Complex surfaces

lecture 4: Locally conformall Kähler manifolds

Misha Verbitsky

IMPA, sala 236

January 14, 2024, 17:00

Algebraic cones and Vaisman manifolds (reminder)

DEFINITION: Let *P* be a projective orbifold, and *L* an ample line bundle on *P*. Assume that the total space $Tot^{\circ}(L)$ of all non-zero vectors in *L* is smooth. An open algebraic cone is $Tot^{\circ}(L)$.

EXAMPLE: Let $P \subset \mathbb{C}P^n$, and $L = \mathcal{O}(1)|_P$. Then the open algebraic cone Tot^o(L) can be identified with the set $\pi^{-1}(P)$ of all $v \in \mathbb{C}^{n+1}\setminus 0$ projected to P under the standard map $\pi : \mathbb{C}^{n+1}\setminus 0 \to \mathbb{C}P^n$. The closed algebraic cone is its closure in \mathbb{C}^{n+1} . It is an affine subvariety in \mathbb{C}^{n+1} given by the same collection of homogeneous equations as P. Its origin is zero.

DEFINITION: An automorphism $A: P \longrightarrow P$ is *L*-linearizable *L* admits an *A*-equivariant structure, in other words, if *A* can be lifted to an automorphism of the cone $Tot^{\circ}(L)$ which is linear on fibers.

DEFINITION: Fix a Hermitian metric on L, and let A: $Tot^{\circ}(L) \rightarrow Tot^{\circ}(L)$ be an automorphism which is linear on fibers and satisfies $|A(v)| = \lambda |v|$ for some number $\lambda < 1$. Then A acts on the closed cone as a holomorphic contraction, and the quotient space $Tot^{\circ}(L)/\langle A \rangle$ is Hausdorff for the same reason as it is Hausdorff for a Hopf manifold (an action of an invertible contraction is always totally discontinuous outside of the origin; **prove this as an exercise).** The quotient manifold $Tot^{\circ}(L)/\langle A \rangle$ is called a Vaisman manifold.

LCK manifolds in terms of differential forms

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M \ge 2$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

REMARK: This condition is **conformally invariant**, that is, preserved if we replace ω by a conformally equivalent form $f\omega$, where f > 0 is a positive smooth function. Indeed,

$$d(f\omega) = df \wedge \omega + fd\omega = df \wedge \omega + f\theta \wedge \omega = (df + f\theta) \wedge \omega.$$

EXAMPLE: Let $\tilde{\omega} = \sum_i dx_i \wedge dy_i$ be the standard flat Hermitian form on \mathbb{C}^n , and $\psi(z) := |z|^2$. Clearly, **the form** $\frac{\tilde{\omega}}{\psi}$ **is homothety invariant.** Consider the classical Hopf manifold $\frac{\mathbb{C}^n \setminus 0}{\langle \lambda \cdot \text{Id} \rangle}$, and a Hermitian metric $\omega := \frac{\tilde{\omega}}{\psi}$ on *H*. Since ω **is conformally equivalent to Kähler form, it is LCK.**

EXAMPLE: Any Vaisman manifold (defined, as in Lecture 2, as a quotient of an algebraic cone) is LCK, as explained later in this lecture.

Chern connection

DEFINITION: Let (B, ∇) be a smooth bundle with connection and a holomorphic structure $\overline{\partial} B \longrightarrow \Lambda^{0,1}(M) \otimes B$. Consider a Hodge decomposition of $\nabla, \nabla = \nabla^{0,1} + \nabla^{1,0}$,

$$\nabla^{0,1}: V \longrightarrow \Lambda^{0,1}(M) \otimes V, \quad \nabla^{1,0}: V \longrightarrow \Lambda^{1,0}(M) \otimes V.$$

We say that ∇ is compatible with the holomorphic structure if $\nabla^{0,1} = \overline{\partial}$.

DEFINITION: An Hermitian holomorphic vector bundle is a smooth complex vector bundle equipped with a Hermitian metric and a holomorphic structure operator $\overline{\partial}$.

DEFINITION: A Chern connection on a holomorphic Hermitian vector bundle is a connection compatible with the holomorphic structure and preserving the metric.

THEOREM: On any holomorphic Hermitian vector bundle, **the Chern con-nection exists, and is unique.**

Curvature of a holomorphic line bundle

REMARK: If *L* is a line bundle, End *L* is trivial, and the curvature Θ_L of *L* is a closed 2-form.

