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Differential operators

Notation: Let M be a smooth manifold, TM its tangent bundle, ΛiM the

bundle of differential i-forms, C∞M the smooth functions. The space of

sections of a bundle B is denoted by B.

DEFINITION: Let M be a manifold. The ring of differential operators

on the ring of functions on M is a subalgebra of EndR(C
∞M,C∞M) is

defined as follows. Operator of order 0 is a C∞M-linear map, that is, a

map Lα : f 7→ αf , where α ∈ C∞M is a smooth function. Operator of order

1 is a sum of a differentiation along a vector field and a C∞M-linear map.

Differential operator of order k is a linear combination of products of k

first order differential operators.

REMARK: In coordinates x1, ..., xn , differential operators can be expressed

as sums of differential monomials:

D = f0 +
n∑
i=1

fi
∂

∂xi
+

n∑
i,j=1

fij
∂2

∂xi∂xj
+

n∑
i,j,k=1

fijk
∂3

∂xi∂xj∂xk
+ ...
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Differential operators with coefficients in a vector bundle

DEFINITION: Let E,F be trivial vector bundles on M , with basis e1, ..., en
in E, f1, ..., fm in F . A differential operator from E to F is a function
mapping

∑n
i=1αiei, where αi ∈ C∞M , to

D

 n∑
i=1

αiei

 =
m∑
j=1

n∑
i=1

Dij(αi)fj, (∗)

where Dij are differential operators on C∞M . One can think of D as a
n×m-matrix with coefficients in differential operators on C∞M.

DEFINITION: We say that a section b of a vector bundle B on M has
support in a set K ⊂ M if b vanishes in an open set which contains M\K.
The smallest of all such K is called support of b.

DEFINITION: Let E,F be vector bundles on M . Let D be an operator
mapping sections of E to sections of F . Suppose that for any open set
U ⊂ M such that E and F are trivial on U with bases {ei}, {fj}, and for any
e =

∑n
i=1αiei with support in U , the section D(e) is expressed as in (*):

D

 n∑
i=1

αiei

 =
m∑
j=1

n∑
i=1

Dij(αi)fj.

Then D is called a differential operator from E to F .
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Associated graded rings

REMARK: Algebra is an associative ring over a field. Rings in this lecture

are not necessarily commutative, but always associative.

DEFINITION: Let R be an associative ring. Filtration on R is a collection

of subspaces R0 ⊂ R1 ⊂ R2 ⊂ ... such that RiRj ⊂ Ri+j.

REMARK: Let x ∈ Rk, y ∈ Rl. Then the product xy modulo Rk+l−1 depends

only on the class of x modulo Rk−1. Indeed, Rk−1Rl ⊂ Rk+l−1. This defines

the product map (Rk/Rk−1) ⊗ (Rl/Rl−1)−→Rk+l/Rk+l−1. We obtained

the associative product structure on the space
⊕∞
i=0Ri/Ri−1.

DEFINITION: Let R0 ⊂ R1 ⊂ R2 ⊂ ... be a filtered ring. The ring
⊕∞
i=0Ri/Ri−1

is called the associated graded ring of this filtration.

EXAMPLE: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂ ... on

the ring of differential operators. The associated graded ring is called the

ring of symbols of differential operators.
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Order of zeroes of a function

DEFINITION: Let m ∈M , and x1, ..., xn a coordinate system around m, with
x1(m) = x2(m) = ... = xn(m) = 0. We say that a function f has zero of

order ⩾ k at m if ∂lf
∂xi1∂xi2...∂xil

(m) = 0 for any l < k.

CLAIM: Let m ⊂ C∞M be the ideal of all functions vanishing in m ∈ M .
Then f has zero of order ⩾ k at m if and only if f ∈ mk.

Proof. Step 1: Let f ∈ mk. Then ∂f
∂xi

∈ mk−1 by Leibniz rule. Hence f has
zero of order ⩾ k at m.

Step 2: The function f has zero of order ⩾ k at m if and only if ∂f
∂xi

has zero
of order ⩾ k − 1 at m.

