Complex surfaces

lecture 6: Vaisman theorem

Misha Verbitsky

IMPA, sala 236

January 17, 2024, 17:00

LCK manifolds (reminder)

DEFINITION: A complex Hermitian manifold of dimension $\dim_{\mathbb{C}} > 1$ (M, I, g, ω) is called **locally conformally Kähler** (LCK) if there exists a closed 1-form θ such that $d\omega = \theta \wedge \omega$. The 1-form θ is called the **Lee form** and its cohomology class **the Lee class**.

REMARK: This definition is equivalent to the existence of a Kähler cover $(\tilde{M}, \tilde{\omega}) \longrightarrow M$ such that the deck group Γ acts on $(M, \tilde{\omega})$ by holomorphic homotheties. Indeed, suppose that θ is exact, $df = \theta$. Then $e^{-f}\omega$ is a Kähler form. Let \tilde{M} be a covering such that the pullback $\tilde{\theta}$ of θ is exact, $df = \tilde{\theta}$. Then the pullback of $\tilde{\omega}$ is conformal to the Kähler form $e^{-f}\tilde{\omega}$.

Vaisman theorem

REMARK: Let (M, ω, θ) be an LCK manifold, and θ' another 1-form, homologous to θ . Write $\theta' - \theta = df$. Then

$$d(e^{f}\omega) = e^{f}(d\omega + df \wedge \omega) = e^{f}(\theta \wedge \omega + df \wedge \omega) = \theta' \wedge (e^{f}\omega).$$

In other words, conformally equivalent LCK metric give rise to homologous Lee forms, and any closed 1-form cohomologous to the Lee form is a Lee form of a conformally equivalent LCK metric.

DEFINITION: A compact manifold admitting a Kähler form is called **of** Kähler type.

THEOREM: (Vaisman)

A compact LCK manifold (M, I, θ) with non-exact Lee form **does not admit** a Kähler structure.

Proof: On a compact manifold of Kähler type, any $[\theta] \in H^1(M, \mathbb{R})$ can be represented by α , obtained as a real part of a holomorphic form. This gives $d^c \alpha = 0$. After a conformal change of the metric, we can assume that $d\omega = \alpha \wedge \omega$, and $dd^c \omega = \alpha \wedge I(\alpha) \wedge \omega$. On a Kähler manifold, a positive exact form must vanish, which implies $\alpha \wedge I(\alpha) \wedge \omega = 0$ and $\alpha = 0$.

REMARK: Such manifolds are called **strict LCK**. Speaking of compact LCK manifolds, people usually make this assumption tacitly.

Izu Vaisman

Izu Vaisman, b. June 22, 1938 in Jassy, Romania

Vaisman manifolds, more definitions

DEFINITION: Let (M, ω, θ) be an LCK manifold. It is called **Vaisman** if $\nabla \theta = 0$, where ∇ is the Levi-Civita connection of the Hermitian metric.

REMARK: In Lecture 2, I gave another definition of Vaisman manifold, which is equivalent to the one above. A third definition, also equivalent:

DEFINITION: An LCK manifold is a **Vaisman manifold** if it admits a continuous, holomorphic, conformal action of a complex Lie group.

REMARK: Equivalence of these three definitions is a **highly non-trivial theorem;** see "Principles of LCK geometry" for all proofs.

Vaisman manifolds, examples and non-examples

EXAMPLE: All non-Kähler elliptic surfaces are Vaisman.

DEFINITION: A linear Hopf manifold is a quotient $M := \frac{\mathbb{C}^n \setminus 0}{\langle A \rangle}$ where A is a linear contraction. When A is diagonalizable, M is called **diagonal Hopf**.

EXAMPLE: All diagonal Hopf manifolds are Vaisman, and when A cannot be diagonalized, M is LCK and not Vaisman.

THEOREM: (Ornea-V.)

All complex submanifolds of Vaisman manifolds are Vaisman. All Vaisman manifolds admit a holomorphic embedding to a diagonal Hopf manifold (which is Vaisman, too).

The fundamental foliation

DEFINITION: Let M be a Vaisman manifold, θ^{\sharp} its Lee field, and Σ a 2dimensional real foliation generated by $\theta^{\sharp}, I\theta^{\sharp}$. It is called **the fundamental foliation** of M. By construction, Σ is tangent to the orbits of the oneparametric complex Lie group of automorphisms of the covering \tilde{M} . Therefore, Σ is a holomorphic foliaton.

REMARK: Let $M = \text{Tot}^{\circ}(L)/\mathbb{Z}$ be a quotient of an algebraic cone. Then Σ is tangent to the fibers of the bundle *L*.

THEOREM: Let *M* be a compact Vaisman manifold, and $\Sigma \subset TM$ its fundamental foliation. Then

- 1. Σ is independent from the choice of the Vaisman metric.
- 2. There exists a positive, exact (1,1)-form ω_0 with $\Sigma = \ker \omega_0$.
- **3.** For any complex subvariety $Z \subset M$, Z is tangent to Σ .

4. For any compact complex subvariety $Z \subset M$, the set of smooth points of Z is Vaisman.