Complex surfaces

lecture 7 bis: Differential operators (supplementary lecture)

Misha Verbitsky

IMPA, sala 236

(distributed for your perusal)

Differential operators

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential *i*-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: Let M be a manifold. The ring of **differential operators** on the ring of functions on M is a subalgebra of $\operatorname{End}_{\mathbb{R}}(C^{\infty}M, C^{\infty}M)$ is defined as follows. **Operator of order 0** is a $C^{\infty}M$ -linear map, that is, a map L_{α} : $f \mapsto \alpha f$, where $\alpha \in C^{\infty}M$ is a smooth function. **Operator of order** 1 is a sum of a differentiation along a vector field and a $C^{\infty}M$ -linear map. **Differential operator of order** k is a linear combination of products of kfirst order differential operators.

REMARK: In coordinates $x_1, ..., x_n$, differential operators can be expressed as sums of **differential monomials**:

$$D = f_0 + \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i,j,k=1}^n f_{ijk} \frac{\partial^3}{\partial x_i \partial x_j \partial x_k} + \dots$$

Differential operators with coefficients in a vector bundle

DEFINITION: Let E, F be trivial vector bundles on M, with basis $e_1, ..., e_n$ in $E, f_1, ..., f_m$ in F. A differential operator from E to F is a function mapping $\sum_{i=1}^{n} \alpha_i e_i$, where $\alpha_i \in C^{\infty}M$, to

$$D\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{j=1}^{m} \sum_{i=1}^{n} D_{ij}(\alpha_i) f_j, \quad (*)$$

where D_{ij} are differential operators on $C^{\infty}M$. One can think of D as a $n \times m$ -matrix with coefficients in differential operators on $C^{\infty}M$.

DEFINITION: We say that a section b of a vector bundle B on M has support in a set $K \subset M$ if b vanishes in an open set which contains $M \setminus K$. The smallest of all such K is called **support** of b.

DEFINITION: Let E, F be vector bundles on M. Let D be an operator mapping sections of E to sections of F. Suppose that for any open set $U \subset M$ such that E and F are trivial on U with bases $\{e_i\}, \{f_j\}$, and for any $e = \sum_{i=1}^{n} \alpha_i e_i$ with support in U, the section D(e) is expressed as in (*):

$$D\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{j=1}^{m} \sum_{i=1}^{n} D_{ij}(\alpha_i) f_j.$$

Then D is called a differential operator from E to F.

Associated graded rings

REMARK: Algebra is an associative ring over a field. Rings in this lecture are not necessarily commutative, but always associative.

DEFINITION: Let *R* be an associative ring. Filtration on *R* is a collection of subspaces $R_0 \subset R_1 \subset R_2 \subset ...$ such that $R_i R_j \subset R_{i+j}$.

REMARK: Let $x \in R_k, y \in R_l$. Then the product xy modulo R_{k+l-1} depends only on the class of x modulo R_{k-1} . Indeed, $R_{k-1}R_l \subset R_{k+l-1}$. This defines the product map $(R_k/R_{k-1}) \otimes (R_l/R_{l-1}) \longrightarrow R_{k+l}/R_{k+l-1}$. We obtained the associative product structure on the space $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$.

DEFINITION: Let $R_0 \subset R_1 \subset R_2 \subset ...$ be a filtered ring. The ring $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$ is called **the associated graded ring** of this filtration.

EXAMPLE: Consider the filtration $\text{Diff}^0(M) \subset \text{Diff}^1(M) \subset \text{Diff}^2(M) \subset \dots$ on the ring of differential operators. The associated graded ring is called **the** ring of symbols of differential operators.

Order of zeroes of a function

DEFINITION: Let $m \in M$, and $x_1, ..., x_n$ a coordinate system around m, with $x_1(m) = x_2(m) = ... = x_n(m) = 0$. We say that a function f has zero of order $\geq k$ at m if $\frac{\partial^l f}{\partial x_{i_1} \partial x_{i_2} ... \partial x_{i_l}}(m) = 0$ for any l < k.

CLAIM: Let $\mathfrak{m} \subset C^{\infty}M$ be the ideal of all functions vanishing in $m \in M$. Then f has zero of order $\geq k$ at m if and only if $f \in \mathfrak{m}^k$.

Proof. Step 1: Let $f \in \mathfrak{m}^k$. Then $\frac{\partial f}{\partial x_i} \in \mathfrak{m}^{k-1}$ by Leibniz rule. Hence f has zero of order $\geq k$ at m.

Step 2: The function f has zero of order $\ge k$ at m if and only if $\frac{\partial f}{\partial x_i}$ has zero of order $\ge k - 1$ at m.