Step 3: If f has zero of order ⩾ 1 at m, this means that f ∈ m by definition.
Using induction in k and step 2, we obtain that f has zero of order ⩾ k at
m ⇔ ∂f

∂xi
∈ mk−1 ⇔ f ∈ mk.

COROLLARY: Consider a function f with the Taylor series decomposition
f =

∑
Pi in m, where Pi ∈ R[x1, ..., xn] a homogeneous polynomial of degree i.

Then f has zero of order ⩾ k in m if and only if P0 = P1 = ... = Pk−1 = 0.

5



Complex surfaces, 2025, lecture 7-bis M. Verbitsky

Differential operators: algebraic definition

DEFINITION: (Grothendieck) Let R be a commutative ring over a field
k. Given a ∈ R, consider the map La : R−→R mapping x to ax. Define
Diffk(R) ⊂ Homk(R,R) inductively as follows. The Diff0(R) is the space of
all R-linear maps from R to R, that is, the space of all La, a ∈ R. The space
Diffk(R), k > 0 is

Diffk(R) := {D ∈ Homk(R,R) | [La, D] ∈ Diffk−1(R)∀a ∈ R.}

EXERCISE: Prove that Diffk(C∞M) in this sense is the same as the
space of differential operators defined in the standard way.

CLAIM: For any D ∈ Diffk−1(C∞M), and any a ∈ C∞M , one has [La, D] ∈
Diffk−1(C∞M).

Proof: Indeed, for a vector field X ∈ TM , one has [La,LieX] = LLieX(a), which
means that [La,Diff1(C∞M)] ⊂ Diff0(C∞M). Now, if we take a commutator
of La and a product of k elements from Diff1(C∞M), we obtain a linear
combination of products of k−1 elements of Diff1(C∞M), by Leibniz formula:

[La, D1D2...Dn] = [[La, D1]D2...Dn+D1[La, D2]D3...Dn+...+D1D2...Dn−1[La, Dn].
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Differential operators and homogeneous polynomials

LEMMA: Let x1, ..., xn be coordinates on Rn, and D ∈ Diffk(Rn) a differential

operator vanishing on all homogeneous polynomials P ∈ R[x1, ..., xn] of degree
k. Then D = 0.

Proof. Step 1: We prove lemma by induction. For k = 0 it is clear.

Let Lxi : C∞M −→ C∞M be the multiplication by xi. Then [Lxi, D] is a

differential operator of order k− 1 vanishing on all homogeneous polynomials

of degree ⩽ k − 1. Using induction on k, we obtain that [Lxi, D] = 0. Then

D is R[x1, ..., xn]-linear. Since D vanishes on polynomials of degree k and is

R[x1, ..., xn]-linear, it vanishes on all polynomials.

Step 2: Let f ∈ C∞Rn and x ∈ Rn be a point. Using Hadamar’s lemma, we

obtain that f = P + f0, where P ∈ R[x1, ..., xn] is a polynomial of degree k

and f0 has zero of order ⩾ k + 1 in x. Then D(f)(x) = D(P ) + D(f0) = 0

(the first summand vanishes because D is R[x1, ..., xn]-linear, and the second

because D is of order k and f0 has zero of order ⩽ k+1 in x).
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The ring of symbols

THEOREM: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂ ...
on the ring of differential operators. Then its associated graded ring is
isomorphic to the ring

⊕
iSym

i(TM).

Proof. Step 1: Let f be a function with zero of order ⩾ k in z, and m its
maximal ideal. Then Diffk−1(f) = 0. This gives a bilinear pairing

(Diffk(M)/Diffk−1(M))× (mk)/(mk−1)−→ R
mapping D⊗ f to Df(0). Since (mk)/(mk−1) = Symi(TzM)∗, this pairing, ap-
plied to all z ∈M gives a natural map Diffk(M)/Diffk−1(M)

σ−→ Symi(TM).
It remains to prove that σ is an isomorphism. Since this pairing is local,
it suffices to prove that it is an isomorphism for M = Rn.

