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Algebraic cones and Vaisman manifolds (reminder)

DEFINITION: Let P be a projective orbifold, and L an ample line bundle
on P . Assume that the total space Tot◦(L) of all non-zero vectors in L is
smooth. An open algebraic cone is Tot◦(L).

EXAMPLE: Let P ⊂ CPn, and L = O(1)|P . Then the open algebraic cone
Tot◦(L) can be identified with the set π−1(P ) of all v ∈ Cn+1\0 projected
to P under the standard map π : Cn+1\0 → CPn. The closed algebraic
cone is its closure in Cn+1. It is an affine subvariety in Cn+1 given by the
same collection of homogeneous equations as P . Its origin is zero.

DEFINITION: An automorphism A : P −→ P is L-linearizable L admits an
A-equivariant structure, in other words, if A can be lifted to an automorphism
of the cone Tot◦(L) which is linear on fibers.

DEFINITION: Fix a Hermitian metric on L, and let A : Tot◦(L)−→ Tot◦(L)
be an automorphism which is linear on fibers and satisfies |A(v)| = λ|v| for
some number λ < 1. Then A acts on the closed cone as a holomorphic
contraction, and the quotient space Tot◦(L)/⟨A⟩ is Hausdorff for the same
reason as it is Hausdorff for a Hopf manifold (an action of an invertible
contraction is always totally discontinuous outside of the origin; prove this
as an exercise). The quotient manifold Tot◦(L)/⟨A⟩ is called a Vaisman
manifold.
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LCK manifolds in terms of differential forms

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM ⩾ 2. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

REMARK: This condition is conformally invariant, that is, preserved if we

replace ω by a conformally equivalent form fω, where f > 0 is a positive

smooth function. Indeed,

d(fω) = df ∧ ω+ fdω = df ∧ ω+ fθ ∧ ω = (df + fθ) ∧ ω.

EXAMPLE: Let ω̃ =
∑
i dxi ∧ dyi be the standard flat Hermitian form on Cn,

and ψ(z) := |z|2. Clearly, the form ω̃
ψ is homothety invariant. Consider the

classical Hopf manifold Cn\0
⟨λ·Id⟩, and a Hermitian metric ω := ω̃

ψ on H. Since ω

is conformally equivallent to Kähler form, it is LCK.

EXAMPLE: Any Vaisman manifold (defined, as in Lecture 2, as a quotient

of an algebraic cone) is LCK, as explained later in this lecture.
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Chern connection

DEFINITION: Let (B,∇) be a smooth bundle with connection and a holo-

morphic structure ∂ B −→ Λ0,1(M) ⊗ B. Consider a Hodge decomposition of

∇, ∇ = ∇0,1 +∇1,0,

∇0,1 : V −→ Λ0,1(M)⊗ V, ∇1,0 : V −→ Λ1,0(M)⊗ V.

We say that ∇ is compatible with the holomorphic structure if ∇0,1 = ∂.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth

complex vector bundle equipped with a Hermitian metric and a holomorphic

structure operator ∂.

DEFINITION: A Chern connection on a holomorphic Hermitian vector

bundle is a connection compatible with the holomorphic structure and pre-

serving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, the Chern con-

nection exists, and is unique.
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Curvature of a holomorphic line bundle

REMARK: If L is a line bundle, EndL is trivial, and the curvature ΘL of

L is a closed 2-form.

REMARK: When speaking of a “curvature of a holomorphic bundle”,

one usually means the curvature of a Chern connection.

REMARK: Let B be a holomorphic Hermitian line bundle, and b its non-

degenerate holomorphic section. Denote by η a (1,0)-form which satisfies

∇1,0b = η ⊗ b. Then d|b|2 = Re g(∇1,0b, b) = Re η|b|2. This gives ∇1,0b =
∂|b|2
|b|2 b = 2∂ log |b|b.

REMARK: Then ΘB(b) = 2∂∂ log |b|b, that is, ΘB = −2∂∂ log |b|.

COROLLARY: If g′ = e2fg – two metrics on a holomorphic line bundle,

Θ,Θ′ their curvatures, one has Θ′ −Θ = −2∂∂f
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Calabi’s formula (2.6)

REMARK: This formula has no better name that “Calabi’s (2.6)”, from E.
Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Ecole Norm. Sup.
12 (1979), 269-294. We formulate it for line bundles; in this situation it is
easier to state.

PROPOSITION: Let L be a holomorphic Hermitian line bundle on a com-
plex manifold M , and Θ ∈ Λ1,1(M) the curvature of its Chern connection.

Consider the function ψ ∈ C∞Tot(L), v
ψ7→ |v|2, and let π : Tot(L)−→M

be the projection map. Using the Chern connection on Tot(L), we de-
compose T Tot(L) = ker dπ ⊕ ThorTot(L); here ker dπ is fiberwise (vertical)
tangent vectors, and ThorTot(L) the bundle of horizontal tangent vectors,
ThorTot(L) ∼= π∗TM . Denote by ωπ the Hermitian form on fibers of L, which
is set to zero on ThorTot(L). Then

ddcψ = −ψπ∗Θ+ ωπ.