Step 3: If f has zero of order ≥ 1 at m, this means that $f \in \mathfrak{m}$ by definition. Using induction in k and step 2, we obtain that f has zero of order $\ge k$ at $m \Leftrightarrow \frac{\partial f}{\partial x_i} \in \mathfrak{m}^{k-1} \Leftrightarrow f \in \mathfrak{m}^k$.

COROLLARY: Consider a function f with the Taylor series decomposition $f = \sum P_i$ in m, where $P_i \in \mathbb{R}[x_1, ..., x_n]$ a homogeneous polynomial of degree i. **Then** f has zero of order $\ge k$ in m if and only if $P_0 = P_1 = ... = P_{k-1} = 0$.

Differential operators: algebraic definition

DEFINITION: (Grothendieck) Let R be a commutative ring over a field k. Given $a \in R$, consider the map $L_a : R \longrightarrow R$ mapping x to ax. Define $\text{Diff}^k(R) \subset \text{Hom}_k(R,R)$ inductively as follows. The $\text{Diff}^0(R)$ is the space of all R-linear maps from R to R, that is, the space of all L_a , $a \in R$. The space $\text{Diff}^k(R)$, k > 0 is

 $\mathsf{Diff}^k(R) := \{ D \in \mathsf{Hom}_k(R, R) \mid [L_a, D] \in \mathsf{Diff}^{k-1}(R) \forall a \in R. \}$

EXERCISE: Prove that $Diff^k(C^{\infty}M)$ in this sense is the same as the space of differential operators defined in the standard way.

CLAIM: For any $D \in \text{Diff}^{k-1}(C^{\infty}M)$, and any $a \in C^{\infty}M$, one has $[L_a, D] \in \text{Diff}^{k-1}(C^{\infty}M)$.

Proof: Indeed, for a vector field $X \in TM$, one has $[L_a, \operatorname{Lie}_X] = L_{\operatorname{Lie}_X(a)}$, which means that $[L_a, \operatorname{Diff}^1(C^{\infty}M)] \subset \operatorname{Diff}^0(C^{\infty}M)$. Now, if we take a commutator of L_a and a product of k elements from $\operatorname{Diff}^1(C^{\infty}M)$, we obtain a linear combination of products of k-1 elements of $\operatorname{Diff}^1(C^{\infty}M)$, by Leibniz formula:

 $[L_a, D_1 D_2 \dots D_n] = [[L_a, D_1] D_2 \dots D_n + D_1 [L_a, D_2] D_3 \dots D_n + \dots + D_1 D_2 \dots D_{n-1} [L_a, D_n].$

Differential operators and homogeneous polynomials

LEMMA: Let $x_1, ..., x_n$ be coordinates on \mathbb{R}^n , and $D \in \text{Diff}^k(\mathbb{R}^n)$ a differential operator vanishing on all homogeneous polynomials $P \in \mathbb{R}[x_1, ..., x_n]$ of degree k. Then D = 0.

Proof. Step 1: We prove lemma by induction. For k = 0 it is clear. Let $L_{x_i} : C^{\infty}M \longrightarrow C^{\infty}M$ be the multiplication by x_i . Then $[L_{x_i}, D]$ is a differential operator of order k - 1 vanishing on all homogeneous polynomials of degree $\leq k - 1$. Using induction on k, we obtain that $[L_{x_i}, D] = 0$. Then D is $\mathbb{R}[x_1, ..., x_n]$ -linear. Since D vanishes on polynomials of degree k and is $\mathbb{R}[x_1, ..., x_n]$ -linear, it vanishes on all polynomials.

Step 2: Let $f \in C^{\infty} \mathbb{R}^n$ and $x \in \mathbb{R}^n$ be a point. Using Hadamar's lemma, we obtain that $f = P + f_0$, where $P \in \mathbb{R}[x_1, ..., x_n]$ is a polynomial of degree k and f_0 has zero of order $\ge k + 1$ in x. Then $D(f)(x) = D(P) + D(f_0) = 0$ (the first summand vanishes because D is $\mathbb{R}[x_1, ..., x_n]$ -linear, and the second because D is of order k and f_0 has zero of order $\le k + 1$ in x).

The ring of symbols

THEOREM: Consider the filtration $\text{Diff}^0(M) \subset \text{Diff}^1(M) \subset \text{Diff}^2(M) \subset \dots$ on the ring of differential operators. Then **its associated graded ring is isomorphic to the ring** $\bigoplus_i \text{Sym}^i(TM)$.

