Complex surfaces

lecture 5: Local systems and locally conformally Kähler manifolds

Misha Verbitsky

IMPA, sala 236

January 15, 2024, 17:00

Homotheties and monodromy

REMARK: Today I am going to give two equivalent definitions of LCK manifolds, one in terms of a Kähler form on the universal cover, and another in terms of Kähler forms taking values in a local system. Under the first of these definitions, "LCK manifold" is a quotient of a Kähler manifold by a free action of cocompact, discrete group acting by homotheties.

DEFINITION: Deck transform maps, or monodromy maps of a covering $\tilde{M} \rightarrow M$ are elements of the group $\operatorname{Aut}_M(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_M(\tilde{M}) = \pi_1(M)$ (prove this as an exercise).

CLAIM: Any conformal map φ : $(M, \omega) \longrightarrow (M_1, \omega_1)$ of Kähler manifolds is a homothety.

Proof: By definition, there exists a function f > 0 such that $\varphi^* \omega_1 = f \omega$; we need to show that f = const. However, $0 = d(\varphi^* \omega_1) = df \wedge \omega$. Since $\Lambda^1 M \xrightarrow{\Lambda \omega} \Lambda^3 M$ is injective (check this), this implies that df = 0.

Curvature of a connection (reminder)

DEFINITION: Let ∇ : $B \longrightarrow B \otimes \Lambda^1 M$ be a connection on a smooth budnle. Extend it to an operator on *B*-valued forms

$$B \xrightarrow{\nabla} \Lambda^{1}(M) \otimes B \xrightarrow{\nabla} \Lambda^{2}(M) \otimes B \xrightarrow{\nabla} \Lambda^{3}(M) \otimes B \xrightarrow{\nabla} \dots$$

using $\nabla(\eta \otimes b) = d\eta + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$. The operator $\nabla^2 : B \longrightarrow B \otimes \Lambda^2(M)$ is called the curvature of ∇ . The operator $\nabla : \Lambda^i(M) \otimes B \xrightarrow{\nabla} \Lambda^{i+1}(M) \otimes B$ is denoted d_{∇} .

REMARK: $d_{\nabla_0} = d$ if *B* is a trivial bundle with the trivial connection ∇_0 . When $\nabla = \nabla_0 + \wedge \theta$, where $\wedge \theta$ is the multiplication by a 1-form θ , we have $d_{\nabla}(\eta) = d\eta + \theta \wedge \eta$.

REMARK: The algebra of End(*B*)-valued forms naturally acts on $\Lambda^*M \otimes B$. The curvature satisfies $\nabla^2(fb) = d^2fb + df \wedge \nabla b - df \wedge \nabla b + f\nabla^2 b = f\nabla^2 b$, hence it is $C^{\infty}M$ -linear. We consider it as an End(*B*)-valued 2-form on *M*. A connection is flat if its curvature vanishes.

Local systems and Riemann-Hilbert correspondence

DEFINITION: A local system on a manifold is a locally constant sheaf of vector spaces.

THEOREM: Fix a point $x \in M$. Then the category of local systems is naturally equivalent to the category of representations of $\pi_1(M, x)$. **Proof:** http://verbit.ru/IMPA/RS-2024/slides-RS-2024-17.pdf, pages 5-8.

THEOREM: The category of vector bundles with flat connection is equivalent to the category of local systems.

Proof. Step 1: See http://verbit.ru/IMPA/RS-2024/slides-RS-2024-20.pdf. From a locally constant sheaf \mathbb{V} we obtain a vector bundle $B := \mathbb{V} \otimes_{\mathbb{R}_M} \mathbb{C}^{\infty} M$, where \mathbb{R}_M is the constant sheaf on M. If $v_1, ..., v_n$ is a basis in $\mathbb{V}(U)$, all sections of B(U) have a form $\sum_{i=1}^n f_i v_i$, where $f_i \in C^{\infty} U$. Define the connection ∇ by $\nabla \left(\sum_{i=1}^n f_i v_i \right) = \sum df_i \otimes v_i$. This connection is flat because $d^2 = 0$. It is independent from the choice of v_i because v_i is defined canonically up to a matrix with constant coefficients. We have constructed a functor from locally constant sheaves to flat vector bundles.