In particular, when L∗ is ample and the curvature of L is positive,
the function ψ is plurisubharmonic, and strictly plurisubharmonic on
Tot◦(L).
Proof: https://arxiv.org/abs/2208.07188 (Liviu Ornea, Misha Verbitsky, Principles of Lo-

cally Conformally Kahler Geometry, Theorem 5.30).
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Vaisman manifolds are LCK

COROLLARY: Let L be a line bundle with negative curvature on a pro-

jective manifold. Then the form ddcψ
ψ is homothety invariant and locally

conformally Kähler on Tot◦(L). Moreover, this form is a pullback of

an LCK form on Tot◦(L)
⟨A⟩ , where A acts on Tot(L) as in the definition of a

Vaisman manifold.

Proof: Homothety with coefficient λ preserves ddcψ
ψ , because it multiplies

numerator and denominator by |λ|2. This form is Hermitian because ddcψ =

−ψπ∗Θ+ωπ; the first component is positive on horizontal vectors and vanishes

on vertical vectors, the second positive on vertical vectors and vanishes on

horizontal.

REMARK: We have just shown that Vaisman manifolds are LCK.
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Homotheties and monodromy

REMARK: In a few slides, we are going to give a definition of LCK manifold

in terms of a Kähler form on the universal covering, or Kähler forms taking

values in a local system, and prove the equivalence of these definitions. Under

the alternative definition, “LCK manifold” is a quotient of a Kähler manifold

by a free action of cocompact, discrete group acting by homotheties.

DEFINITION: Deck transform maps, or monodromy maps of a covering

M̃ −→M are elements of the group AutM(M̃). When M̃ is a universal

cover, one has AutM(M̃) = π1(M) (prove this as an exercise).

CLAIM: Any conformal map φ : (M,ω)−→ (M1, ω1) of Kähler manifolds is

a homothety.

Proof: By definition, there exists a function f > 0 such that φ∗ω1 = fω;

we need to show that f = const. However, 0 = d(φ∗ω1) = df ∧ ω. Since

Λ1M
∧ω−→ Λ3M is injective (check this), this implies that df = 0.
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Curvature of a connection (reminder)

DEFINITION: Let ∇ : B −→B⊗Λ1M be a connection on a smooth budnle.

Extend it to an operator on B-valued forms

B
∇−→ Λ1(M)⊗B

∇−→ Λ2(M)⊗B
∇−→ Λ3(M)⊗B

∇−→ ...

using ∇(η ⊗ b) = dη + (−1)η̃η ∧ ∇b. The operator ∇2 : B −→B ⊗ Λ2(M) is

called the curvature of ∇. The operator ∇ : Λi(M)⊗B
∇−→ Λi+1(M)⊗B is

denoted d∇.

REMARK: d∇0
= d if B is a trivial bundle with the trivial connection ∇0.

When ∇ = ∇0 + ∧θ, where ∧θ is the multiplication by a 1-form θ, we have

d∇(η) = dη+ θ ∧ η.

REMARK: The algebra of End(B)-valued forms naturally acts on Λ∗M ⊗B.

The curvature satisfies ∇2(fb) = d2fb+df ∧∇b−df ∧∇b+f∇2b = f∇2b, hence

it is C∞M-linear. We consider it as an End(B)-valued 2-form on M. A

connection is flat if its curvature vanishes.
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Local systems and Riemann-Hilbert correspondence

DEFINITION: A local system on a manifold is a locally constant sheaf of
vector spaces.

THEOREM: Fix a point x ∈ M . Then the category of local systems is
naturally equivalent to the category of representations of π1(M,x).
Proof: http://verbit.ru/IMPA/RS-2024/slides-RS-2024-17.pdf, pages 5-8.

THEOREM: The category of vector bundles with flat connection is equiv-
alent to the category of local systems.
Proof. Step 1: See http://verbit.ru/IMPA/RS-2024/slides-RS-2024-20.pdf. From a
locally constant sheaf V we obtain a vector bundle B := V⊗RM C∞M , where
RM is the constant sheaf on M . If v1, ..., vn is a basis in V(U), all sections
of B(U) have a form

∑n
i=1 fivi, where fi ∈ C∞U . Define the connection ∇

by ∇
(∑n

i=1 fivi
)
=

∑
dfi ⊗ vi. This connection is flat because d2 = 0. It is

independent from the choice of vi because vi is defined canonically up to a
matrix with constant coefficients. We have constructed a functor from
locally constant sheaves to flat vector bundles.