Proof. Step 1: Let f be a function with zero of order $\ge k$ in z, and \mathfrak{m} its maximal ideal. Then $\text{Diff}^{k-1}(f) = 0$. This gives a bilinear pairing

$$(\mathsf{Diff}^k(M)/\mathsf{Diff}^{k-1}(M)) \times (\mathfrak{m}^k)/(\mathfrak{m}^{k-1}) \longrightarrow \mathbb{R}$$

mapping $D \otimes f$ to Df(0). Since $(\mathfrak{m}^k)/(\mathfrak{m}^{k-1}) = \operatorname{Sym}^i(T_z M)^*$, this pairing, applied to all $z \in M$ gives a natural map $\operatorname{Diff}^k(M)/\operatorname{Diff}^{k-1}(M) \xrightarrow{\sigma} \operatorname{Sym}^i(TM)$. **It remains to prove that** σ **is an isomorphism.** Since this pairing is local, it suffices to prove that it is an isomorphism for $M = \mathbb{R}^n$.

Step 2: Let $x_1, ..., x_n$ be coordinates in $M = \mathbb{R}^n$, and $D \in \text{Diff}^k(M)$. Then $\text{Sym}^*(TM) = C^{\infty}M[\frac{d}{dx_1}, \frac{d}{dx_2}, ..., \frac{d}{dx_n}]$. Consider a homogeneous differential monomial $D = f \frac{\partial^k}{\partial x_{i_1} ... \partial x_{i_k}}$. Then $\sigma(D) = f \frac{d}{dx_{i_1}} \frac{d}{dx_{i_2}} ... \frac{d}{dx_{i_k}}$. Therefore, σ is surjective.

Step 3: Let $D \in \text{Diff}^k(\mathbb{R}^n)$ be a differential operator and \underline{D} its class in $\text{Diff}^k(\mathbb{R}^n)/\text{Diff}^{k-1}(\mathbb{R}^n)$ such that $\sigma(\underline{D}) = 0$. Since σ is evaluation on polynomials, D vanishes on all homogeneous polynomials of degree k. By Lemma 1 above, D = 0.

Symbols

THEOREM: Consider the filtration $\text{Diff}^0(M) \subset \text{Diff}^1(M) \subset \text{Diff}^2(M) \subset \dots$ Then **its associated graded ring is isomorphic to** $\bigoplus_i \text{Sym}^i(TM)$, identified with the ring if fiberwise polynomial functions on T^*M .

COROLLARY: Let F, G be vector bundles, and $\text{Diff}^0(F, G) \subset \text{Diff}^1(F, G) \subset \text{Diff}^1(F, G) \subset \text{Diff}^2(F, G)$ the corresponding spaces of differential operators. Then

 $\operatorname{Diff}^{i}(F,G)/\operatorname{Diff}^{i-1}(F,G) = \operatorname{Sym}^{i}(TM) \otimes \operatorname{Hom}(F,G),$

where Sym^i denotes the symmetric power (symmetric part of the tensor power).

DEFINITION: Let F, G be vector bundles, and $D \in \text{Diff}^i(F, G)$ a differential operator. Consider its class in $\text{Diff}^i(F, G) / \text{Diff}^{i-1}(F, G)$ as a Hom(F, G)-valued function on $T^*(M)$ (polynomial of order i on each cotangent space). This function is called **the symbol** of D.

EXERCISE: Let $D : B \longrightarrow B \otimes \Lambda^1 M$ be a first order differential operator. **Prove that** D **is a connection if and only if its symbol is equal to the identity operator** Id \in Hom $(\Lambda^1 M \otimes (\text{Hom}(B, B \otimes \Lambda^1 M))$

EXERCISE: Prove that the symbol of the Laplacian operator Δ : $\Lambda^* M \longrightarrow \Lambda^* M$ on a Riemannian manifold M at $\xi \in T^* M$ is equal to $|\xi|^2 \operatorname{Id}_{\Lambda^* M}$.

Elliptic operators

DEFINITION: Let F, G be vector bundles of the same rank. A differential operator D : $F \longrightarrow G$ is called **elliptic** if its symbol $\sigma(D) \in \text{Hom}(F,G) \otimes$ Symⁱ(TM) is invertible at each non-zero $\xi \in T^*M$.

EXAMPLE: Consider an operator of second order on $C^{\infty}(\mathbb{R}^n)$,

$$D = f_0 + \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j}.$$

Then the symbol of *D* is $f_{ij}\frac{\partial^2}{\partial x_i\partial x_j}$; it is elliptic if and only if the symmetric form $f_{ij}dx_idx_j$ is positive or negative definite everywhere in \mathbb{R}^n .

EXERCISE: Prove that symbol of D^* is a Hom(F,G)-valued function on $T^*(M)$ which is Hermitian adjoint to symb(D).

Elliptic operators: main properties

The rest of the slides today are introduction to the main results about elliptic operators; complete proofs for some of them will be given later.

THEOREM: (Elliptic regularity)

Let *D* be an elliptic operator with smooth coefficients on a manifold (not necessarily compact), and $f \in \ker D$. Then *D* is smooth, and real analytic if coefficients of *D* were real analytic.

