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Differential operators

DEFINITION: Let M be a smooth manifold The ring of differential oper-

ators Diff(M) is the ring of maps C∞M −→ C∞M generated by vector fields

and maps Lf(α) := fα for all f ∈ C∞M .

DEFINITION: Clearly, LfLg = Lfg, hence such map generate a ring isomor-

phic to C∞M . It is called the ring of differential operators of order 0.

Differential operators of order d are operators obtained by composition of

at most

REMARK: Vector fields on M are the same as derivations of the ring

C∞M, hence Diff(M) is an associative ring generated by C∞M and deriva-

tions.

REMARK: Locally, an order d differential operator can be written as a sum

of differential monomials:

D = f0 +
d∑

i=1

fi
∂

∂xi
+

n∑
i,j=1

fij
∂2

∂xi∂xj
+

n∑
i,j,k=1

fijk
∂3

∂xi∂xj∂xk
+ ...
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Associated graded rings

REMARK: Algebra is an associative ring over a field. Rings in this lecture

are not necessarily commutative, but always associative.

DEFINITION: Let R be an associative ring. Filtration on R is a collection

of subspaces R0 ⊂ R1 ⊂ R2 ⊂ ... such that RiRj ⊂ Ri+j.

REMARK: Let x ∈ Rk, y ∈ Rl. Then the product xy modulo Rk+l−1 depends

only on the class of x modulo Rk−1. Indeed, Rk−1Rl ⊂ Rk+l−1. This defines

the product map (Rk/Rk−1) ⊗ (Rl/Rl−1)−→Rk+l/Rk+l−1. We obtained

the associative product structure on the space
⊕∞

i=0Ri/Ri−1.

DEFINITION: Let R0 ⊂ R1 ⊂ R2 ⊂ ... be a filtered ring. The ring
⊕∞

i=0Ri/Ri−1

is called the associated graded ring of this filtration.

EXAMPLE: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂ ... on

the ring of differential operators. The associated graded ring is called the

ring of symbols of differential operators.
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The ring of symbols

THEOREM: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂ ...

on the ring of differential operators. Then its associated graded ring is
isomorphic to the ring

⊕
iSym

i(TM).
Proof. Step 1: Let f be a function with zero of order ⩾ k in z, and
m the maximal ideal of z. Then Diffk−1(f) vanishes at z. This gives

a bilinear pairing Diffk(M)
Diffk−1(M)

⊗ mk

mk−1 −→ R, mapping D ⊗ f to Df(0). Since

(mk)/(mk−1) = Symi(TzM)∗, this pairing, applied to all z ∈ M , gives a natural
map Diffk(M)/Diffk−1(M)

σ−→ Symk(TM). It remains to prove that σ is
an isomorphism. Since this pairing is local, it suffices to prove that it is an
isomorphism for M = Rn.
Step 2: Let x1, ..., xn be coordinates in M = Rn, and D ∈ Diffk(M). Then
Sym∗(TM) = C∞M [ d

dx1
, d
dx2

, ..., d
dxn

]. Consider a homogeneous differential

monomial D = f ∂k

∂xi1...∂xik
. Then σ(D) = f d

dxi1

d
dxi2

... d
dxik

. Therefore, σ is

surjective.
Step 3: Let D ∈ Diffk(Rn) be a differential operator σ(D) = 0. Expressing
D as a sum of differential monomials D = f0 +

∑d
i=1 fi

∂
∂xi

+
∑n

i,j=1 fij
∂2

∂xi∂xj
+∑n

i,j,k=1 fijk
∂3

∂xi∂xj∂xk
+ ..., we obtain that σ(D) is the sum of those monomials

which have of degree k. Therefore, σ(D) = 0 implies D ∈ Diffk−1(Rn).
4



Complex surfaces, 2025, lecture 7 M. Verbitsky

Elliptic operators

COROLLARY: Consider the filtration Diff0(M) ⊂ Diff1(M) ⊂ Diff2(M) ⊂
.... Then its associated graded ring is isomorphic to

⊕
iSym

i(TM), iden-

tified with the ring if fiberwise polynomial functions on T ∗M .

DEFINITION: Let D be a differential operator of order k. Its symbol is the

image of D in Diffk(M)
Diffk−1(M)

= Symk(TM).

DEFINITION: Let D be a differential operator of order k, and symb(D) ∈
Symk(TM) its symbol. Consider symb(D) as a degree k polynomial function on

T ∗M . We say that D is elliptic if symb(D) is positive or negative everywhere

on T ∗M\0.

REMARK: Let D = f0+
∑n

i=1 fi
∂
∂xi

+
∑n

i,j=1 fij
∂2

∂xi∂xj
be an elliptic operator of

second order. Then its symbol is a positive definite or negative definite

scalar product on T ∗M. For second order elliptic operators, we always

assume that the symbol
∑

i,j fijdxidxj is positive definite.