Step 2: The converse functor takes a flat bundle (B,∇) on M to the sheaf of
parallel sections of B; this sheaf is locally constant, because every vector can
be locally extended to a parallel section uniquely (the proof of this non-trivial
observation relies on Frobenius theorem).
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χ-automorphic forms

DEFINITION: Let M̃
π−→ M be the universal covering of M , and χ :

π1(M)−→ R>0 a character (group homomorphism). Consider the natural
action of π1(M) on M̃ An χ-automorphic form on M̃ is a differential form
η ∈ Λk(M̃) which satisfies γ∗η = χ(γ)η for any γ ∈ π1(M).

Proposition 1: Let L be a rank 1 local system on M associated with the
representation χ. Then the space of χ-automorphic k-forms on M̃ is
in natural correspondence with the space of sections of Λk(M) ⊗ L.
Under this equivalence, the de Rham differential on χ-automorphic forms
corresponds to the operator d∇ : Λk(M)⊗ L−→ Λk+1(M)⊗ L.

Proof. Step 1: Consider the pullback L̃ := π∗L. The bundle L̃ is flat and
has trivial monodromy, hence it is naturally trivialized by parallel sections.
This identifies L̃ with C∞M ; however, such an identification is defined up
to a real constant. Choosing the constant, we fix the map ψ : L−→ C̃∞M .
The bundle L̃ is π1(M)-equivatiant, with γ ∈ π1(M) taking a parallel section
v ∈ H0(L̃) to χ(γ)v. This implies that for any section u of L, the pullback
ũ ∈ H0(L̃) satisfies γ∗(ψ(ũ)) = χ(γ)ψ(ũ). This identifies sections of L with
χ-automorphic functions on M̃.

Step 2: Since u 7→ ψ(π∗(u)) takes a parallel section of L to a constant
function, this correspondence takes d∇ to de Rham differential.
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Lichnerowicz cohomology

Let (L,∇) be a real flat line bundle. Any such bundle is trivialized; let ∇0 be

the trivial connection, and ∇ − ∇0 ∈ Λ1M the corresponding 1-form. Since

(∇0 + θ)2 = d∇0
(θ) = 0, the 1-form is closed, and the differential d∇ is equal

to d+ ∧θ.

DEFINITION: Let θ be a closed 1-form on a manifold, and dθ(α) := dα+θ∧α
be the corresponding differential on Λ∗(M). Its cohomology are called Morse-

Novikov cohomology, or Lichnerowicz cohomology.

THEOREM: Lichnerowitz cohomology of a manifold is equal to the co-

homology with coefficients in a local system defined by (L,∇).

Proof: L
dθ−→ L⊗Λ1M

dθ−→ L⊗Λ2M
dθ−→ ... is fine resolution of the sheaf of

parallel sections of L.

12



Complex surfaces, 2025, lecture 4 M. Verbitsky

LCK manifolds in terms of an L-valued Kähler form

DEFINITION: Let (L,∇) be an oriented real line bundle with flat connection

on a complex manifold M , and ω ∈ L⊗ Λ1,1M a (1,1)-form with values in L.

We say that ω is an L-valued Kähler form if ω(x, Ix) ∈ L is (strictly) positive

for any non-zero tangent vector, and d∇ω = 0.

REMARK: If we use a trivialization to identify L and C∞M , ω becomes

a (1,1)-form, and d∇ becomes dθ, giving d∇(α) = dα + θ ∧ α. Therefore,

L-valued Kähler form on a manifold is the same as an LCK-form.
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LCK manifolds in terms of deck transform

Another definition: An LCK manifold is a complex manifold M , dimCM ⩾

2 such that its universal cover M̃ is equipped with a Kähler form ω̃, and the

deck transform acts on M̃ by Kähler homotheties.

THEOREM: These two definitions are equivalent.

Proof. Step 1: Let ω̃ be an automorphic Kähler form on M̃ , χ : π1(M)−→ R>0

be the character taking γ to the number γ∗ω̃
ω̃ , and (L,∇) the corresponding

flat line bundle on M . By Proposition 1, the automorphic Kähler form ω̃ on

M corresponds to a d∇-closed form ω ∈ Λ1,1(M) ⊗ L. Any trivialization of L

produces a trivial connection ∇0 such that ∇ − ∇0(f) = fθ for some 1-form

θ. Then d∇0
(ω) = d∇0

− d∇(ω) = ω ∧ θ. However, d∇0
is de Rham differential,

which brings dω = ω ∧ θ.

Step 2: Conversely, assume dω = ω ∧ θ, where θ is a closed 1-form. The

connection ∇0 −∧θ on the trivial line bundle L is flat, because dθ = 0. Then

d∇ω = 0, which allows one to lift ω to an automorphic Kähler form on M̃

using Proposition 1.
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Next lecture:

Vaisman theorem

definitions of Vaisman manifolds (Vaisman definition, Kamishima-Ornea, Is-

trati)

Vaisman manifolds as quotients of algebraic cones (proper, improper)

Canonical foliation, subvarieties of Vaisman manifolds
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