Step 2: Let x1, ..., xn be coordinates in M = Rn, and D ∈ Diffk(M). Then
Sym∗(TM) = C∞M [ d

dx1
, d
dx2

, ..., d
dxn

]. Consider a homogeneous differential

monomial D = f ∂k

∂xi1...∂xik
. Then σ(D) = f d

dxi1

d
dxi2

... d
dxik

. Therefore, σ is

surjective.

Step 3: Let D ∈ Diffk(Rn) be a differential operator and D its class in
Diffk(Rn)/Diffk−1(Rn) such that σ(D) = 0. Since σ is evaluation on polyno-
mials, D vanishes on all homogeneous polynomials of degree k. By Lemma 1
above, D = 0.

8



Complex surfaces, 2025, lecture 7-bis M. Verbitsky

Symbols

THEOREM: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂ ....
Then its associated graded ring is isomorphic to

⊕
iSym

i(TM), identified
with the ring if fiberwise polynomial functions on T ∗M .

COROLLARY: Let F,G be vector bundles, and Diff0(F,G) ⊂ Diff1(F,G) ⊂
Diff2(F,G) the corresponding spaces of differential operators. Then

Diffi(F,G)/Diffi−1(F,G) = Symi(TM)⊗Hom(F,G),

where Symi denotes the symmetric power (symmetric part of the tensor
power).

DEFINITION: Let F,G be vector bundles, and D ∈ Diffi(F,G) a differential
operator. Consider its class in Diffi(F,G)/Diffi−1(F,G) as a Hom(F,G)-valued
function on T ∗(M) (polynomial of order i on each cotangent space). This
function is called the symbol of D.

EXERCISE: Let D : B −→B ⊗ Λ1M be a first order differential operator.
Prove that D is a connection if and only if its symbol is equal to the
identity operator Id ∈ Hom(Λ1M ⊗ (Hom(B,B ⊗ Λ1M))

EXERCISE: Prove that the symbol of the Laplacian operator ∆ : Λ∗M −→ Λ∗M
on a Riemannian manifold M at ξ ∈ T ∗M is equal to |ξ|2 IdΛ∗M.
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Elliptic operators

DEFINITION: Let F , G be vector bundles of the same rank. A differential

operator D : F −→G is called elliptic if its symbol σ(D) ∈ Hom(F,G) ⊗
Symi(TM) is invertible at each non-zero ξ ∈ T ∗M .

EXAMPLE: Consider an operator of second order on C∞(Rn),

D = f0 +
n∑
i=1

fi
∂

∂xi
+

n∑
i,j=1

fij
∂2

∂xi∂xj
.

Then the symbol of D is fij
∂2

∂xi∂xj
; it is elliptic if and only if the symmetric

form fijdxidxj is positive or negative definite everywhere in Rn.

EXERCISE: Prove that symbol of D∗ is a Hom(F,G)-valued function on

T ∗(M) which is Hermitian adjoint to symb(D).
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Elliptic operators: main properties

The rest of the slides today are introduction to the main results about elliptic

operators; complete proofs for some of them will be given later.

THEOREM: (Elliptic regularity)

Let D be an elliptic operator with smooth coefficients on a manifold (not

necessarily compact), and f ∈ kerD. Then D is smooth, and real analytic

if coefficients of D were real analytic.

THEOREM: Let D be an elliptic operator with smooth coefficients on a

compact manifold. Then its kernel is finite-dimensional. If D : F −→ F is

self-adjoint, then D can be diagonalized in an appropriate orthonormal

basis in the space of sections of F , and its eigenvalues are discrete.
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Elliptic operators of second order

Let D = f0 +
∑n
i=1 fi

∂
∂xi

+
∑n
i,j=1 fij

∂2

∂xi∂xj
be an elliptic operator of second

order. For second order operators, we always assume that the symbol
fijdxidxj is positive definite.

THEOREM: (E. Hopf’s maximum principle)
Let D be a second order elliptic operator on a manifold (not necessarily
compact) such that D(const) = 0, and f a solution of an equation D(f) = 0.
Assume that f has a local maximum. Then f = const.

