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Differential operators

Notation: Let M be a smooth manifold, T'M its tangent bundle, A'M the
bundle of differential i-forms, C°°M the smooth functions. The space of
sections of a bundle B is denoted by B.

DEFINITION: Let M be a manifold. The ring of differential operators
on the ring of functions on M is a subalgebra of Endr(C°°M,C°M) is
defined as follows. Operator of order 0 is a C°°M-linear map, that is, a
map Lo . f— of, where a € C°M is a smooth function. Operator of order
1 is a sum of a differentiation along a vector field and a C°°M-linear map.
Differential operator of order k is a linear combination of products of k&
first order differential operators.

REMARK: In coordinates x1,...,zn , differential operators can be expressed
as sums of differential monomials:
n 8 n 82 n 83
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Differential operators with coefficients in a vector bundle

DEFINITION: Let E,F be trivial vector bundles on M, with basis eq,...,en
in £, f1,....,fm in F. A differential operator from E to F' is a function
mapping >4 aye;, where o € C°M, to

D (f: Oéiez') Z Z ng(az)f]a (*)
=1

j=1:=1

where D;; are differential operators on C*°M. One can think of D as a
n X m-matrix with coefficients in differential operators on C°°M.

DEFINITION: We say that a section b of a vector bundle B on M has
support in a set K C M if b vanishes in an open set which contains M\ K.
The smallest of all such K is called support of b.

DEFINITION: Let E,F be vector bundles on M. Let D be an operator
mapping sections of E to sections of F. Suppose that for any open set
U C M such that E and F' are trivial on U with bases {e;}, {f;}, and for any
e = Y ;1 oye; With support in U, the section D(e) is expressed as in (*):

D (Z aiei) Z Z ng(az)f]
1=1

j=1:=1
Then D is called a differential operator from E to F.
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Associated graded rings

REMARK: Algebra is an associative ring over a field. Rings in this lecture
are not necessarily commutative, but always associative.

DEFINITION: Let R be an associative ring. Filtration on R is a collection
of subspaces Ryo C Ry C Ry C ... such that R;R; C R,y ;.

REMARK: Let z € Ry,y € R;. Then the product xy modulo Ry, 1 depends
only on the class of x modulo Ry_1. Indeed, Ry_1R; C Riy4;_1. This defines
the product map (R;/Ry_1) ® (R;/R;—1) — Rp4+;/Rp+;—1- Ve obtained
the associative product structure on the space ©2  R;/R;_1.

DEFINITION: Let Ry C R; C Ry C ... be afiltered ring. Thering &2y R;/R;_1
is called the associated graded ring of this filtration.

EXAMPLE: Consider the filtration Diffo(M) ¢ Diffl(M) ¢ Diff(M) C ... on
the ring of differential operators. The associated graded ring is called the
ring of symbols of differential operators.
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Order of zeroes of a function

DEFINITION: Let m € M, and x1,...,zn a coordinate system around m, with
x1(m) = 2o(m) = ... = zn(m) = 0. We say that a function f has zero of

l
oz ag.f 5.-(m) =0 for any [ < k.
i10%i5--01;,

order > k at m if

CLAIM: Let m C C°°M be the ideal of all functions vanishing in m € M.
Then f has zero of order > k at m if and only if f € m*.

Proof. Step 1: Let f € mk. Then % € mk—1 by Leibniz rule. Hence f has
zero of order > k at m. '

Step 2: The function f has zero of order > k at m if and only if gg, has zero
of order >k — 1 at m. '

Step 3: If f has zero of order > 1 at m, this means that f € m by definition.
Using induction in k£ and step 2, we obtain that f has zero of order > k£ at
m & %Emk_l & femh. m

COROLLARY: Consider a function f with the Taylor series decomposition
f=> P, in m, where P, € R[xq,...,zn] @ homogeneous polynomial of degree i.
Then f has zero of order > kinmifandonly if Pp=P; = ...= PFP,_1 =0.

|
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Differential operators: algebraic definition

DEFINITION: (Grothendieck) Let R be a commutative ring over a field
k. Given a € R, consider the map L, : R— R mapping xz to ax. Define
Diff*(R) ¢ Homy(R, R) inductively as follows. The Diffo(R) is the space of
all R-linear maps from R to R, that is, the space of all Ly, a € R. The space
Diff*(R), k > 0 is

Diff*(R) := {D € Homy(R,R) | [La, D] € Diff*"1(R)Va € R.}

EXERCISE: Prove that Diff*(C>®°M) in this sense is the same as the
space of differential operators defined in the standard way.

CLAIM: For any D € Difff=1(C>°M), and any a € C®M, one has [L,, D] €
Diffk=1(C>®M).