REMARK: When speaking of a "curvature of a holomorphic bundle", one usually means the curvature of a Chern connection.

REMARK: Let *B* be a holomorphic Hermitian line bundle, and *b* its nondegenerate holomorphic section. Denote by η a (1,0)-form which satisfies $\nabla^{1,0}b = \eta \otimes b$. Then $d|b|^2 = \operatorname{Re} g(\nabla^{1,0}b, b) = \operatorname{Re} \eta |b|^2$. This gives $\nabla^{1,0}b = \frac{\partial |b|^2}{|b|^2}b = 2\partial \log |b|b$.

REMARK: Then $\Theta_B(b) = 2\overline{\partial}\partial \log |b|b$, that is, $\Theta_B = -2\partial\overline{\partial} \log |b|$.

COROLLARY: If $g' = e^{2f}g - two$ metrics on a holomorphic line bundle, Θ, Θ' their curvatures, one has $\Theta' - \Theta = -2\partial\overline{\partial}f$

Calabi's formula (2.6)

REMARK: This formula has no better name that "Calabi's (2.6)", from *E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Ecole Norm. Sup.* **12** (1979), 269-294. We formulate it for line bundles; in this situation it is easier to state.

PROPOSITION: Let *L* be a holomorphic Hermitian line bundle on a complex manifold *M*, and $\Theta \in \Lambda^{1,1}(M)$ the curvature of its Chern connection. Consider the function $\psi \in C^{\infty} \operatorname{Tot}(L)$, $v \stackrel{\psi}{\mapsto} |v|^2$, and let $\pi : \operatorname{Tot}(L) \longrightarrow M$ be the projection map. Using the Chern connection on $\operatorname{Tot}(L)$, we decompose $T \operatorname{Tot}(L) = \ker d\pi \oplus T_{hor} \operatorname{Tot}(L)$; here $\ker d\pi$ is fiberwise (vertical) tangent vectors, and $T_{hor} \operatorname{Tot}(L)$ the bundle of horizontal tangent vectors, $T_{hor} \operatorname{Tot}(L) \cong \pi^*TM$. Denote by ω_{π} the Hermitian form on fibers of *L*, which is set to zero on $T_{hor} \operatorname{Tot}(L)$. Then

$$dd^c\psi = -\psi\pi^*\Theta + \omega_\pi.$$

In particular, when L^* is ample and the curvature of L is positive, the function ψ is plurisubharmonic, and strictly plurisubharmonic on $Tot^{\circ}(L)$.

Proof: https://arxiv.org/abs/2208.07188 (Liviu Ornea, Misha Verbitsky, Principles of Locally Conformally Kahler Geometry, Theorem 5.30). ■

Vaisman manifolds are LCK

COROLLARY: Let *L* be a line bundle with negative curvature on a projective manifold. Then the form $\frac{dd^c\psi}{\psi}$ is homothety invariant and locally conformally Kähler on $\text{Tot}^\circ(L)$. Moreover, this form is a pullback of an LCK form on $\frac{\text{Tot}^\circ(L)}{\langle A \rangle}$, where *A* acts on Tot(L) as in the definition of a Vaisman manifold.

Proof: Homothety with coefficient λ preserves $\frac{dd^c\psi}{\psi}$, because it multiplies numerator and denominator by $|\lambda|^2$. This form is Hermitian because $dd^c\psi = -\psi\pi^*\Theta + \omega_{\pi}$; the first component is positive on horizontal vectors and vanishes on vertical vectors, the second positive on vertical vectors and vanishes on horizontal.

REMARK: We have just shown that **Vaisman manifolds are LCK**.

Homotheties and monodromy

REMARK: In a few slides, we are going to give a definition of LCK manifold in terms of a Kähler form on the universal covering, or Kähler forms taking values in a local system, and prove the equivalence of these definitions. Under the alternative definition, "LCK manifold" is a quotient of a Kähler manifold by a free action of cocompact, discrete group acting by homotheties.

DEFINITION: Deck transform maps, or monodromy maps of a covering $\tilde{M} \rightarrow M$ are elements of the group $\operatorname{Aut}_M(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_M(\tilde{M}) = \pi_1(M)$ (prove this as an exercise).

CLAIM: Any conformal map φ : $(M, \omega) \longrightarrow (M_1, \omega_1)$ of Kähler manifolds is a homothety.