THEOREM: (Harnack inequality)
Let D be a second order elliptic operator on a manifold M (not necessarily
compact), and Ω ⊂ M an open subset with compact closure. For any f ∈
C∞(Ω), denote by VarΩ(f) the number supΩ(f) − infΩ(f). Then there
exists a constant C, depending only on D, M and Ω, such that for any
f ∈ kerD, one has VarΩ(f) < C.

COROLLARY: Any pointwise converging sequence of functions f ∈
kerD converges uniformly.

Proof: Indeed, by Harnack’s inequality, the solutions of D(f) = 0 are uni-
formly continuous, hence the pointwise convergence implies uniform conver-
gence.
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Eberhard Hopf (1902-1983)
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Fredholm operators

DEFINITION: Let F be a vector bundle on a compact manifold. The L2
p-

topology on the space of sections of F is a topology defined by the quadratic

form |f |2 =
∑p
i=0

∫
M |∇if |2, for some connection and scalar product on F and

Λ1M .

EXERCISE: Prove that this topology is independent from the choice

of a connection and a metric.

DEFINITION: A continuous operator ψ : A−→B on topological vector

spaces is called Fredholm if its kernel is finite-dimensional, and its image is

closed, and has finite codimension.

THEOREM: Let D : F −→G be an elliptic operator of order d. Clearly, D

defines a continuous map L2
p(F )−→ L2

p−d(G). Then this map is Fredholm.

REMARK: This difficult theorem is a foundation of Hodge theory (and

many other things).

14



Complex surfaces, 2025, lecture 7-bis M. Verbitsky

Index of an elliptic operator

REMARK: Let D : F −→G be an elliptic operator of order d, and
L2
p(F )−→ L2

p−d(G) the corresponding maps on L2
p-spaces.

DEFINITION: Index of a Fredholm operator D is the number dimkerD −
dimcokerD = dimkerD − dimkerD∗

REMARK: Index of an elliptic operator D : L2
p(F )−→ L2

p−d(G) a priori de-
pends on p, however, by elliptic regularity, all elements of kerD and kerD∗

are smooth, hence dimkerD
∣∣∣∣L2
p(F ) is independent from p.

EXERCISE: Let Ft be a continuous family of Fredholm operators. Prove
that the index of Ft is constant in t.

COROLLARY: Let Dt be a continuous family of elliptic operators of order
k. Then indD0 = indD1.

COROLLARY: Index of an elliptic operator is determined by its symbol.

Proof: For any elliptic operators D0, D1 with the same symbol, the operator
Dt := tD1 + (1 − t)D0 has the same symbol, hence D0 can be deformed to
D0 continuously and gives a continuous family of Fredholm operators.
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Atiyah-Singer index theorem

REMARK: The index of an elliptic operator is clearly constant under continu-
ous change of its symbol. Therefore, index depends only on the homotopy
class of its symbol, which can be considered as a non-degenerate section
of Hom(F,G) over T ∗M\0. Homotopy classes of such sections are described
explicitly in terms of characteristic classes of F , G and the topological K-
theory of M . Atiyah-Singer index formula expresses the index of an elliptic
operator as a polynomial function of these topological invariants.

EXAMPLE: Let M be a compact manifold, and D : C∞M −→ C∞M elliptic
operator of second order. Then indD = 0.

Proof: Locally, we can write D = f0 +
∑n
i=1 fi

∂
∂xi

+
∑n
i,j=1 fij

∂2

∂xi∂xj
. The

Laplacian ∆ associated with the metric tensor fij has the same symbol, hence
it suffices to prove ind∆ = 0. However, ∆ is self-adjoint, hence dimker∆ =
dimcoker∆.

COROLLARY: For any second order elliptic operator D on C∞M with
D(const) = 0, one has dimcokerD = 1.

Proof: By the strong maximum principle, all functions kerD are constant,
hence dimkerD = 1. Then dimcokerD = 1 by the index theorem.
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