Step 2: The converse functor takes a flat bundle (B, ∇) on M to the sheaf of parallel sections of B; this sheaf is locally constant, because every vector can be locally extended to a parallel section uniquely (the proof of this non-trivial observation relies on Frobenius theorem).

χ -automorphic forms

DEFINITION: Let $\tilde{M} \xrightarrow{\pi} M$ be the universal covering of M, and χ : $\pi_1(M) \longrightarrow \mathbb{R}^{>0}$ a character (group homomorphism). Consider the natural action of $\pi_1(M)$ on \tilde{M} **An** χ -automorphic form on \tilde{M} is a differential form $\eta \in \Lambda^k(\tilde{M})$ which satisfies $\gamma^* \eta = \chi(\gamma)\eta$ for any $\gamma \in \pi_1(M)$.

Proposition 1: Let *L* be a rank 1 local system on *M* associated with the representation χ . Fix a smooth trivialization of *L*. Then **the space of** χ -automorphic *k*-forms on \tilde{M} is in a natural correspondence with the space of sections of $\Lambda^k(M) \otimes L$. Under this equivalence, the de Rham differential on χ -automorphic forms corresponds to the operator d_{∇} : $\Lambda^k(M) \otimes L \longrightarrow \Lambda^{k+1}(M) \otimes L$.

Proof. Step 1: Let u_1 be a nowhere vanishing section of L, and θ a 1-form such that $\nabla u_1 = u_1 \otimes \theta$. Since ∇ is flat, θ is closed. Given a path $A : S^1 \longrightarrow M$, the monodromy of (L, ∇) along A is equal to $\exp(\int_A \theta)$. Therefore, $\pi^* \theta = d \log(\psi)$, where ψ is a everywhere positive χ -automorphic function on \tilde{M} .

χ -automorphic forms (2)

Proposition 1: Let *L* be a rank 1 local system on *M* associated with the representation χ . Fix a smooth trivialization of *L*. Then **the space of** χ -automorphic *k*-forms on \tilde{M} is in a natural correspondence with the space of sections of $\Lambda^k(M) \otimes L$. Under this equivalence, the de Rham differential on χ -automorphic forms corresponds to the operator d_{∇} : $\Lambda^k(M) \otimes L \longrightarrow \Lambda^{k+1}(M) \otimes L$.

Proof. Step 1: Let u_1 be a nowhere vanishing section of L, and θ a 1-form such that $\nabla u_1 = u_1 \otimes \theta$. Since ∇ is flat, θ is closed. Given a path $A : S^1 \longrightarrow M$, the monodromy of (L, ∇) along A is equal to $\exp(\int_A \theta)$. Therefore, $\pi^* \theta = d \log(\psi)$, where ψ is a everywhere positive χ -automorphic function on \tilde{M} .

Step 2: Given a section fu_1 of L, $f \in C^{\infty}M$, we define $\sigma(fu_1) := \tilde{f}\psi$, where $\tilde{f} = \pi^* f$. This correspondence takes ∇ to de Rham differential, in the following sense: $d(\sigma(fu_1)) = \sigma_1(\nabla(fu_1))$, where $\sigma_1(\alpha \otimes l) := \pi^* \alpha \sigma(l)$. Indeed, for any section fu_1 of L we have

$$d(\sigma(fu_1)) = d(\tilde{f}\psi) = \psi d\tilde{f} + \tilde{f}\psi \frac{d\psi}{\psi} = \sigma_1(df \otimes u_1) + \sigma_1(f\nabla(u_1)) = \sigma_1(\nabla(fu_1)).$$

Step 3: Let now $s : \Lambda^* M \otimes L : \longrightarrow \Lambda^* \tilde{M}$ take $\eta \otimes u_1$ to $\psi \pi^* \eta$. By Step 1, this map satisfies $s(d_{\nabla}(\eta \otimes u_1)) = d(s(\eta \otimes u_1))$. This gives a bijective correspondence between sections of $\Lambda^* M \otimes L$ and χ -automorphic forms on \tilde{M} .