Proof: By definition, there exists a function f > 0 such that $\varphi^* \omega_1 = f \omega$; we need to show that f = const. However, $0 = d(\varphi^* \omega_1) = df \wedge \omega$. Since $\Lambda^1 M \xrightarrow{\Lambda \omega} \Lambda^3 M$ is injective (check this), this implies that df = 0.

Curvature of a connection (reminder)

DEFINITION: Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a smooth budnle. Extend it to an operator on *B*-valued forms

$$B \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^2 : B \longrightarrow B \otimes \Lambda^2(M)$ is called the curvature of ∇ . The operator $\nabla : \Lambda^i(M) \otimes B \xrightarrow{\nabla} \Lambda^{i+1}(M) \otimes B$ is denoted d_{∇} .

REMARK: $d_{\nabla_0} = d$ if *B* is a trivial bundle with the trivial connection ∇_0 . When $\nabla = \nabla_0 + \wedge \theta$, where $\wedge \theta$ is the multiplication by a 1-form θ , we have $d_{\nabla}(\eta) = d\eta + \theta \wedge \eta$.

REMARK: The algebra of End(*B*)-valued forms naturally acts on $\Lambda^*M \otimes B$. The curvature satisfies $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b = f\nabla^2 b$, hence it is $C^{\infty}M$ -linear. We consider it as an End(*B*)-valued 2-form on *M*. A connection is flat if its curvature vanishes.

Local systems and Riemann-Hilbert correspondence

DEFINITION: A local system on a manifold is a locally constant sheaf of vector spaces.

THEOREM: Fix a point $x \in M$. Then the category of local systems is naturally equivalent to the category of representations of $\pi_1(M, x)$. **Proof:** http://verbit.ru/IMPA/RS-2024/slides-RS-2024-17.pdf, pages 5-8.

THEOREM: The category of vector bundles with flat connection is equivalent to the category of local systems.

Proof. Step 1: See http://verbit.ru/IMPA/RS-2024/slides-RS-2024-20.pdf. From a locally constant sheaf \mathbb{V} we obtain a vector bundle $B := \mathbb{V} \otimes_{\mathbb{R}_M} \mathbb{C}^{\infty} M$, where \mathbb{R}_M is the constant sheaf on M. If $v_1, ..., v_n$ is a basis in $\mathbb{V}(U)$, all sections of B(U) have a form $\sum_{i=1}^n f_i v_i$, where $f_i \in C^{\infty} U$. Define the connection ∇ by $\nabla \left(\sum_{i=1}^n f_i v_i \right) = \sum df_i \otimes v_i$. This connection is flat because $d^2 = 0$. It is independent from the choice of v_i because v_i is defined canonically up to a matrix with constant coefficients. We have constructed a functor from locally constant sheaves to flat vector bundles.

Step 2: The converse functor takes a flat bundle (B, ∇) on M to the sheaf of parallel sections of B; this sheaf is locally constant, because every vector can be locally extended to a parallel section uniquely (the proof of this non-trivial observation relies on Frobenius theorem).

χ -automorphic forms

DEFINITION: Let $\tilde{M} \xrightarrow{\pi} M$ be the universal covering of M, and χ : $\pi_1(M) \longrightarrow \mathbb{R}^{>0}$ a character (group homomorphism). Consider the natural action of $\pi_1(M)$ on \tilde{M} **An** χ -automorphic form on \tilde{M} is a differential form $\eta \in \Lambda^k(\tilde{M})$ which satisfies $\gamma^* \eta = \chi(\gamma)\eta$ for any $\gamma \in \pi_1(M)$.

Proposition 1: Let *L* be a rank 1 local system on *M* associated with the representation χ . Then the space of χ -automorphic *k*-forms on \tilde{M} is in natural correspondence with the space of sections of $\Lambda^k(M) \otimes L$. Under this equivalence, the de Rham differential on χ -automorphic forms corresponds to the operator $d_{\nabla} : \Lambda^k(M) \otimes L \longrightarrow \Lambda^{k+1}(M) \otimes L$.

