{1,0}} \Lambda^{1,0}(M) \otimes B$, satisfying $\Lambda^{1,0}(fb) = \partial(f) \otimes b + f \nabla^{1,0}(b)$ for any $f \in C^{\infty}M, b \in B$. **A** $\overline{\partial}$ -operator on *B* defines an $\nabla^{1,0}$ -operator on \overline{B} , and vice versa.

Step 3: Hermitian form defines an isomorphism of complex vector bundles $B \xrightarrow{g} \overline{B}^*$. Holomorphic structure on B defines a $\overline{\partial}$ -operator on $\overline{B} = B^*$, which is the same as $\nabla^{1,0}$ -operator $\nabla_g^{1,0}$ on B. This gives a connection operator $\nabla := \overline{\partial} + \nabla_g^{1,0}$ on B, which is Hermitian by construction.

REMARK: When people say about "curvature of a holomorphic Hermitian line bundle", **they speak about curvature of the Chern connection.**

Curvature of a holomorphic line bundle

REMARK: If *L* is a line bundle, End *L* is trivial, and the curvature Θ_L of *L* is a closed 2-form.

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let *B* be a holomorphic Hermitian line bundle, and *b* its nondegenerate holomorphic section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0}b = \eta \otimes b$. Then $d|b|^2 = \operatorname{Re} g(\nabla^{1,0}b, b) = \operatorname{Re} \eta |b|^2$. This gives $\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b$.

REMARK: Then $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, that is, $\Theta_B = -2\partial\overline{\partial} \log |b|$.

COROLLARY: If $g' = e^{2f}g$ – two metrics on a holomorphic line bundle, Θ, Θ' their curvatures, one has $\Theta' - \Theta = -2\partial\overline{\partial}f$

Curvature of the Chern connection

PROPOSITION: Curvaure Θ_B of a Chern connection on *B* is a (1,1)form: $\Theta_B \in \Lambda^{1,1}(M) \otimes \text{End}(B)$.

Proof. Step 1: Let *B* be a Hermitan bundle. Consider the operator $\varphi \stackrel{\iota}{\longrightarrow} -\varphi^*$ acting on End(*B*), where $\varphi \longrightarrow \varphi^*$ denotes the Hermitian conjugation. Since $\iota^2 = \text{Id}$, and this is an anticomplex operator, it defines the real structure, and its fixed point set is \mathfrak{u}_B , the Lie algebra of anti-Hermitian matrices. **Step 2:** Since the Chern connection preserves the Hermitian structure *g*, one has $\nabla(g) = 0$, which gives $\nabla^2(g) = 0$. This means that $\Theta_B \in \Lambda^2 M \otimes \mathfrak{u}_B$, and this for is real with respect to the real structure defined by ι .

Step 3: The (0,2)-part of the curvature vanishes, because $\overline{\partial}^2 = 0$. The (2,0)-part of the curvature vanishes, because $\iota(\Theta_B) = \Theta_B$, and **any real** structure on $\operatorname{End}(B)$ exchanges $\Lambda^{2,0}(M) \otimes \operatorname{End}(B)$ and $\Lambda^{0,2}(M) \otimes \operatorname{End}(B)$.

COROLLARY: For the Chern connection $\nabla = \overline{\partial} + \nabla^{1,0}$ on *B*, one has $\Theta_B = \{\nabla^{1,0}, \overline{\partial}\}.$

COROLLARY: The curvature of a holomorphic Hermitian line bundle is a closed (1,1)-form.

Curvature of the Chern connection on a line bundle

REMARK: Let *B* he a Hermitian holomorphic line bundle, and $b \in \Gamma(B)$ a nowhere vanishing holomorphic section. Then

$$d|b|^{2} = (\nabla^{1,0}b, b) + (b, \nabla^{1,0}b) = 2\operatorname{Re}(\nabla^{1,0}b, b),$$

which gives $\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b$. We obtain that $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, hence $\Theta_B = -2\partial\overline{\partial} \log |b|$.

REMARK: The same formula holds for *B* of any rank. Consider a holomorphic section *b* of *B*, and let $(\Theta(b), b)$ be the corresponding 2-form on *M*. **Then** $(\Theta(b), b)(x, y) = \overline{\partial}\partial |b|^2(x, y)$.

REMARK: Suppose that $b = fb_1$, where f is a holomorphic function. Then

$$\begin{split} \partial \overline{\partial} \log |b| &= \partial \overline{\partial} \log |b_1| + \partial \overline{\partial} \log |f| = \partial \overline{\partial} \log |b_1| + \frac{1}{2} \partial \overline{\partial} \log (f\overline{f}) = \\ &= \partial \overline{\partial} \log |b_1| + \frac{1}{2} \partial \overline{\partial} \log (f) + \frac{1}{2} \partial \overline{\partial} \log (\overline{f}). \end{split}$$

The last two terms vanish because $\overline{\partial} \log f = 0$ and $\partial \log \overline{f} = 0$, hence $\partial \overline{\partial} \log |b| = \partial \overline{\partial} \log |b_1|$. This implies that the curvature 2-form $\partial \overline{\partial} \log |b|$ is independent from the choice of a holomorphic section b.