Lichnerowicz cohomology

Let (L, ∇) be a real flat line bundle. Any such bundle is trivialized; let ∇_0 be the trivial connection, and $\nabla - \nabla_0 \in \Lambda^1 M$ the corresponding 1-form. Since $(\nabla_0 + \theta)^2 = d_{\nabla_0}(\theta) = 0$, the 1-form is closed, and the differential d_{∇} is equal to $d + \wedge \theta$.

DEFINITION: Let θ be a closed 1-form on a manifold, and $d_{\theta}(\alpha) := d\alpha + \theta \wedge \alpha$ be the corresponding differential on $\Lambda^*(M)$. Its cohomology are called **Morse-Novikov cohomology**, or **Lichnerowicz cohomology**, denoted $H^*_{\theta}(M)$.

THEOREM: Lichnerowitz cohomology of a manifold is equal to the cohomology with coefficients in a local system defined by (L, ∇) .

Proof: $L \xrightarrow{d_{\theta}} L \otimes \wedge^1 M \xrightarrow{d_{\theta}} L \otimes \wedge^2 M \xrightarrow{d_{\theta}} \dots$ is a fine resolution of the sheaf of parallel sections of L.

LCK manifolds in terms of an *L*-valued Kähler form

DEFINITION: Let (L, ∇) be an oriented real line bundle with flat connection on a complex manifold M, and $\omega \in L \otimes \Lambda^{1,1}M$ a (1,1)-form with values in L. We say that ω is an *L*-valued Kähler form if $\omega(x, Ix) \in L$ is (strictly) positive for any non-zero tangent vector, and $d_{\nabla}\omega = 0$.

REMARK: If we use a trivialization to identify L and $C^{\infty}M$, ω becomes a (1,1)-form, and d_{∇} becomes d_{θ} , giving $d_{\nabla}(\alpha) = d\alpha + \theta \wedge \alpha$. Therefore, *L*-valued Kähler form on a manifold is the same as an LCK-form.

LCK manifolds in terms of deck transform

Another definition: An LCK manifold is a complex manifold M, dim_{$\mathbb{C}} <math>M \ge$ 2 such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.</sub>

THEOREM: These two definitions are equivalent.

Proof. Step 1: Let $\tilde{\omega}$ be an automorphic Kähler form on \tilde{M} , $\chi : \pi_1(M) \longrightarrow \mathbb{R}^{>0}$ be the character taking γ to the number $\frac{\gamma^* \tilde{\omega}}{\tilde{\omega}}$, and (L, ∇) the corresponding flat line bundle on M. By Proposition 1, the automorphic Kähler form $\tilde{\omega}$ on M corresponds to a d_{∇} -closed form $\omega \in \Lambda^{1,1}(M) \otimes L$. Any trivialization of L produces a trivial connection ∇_0 such that $\nabla - \nabla_0(f) = f\theta$ for some 1-form θ . Then $d_{\nabla_0}(\omega) = d_{\nabla_0} - d_{\nabla}(\omega) = \omega \wedge \theta$. However, d_{∇_0} is de Rham differential, which brings $d\omega = \omega \wedge \theta$.

Step 2: Conversely, assume $d\omega = \omega \wedge \theta$, where θ is a closed 1-form. The connection $\nabla_0 - \wedge \theta$ on the trivial line bundle *L* is flat, because $d\theta = 0$. Then $d_{\nabla}\omega = 0$, which allows one to lift ω to an automorphic Kähler form on \tilde{M} using Proposition 1.

Next lecture:

Vaisman theorem

definitions of Vaisman manifolds (Vaisman definition, Kamishima-Ornea, Istrati)

Vaisman manifolds as quotients of algebraic cones (proper, improper)

Canonical foliation, subvarieties of Vaisman manifolds