Proof. Step 1: Consider the pullback $\tilde{L} := \pi^* L$. The bundle \tilde{L} is flat and has trivial monodromy, hence it is naturally trivialized by parallel sections. This identifies \tilde{L} with $C^{\infty}M$; however, such an identification is defined up to a real constant. Choosing the constant, we fix the map $\psi : L \longrightarrow \tilde{C}^{\infty}M$. The bundle \tilde{L} is $\pi_1(M)$ -equivatiant, with $\gamma \in \pi_1(M)$ taking a parallel section $v \in H^0(\tilde{L})$ to $\chi(\gamma)v$. This implies that for any section u of L, the pullback $\tilde{u} \in H^0(\tilde{L})$ satisfies $\gamma^*(\psi(\tilde{u})) = \chi(\gamma)\psi(\tilde{u})$. This identifies sections of L with χ -automorphic functions on \tilde{M} .

Step 2: Since $u \mapsto \psi(\pi^*(u))$ takes a parallel section of L to a constant function, this correspondence takes d_{∇} to de Rham differential.

Lichnerowicz cohomology

Let (L, ∇) be a real flat line bundle. Any such bundle is trivialized; let ∇_0 be the trivial connection, and $\nabla - \nabla_0 \in \Lambda^1 M$ the corresponding 1-form. Since $(\nabla_0 + \theta)^2 = d_{\nabla_0}(\theta) = 0$, the 1-form is closed, and the differential d_{∇} is equal to $d + \wedge \theta$.

DEFINITION: Let θ be a closed 1-form on a manifold, and $d_{\theta}(\alpha) := d\alpha + \theta \wedge \alpha$ be the corresponding differential on $\Lambda^*(M)$. Its cohomology are called **Morse-Novikov cohomology**, or **Lichnerowicz cohomology**.

THEOREM: Lichnerowitz cohomology of a manifold is equal to the cohomology with coefficients in a local system defined by (L, ∇) .

Proof: $L \xrightarrow{d_{\theta}} L \otimes \Lambda^1 M \xrightarrow{d_{\theta}} L \otimes \Lambda^2 M \xrightarrow{d_{\theta}} \dots$ is fine resolution of the sheaf of parallel sections of L.

LCK manifolds in terms of an *L*-valued Kähler form

DEFINITION: Let (L, ∇) be an oriented real line bundle with flat connection on a complex manifold M, and $\omega \in L \otimes \Lambda^{1,1}M$ a (1,1)-form with values in L. We say that ω is an *L*-valued Kähler form if $\omega(x, Ix) \in L$ is (strictly) positive for any non-zero tangent vector, and $d_{\nabla}\omega = 0$.

REMARK: If we use a trivialization to identify L and $C^{\infty}M$, ω becomes a (1,1)-form, and d_{∇} becomes d_{θ} , giving $d_{\nabla}(\alpha) = d\alpha + \theta \wedge \alpha$. Therefore, *L*-valued Kähler form on a manifold is the same as an LCK-form.

LCK manifolds in terms of deck transform

Another definition: An LCK manifold is a complex manifold M, dim_{$\mathbb{C}} <math>M \ge$ 2 such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.</sub>

THEOREM: These two definitions are equivalent.

Proof. Step 1: Let $\tilde{\omega}$ be an automorphic Kähler form on \tilde{M} , $\chi : \pi_1(M) \longrightarrow \mathbb{R}^{>0}$ be the character taking γ to the number $\frac{\gamma^* \tilde{\omega}}{\tilde{\omega}}$, and (L, ∇) the corresponding flat line bundle on M. By Proposition 1, the automorphic Kähler form $\tilde{\omega}$ on M corresponds to a d_{∇} -closed form $\omega \in \Lambda^{1,1}(M) \otimes L$. Any trivialization of L produces a trivial connection ∇_0 such that $\nabla - \nabla_0(f) = f\theta$ for some 1-form θ . Then $d_{\nabla_0}(\omega) = d_{\nabla_0} - d_{\nabla}(\omega) = \omega \wedge \theta$. However, d_{∇_0} is de Rham differential, which brings $d\omega = \omega \wedge \theta$.

Step 2: Conversely, assume $d\omega = \omega \wedge \theta$, where θ is a closed 1-form. The connection $\nabla_0 - \wedge \theta$ on the trivial line bundle *L* is flat, because $d\theta = 0$. Then $d_{\nabla}\omega = 0$, which allows one to lift ω to an automorphic Kähler form on \tilde{M} using Proposition 1.

Next lecture:

Vaisman theorem

definitions of Vaisman manifolds (Vaisman definition, Kamishima-Ornea, Istrati)

Vaisman manifolds as quotients of algebraic cones (proper, improper)

Canonical foliation, subvarieties of Vaisman manifolds