Proof: Indeed, for a vector field X € T'M, one has [Lg, Liex] = LLieX(a), which
means that [Lq, Diff1(C®°M)] c DiffP(C>®M). Now, if we take a commutator
of L, and a product of k elements from Diff1(C*M), we obtain a linear
combination of products of £k—1 elements of Diffl(CooM), by Leibniz formula:
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Differential operators and homogeneous polynomials

LEMMA: Let 21, ..., 2y, be coordinates on R™, and D € Diff*(R™) a differential
operator vanishing on all homogeneous polynomials P € R[x1, ..., zn] Of degree
k. Then D = 0.

Proof. Step 1: We prove lemma by induction. For kK = 0 it is clear.
Let Ly, : C®°M — C°M be the multiplication by z;. Then [Lg, D] is a
differential operator of order kK — 1 vanishing on all homogeneous polynomials
of degree < k — 1. Using induction on k, we obtain that [L,,, D] = 0. Then
D is R[xq,...,xzn]-linear. Since D vanishes on polynomials of degree k and is
R[x1, ..., zn]-linear, it vanishes on all polynomials.

Step 2: Let f € C°°R"™ and xz € R"™ be a point. Using Hadamar’'s lemma, we
obtain that f = P + fg, where P € R|xq,...,zn] iS @ polynomial of degree k
and fg has zero of order > k+ 1 in z. Then D(f)(xz) = D(P)+ D(fg) =0
(the first summand vanishes because D is R[z1,...,zn]-linear, and the second
because D is of order k and fg has zero of order <k+1inx). m
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The ring of symbols

THEOREM: Consider the filtration Diffo(M) ¢ Diffl(M) c Diff2(M) C ...
on the ring of differential operators. Then its associated graded ring is
iIsomorphic to the ring @; Sym*(T'M).

Proof. Step 1: Let f be a function with zero of order > k in z, and m its
maximal ideal. Then Diff*=1(f) = 0. This gives a bilinear pairing

(Diff*(M)/ DifFE= 1 (A1) x (mF)/(mF~1) — R
mapping D® f to Df(0). Since (m*)/(mF~1) = Sym!(T.M)*, this pairing, ap-
plied to all z € M gives a natural map Diff*(M)/ Difff~1(Mm) % Symi(TM).

It remains to prove that o is an isomorphism. Since this pairing is local,
it suffices to prove that it is an isomorphism for M = R".

Step 2: Let z1,...,Zn be coordlnates in M = R", and D € Diff*(M). Then
Sym*(TM) = COOM[dxl dxz ,dx] Consider a homogeneous differential

ok d d

. _ d -
monomial D = fawil---axik' Then o(D) = fda:ild%”'dwik' Therefore, o is

surjective.

Step 3: Let D € Diff*(R") be a differential operator and D its class in
Diff*(R™)/ Diff*~1(R™) such that ¢(D) = 0. Since o is evaluation on polyno-
mials, D vanishes on all homogeneous polynomials of degree k. By Lemma 1
above, D =0. m
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Symbols

THEOREM: Consider the filtration Diffo(M) C Diff!(M) C Diff?(M) C ...
Then its associated graded ring is isomorphic to @, Sym*(T' M), identified
with the ring if fiberwise polynomial functions on T*M.

COROLLARY: Let F,G be vector bundles, and DiffO(F, G) c Diffl(F, Q) c
Difo(F, () the corresponding spaces of differential operators. Then

Diff'(F,G)/ Diff* 1 (F,G) = Sym‘ (T M) ® Hom(F,G),

where Sym’i denotes the symmetric power (symmetric part of the tensor
power).

DEFINITION: Let F,G be vector bundles, and D € Diff'(F,G) a differential
operator. Consider its class in Diff'(F, @)/ Diffi~1(F,G) as a Hom(F, G)-valued
function on T*(M) (polynomial of order ¢ on each cotangent space). This
function is called the symbol of D.

EXERCISE: Let D: B— B® AlM be a first order differential operator.
Prove that D is a connection if and only if its symbol is equal to the
identity operator Id € Hom(A'M ® (Hom(B, B @ A1 M))

EXERCISE: Prove that the symbol of the Laplacian operator A : AN*M — AN*M
on a Riemannian manifold M at ¢ € T*M is equal to [£|2Id«,y.
O]



Complex surfaces, 2025, lecture 7-bis M. Verbitsky

Elliptic operators

DEFINITION: Let F, G be vector bundles of the same rank. A differential
operator D : F — G is called elliptic if its symbol (D) € Hom(F,G) &
Sym*(T'M) is invertible at each non-zero &£ € T*M.

EXAMPLE: Consider an operator of second order on C*°(R"),

n 52
D—f0+i;1fiaxz+ Z fw@a}zam]

1,7=1

Then the symbol of D is fijax‘?—;; it is elliptic if and only if the symmetric
[
form f;;dr;dz; is positive or negative definite everywhere in R".

EXERCISE: Prove that symbol of D* is a Hom(F, G)-valued function on
T*(M) which is Hermitian adjoint to symb(D).