THEOREM: Let *D* be an elliptic operator with smooth coefficients on a compact manifold. Then its kernel is finite-dimensional. If $D: F \rightarrow F$ is self-adjoint, then *D* can be diagonalized in an appropriate orthonormal basis in the space of sections of *F*, and its eigenvalues are discrete.

Elliptic operators of second order

Let $D = f_0 + \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j}$ be an elliptic operator of second order. For second order operators, we always assume that the symbol $f_{ij} dx_i dx_j$ is positive definite.

THEOREM: (E. Hopf's maximum principle)

Let D be a second order elliptic operator on a manifold (not necessarily compact) such that D(const) = 0, and f a solution of an equation D(f) = 0. Assume that f has a local maximum. Then f = const.

THEOREM: (Harnack inequality)

Let D be a second order elliptic operator on a manifold M (not necessarily compact), and $\Omega \subset M$ an open subset with compact closure. For any $f \in \mathbb{C}^{\infty}(\Omega)$, denote by $\operatorname{Var}_{\Omega}(f)$ the number $\sup_{\Omega}(f) - \inf_{\Omega}(f)$. Then there exists a constant C, depending only on D, M and Ω , such that for any $f \in \ker D$, one has $\operatorname{Var}_{\Omega}(f) < C$.

COROLLARY: Any pointwise converging sequence of functions $f \in \ker D$ converges uniformly.

Proof: Indeed, by Harnack's inequality, the solutions of D(f) = 0 are uniformly continuous, hence the pointwise convergence implies uniform convergence.

Eberhard Hopf (1902-1983)

Fredholm operators

DEFINITION: Let *F* be a vector bundle on a compact manifold. The L_p^2 topology on the space of sections of *F* is a topology defined by the quadratic form $|f|^2 = \sum_{i=0}^p \int_M |\nabla^i f|^2$, for some connection and scalar product on *F* and $\Lambda^1 M$.

EXERCISE: Prove that this topology is independent from the choice of a connection and a metric.

DEFINITION: A continuous operator ψ : $A \rightarrow B$ on topological vector spaces is called **Fredholm** if its kernel is finite-dimensional, and its image is closed, and has finite codimension.

THEOREM: Let $D: F \longrightarrow G$ be an elliptic operator of order d. Clearly, D defines a continuous map $L_p^2(F) \longrightarrow L_{p-d}^2(G)$. Then this map is Fredholm.

REMARK: This difficult theorem is a foundation of Hodge theory (and many other things).

Index of an elliptic operator

REMARK: Let $D: F \longrightarrow G$ be an elliptic operator of order d, and $L_p^2(F) \longrightarrow L_{p-d}^2(G)$ the corresponding maps on L_p^2 -spaces.

DEFINITION: Index of a Fredholm operator D is the number dim ker D – dim coker D = dim ker D – dim ker D^*

REMARK: Index of an elliptic operator $D : L_p^2(F) \longrightarrow L_{p-d}^2(G)$ a priori depends on p, however, by elliptic regularity, **all elements of** ker D and ker D^* **are smooth**, hence dim ker $D|_{L_p^2(F)}$ is independent from p.

EXERCISE: Let F_t be a continuous family of Fredholm operators. **Prove** that the index of F_t is constant in t.

COROLLARY: Let D_t be a continuous family of elliptic operators of order k. Then $indD_0 = indD_1$.

COROLLARY: Index of an elliptic operator is determined by its symbol.

Proof: For any elliptic operators D_0, D_1 with the same symbol, the operator $D_t := tD_1 + (1-t)D_0$ has the same symbol, hence D_0 can be deformed to D_0 continuously and **gives a continuous family of Fredholm operators.**

Atiyah-Singer index theorem

REMARK: The index of an elliptic operator is clearly constant under continuous change of its symbol. Therefore, **index depends only on the homotopy class of its symbol**, which can be considered as a non-degenerate section of Hom(F,G) over $T^*M\setminus 0$. Homotopy classes of such sections are described explicitly in terms of characteristic classes of F, G and the topological K-theory of M. Atiyah-Singer index formula expresses the index of an elliptic operator as a polynomial function of these topological invariants.

EXAMPLE: Let *M* be a compact manifold, and *D* : $C^{\infty}M \longrightarrow C^{\infty}M$ elliptic operator of second order. Then ind *D* = 0.

Proof: Locally, we can write $D = f_0 + \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j}$. The Laplacian Δ associated with the metric tensor f_{ij} has the same symbol, hence it suffices to prove ind $\Delta = 0$. However, Δ is self-adjoint, hence dim ker $\Delta =$ dim coker Δ .

COROLLARY: For any second order elliptic operator D on $C^{\infty}M$ with D(const) = 0, one has dim coker D = 1.

Proof: By the strong maximum principle, all functions ker D are constant, hence dim ker D = 1. Then dim coker D = 1 by the index theorem.