10
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Elliptic operators: main properties

The rest of the slides today are introduction to the main results about elliptic
operators; complete proofs for some of them will be given later.

THEOREM: (Elliptic regularity)

Let D be an elliptic operator with smooth coefficients on a manifold (not
necessarily compact), and f € ker D. Then D is smooth, and real analytic
If coefficients of D were real analytic.

THEOREM: Let D be an elliptic operator with smooth coefficients on a
compact manifold. Then its kernel is finite-dimensional. If D: F— F'is
self-adjoint, then D can be diagonalized in an appropriate orthonormal
basis In the space of sections of F', and its eigenvalues are discrete.

11
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Elliptic operators of second order

2
Let D = fo+ 214 fi% + Z?szl fijﬁ be an elliptic operator of second
order. For second order operators, we always assume that the symbol
Jijdz;dz; 1s positive definite.

THEOREM: (E. Hopf’s maximum principle)

Let D be a second order elliptic operator on a manifold (not necessarily
compact) such that D(const) = 0, and f a solution of an equation D(f) = 0.
Assume that f has a local maximum. Then f = const.

THEOREM: (Harnack inequality)

Let D be a second order elliptic operator on a manifold M (not necessarily
compact), and 2 C M an open subset with compact closure. For any f €
C*°(£2), denote by Varg(f) the number supa(f) — infa(f). Then there
exists a constant C, depending only on D, M and €2, such that for any
f € ker D, one has Varq(f) < C.

COROLLARY: Any pointwise converging sequence of functions f <
ker D converges uniformly.

Proof: Indeed, by Harnack’s inequality, the solutions of D(f) = 0 are uni-
formly continuous, hence the pointwise convergence implies uniform conver-
gence. m
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Eberhard Hopf (1902-1983)

13



Complex surfaces, 2025, lecture 7-bis M. Verbitsky
Fredholm operators

DEFINITION: Let F be a vector bundle on a compact manifold. The Lg—
topology on the space of sections of F' is a topology defined by the quadratic
form |f|? = XP_, [y IV f|?, for some connection and scalar product on F and
ALM

EXERCISE: Prove that this topology is independent from the choice
of a connection and a metric.

DEFINITION: A continuous operator v» : A— B on topological vector
spaces is called Fredholm if its kernel is finite-dimensional, and its image is
closed, and has finite codimension.

THEOREM: Let D: F— GG be an elliptic operator of order d. Clearly, D
defines a continuous map L3(F) —>L§_d(G). Then this map is Fredholm.

REMARK: This difficult theorem is a foundation of Hodge theory (and
many other things).

14
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Index of an elliptic operator

REMARK: Let D: F— G be an elliptic operator of order d, and

L2(F) — Lg_d(G) the corresponding maps on L3-spaces.

DEFINITION: Index of a Fredholm operator D is the number dimker D —
dim coker D = dim ker D — dim ker D*

REMARK: Index of an elliptic operator D : L3(F) —>Lg_d(G) a priori de-
pends on p, however, by elliptic regularity, all elements of ker D and ker D*

are smooth, hence dimker D L2(F) is independent from p.
p

EXERCISE: Let F; be a continuous family of Fredholm operators. Prove
that the index of F; is constant in ¢.

COROLLARY: Let D; be a continuous family of elliptic operators of order
k. Then indDg = indD.

COROLLARY: Index of an elliptic operator is determined by its symbol.

Proof: For any elliptic operators Dg, D1 with the same symbol, the operator

Dy :=tDq1 4+ (1 — t)Dg has the same symbol, hence Dy can be deformed to

Dg continuously and gives a continuous family of Fredholm operators. =
15
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Atiyah-Singer index theorem

REMARK: The index of an elliptic operator is clearly constant under continu-
ous change of its symbol. Therefore, index depends only on the homotopy
class of its symbol, which can be considered as a non-degenerate section
of Hom(F,G) over T*M\0. Homotopy classes of such sections are described
explicitly in terms of characteristic classes of F', G and the topological K-
theory of M. Ativyah-Singer index formula expresses the index of an elliptic
operator as a polynomial function of these topological invariants.

EXAMPLE: Let M be a compact manifold, and D : C°°M — C°°M elliptic
operator of second order. Then indD = 0.

Proof: Locally, we can write D = fo+ >.7\ 4 fi% + Zijl fij%;m, The
Laplacian A associated with the metric tensor fij has the same symioof, hence
it suffices to prove indA = 0. However, A is self-adjoint, hence dimker A =
dimcoker A. m

COROLLARY: For any second order elliptic operator D on C°°M with
D(const) = 0, one has dimcoker D = 1.

Proof: By the strong maximum principle, all functions ker D are constant,
hence dimkerD = 1. Then dimcokerD = 1 by the index theorem. =
16