REMARK: For any elliptic operator D, its symbol σ(D) ∈ Sym2(TM) defines

a Riemannian metric on M.
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Strong maximum principle

THEOREM:
(strong maximum principle for second order elliptic equations; Eber-
hard Hopf, 1927) Let M be a manifold, not necessarily compact, and
D : C∞M −→ C∞M an elliptic operator of second order, which satisfies
D(const) = 0. Consider a function u ∈ C∞M such that D(u) ⩾ 0. Assume
that u has a local maximum somewhere on M. Then u is a constant.
...Hopf’s great paper on the maximum principle... has the beauty and elegance of a Mozart

symphony, the light of a Vermeer painting. Only a fraction more than five pages in length,

it contains seminal ideas which are still fresh after 75 years. – James Serrin, 2002

We start with a special case.
Proof of maximum principle, for the case D(u) > 0: In coordinates, D

is written as Du =
∑

i,j A
ijuij +

∑
iB

iui,, where u is the matrix of second
derivatives of u, ui =

∂u
∂xi

, and Aij a function taking values in positive definite
matrices. Let z be the point where u reaches a relative maximum. In this
point the first derivatives of u vanish, and the matrix of second derivatives is
negative semi-definite, hence Du|z =

∑
i,j A

ijuij|z ⩽ 0, contradicting Du > 0.

I will first prove the weak maximum principle, and then deduce the strong
maximum principle.
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Eberhard Hopf (1902-1983)

For a biography of E. Hopf, see “Eberhard Hopf between Germany and the US”, https:

//pure.mpg.de/rest/items/item_3010413_2/component/file_3015364/content.
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Weak maximum principle

THEOREM: (The weak maximum principle)
Let D : C∞Rn −→ C∞Rn be an elliptic operator of second order, which satis-
fies D(const) = 0. Consider a relatively compact open subset Ω ⋐ Rn. Then
any solution u of the inequality D(u) ⩾ 0 reaches its maximum supΩ u

on the boundary ∂Ω.

Proof. Step 1: Let z ∈ Ω be a point where u reaches maximum, and xi
coordinates in its neighbourhood U , with origin in z. Rescaling the coordinates
if necessary, we can always assume that Ω is relatively compact in the unit
ball B1. It would suffice to show that u(z) = u(v) for some z ∈ ∂Ω.

Step 2: Adding to u a solution φ of the inequality Dφ > 0, we obtain a
function u+ φ which reaches its maximum on ∂U, because of the strong
maximum principle for solutions of Du > 0.

Step 3: The function φ := εecx1 satisfies Dφ > 0 if c is chosen such that
A1,1c > |B1|. Indeed, ε−1D(φ) = c2A1,1ecx1 + cB1ecx1 > 0.

Step 4: Since the maximum of u+ εecx1 is reached on ∂Ω for any ε > 0, we
obtain that supΩ u = lim

ε→0
supΩ(u+ εecx1) = lim

ε→0
sup∂Ω(u+ εecx1) = sup∂Ω u.
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Hopf lemma

LEMMA: (Hopf lemma)
Let D(u) =

∑
i,j A

ijuij +
∑

iB
iui be an elliptic operator on a unit ball B ⊂ Rn,

and u ∈ C∞B a function which satisfies D(u) ⩾ 0. Assume that u reaches
maximum u(z0) = 0 in z0 ∈ ∂B, and inside B we have u < 0. Denote by r⃗ the
radial vector field, r⃗ =

∑
xi

d
dxi

. Then the derivative Lier⃗ u|z0 in the radial
direction is positive.

Proof. Step 1: Consider a non-negative function v ∈ C∞B, defined by
v(x) = e−α|x|2 − e−α, where α > 0 is a real number. Then

D(v)|x = α2e−αr(x)2 ∑
Aijxixj + e−αr(x)2(αζ + ξ),

where ζ, ξ ∈ C∞B are bounded functions on B, independent from α. Therefore
for sufficiently big α > 0, we have D(v) > 0 in the set Ω = B\B′, where
B′ ⊂ B is an open ball with center in 0 and radius r0 < 1.

Step 2: For a sufficiently small ε > 0, we have u + εv < 0 in B′, because
u < −δ < 0 on B′ for some δ > 0. Since v = 0 and u ⩽ 0 on ∂B, weak maximum
principle implies that u+ εv < 0 in Ω, and u+ εv reaches its maximum in z0.
This implies that Lier⃗(u+ εv)|z0 ⩾ 0.

Step 3: An easy computation gives Lier⃗ v|z0 < 0, hence Step 2 implies
Lier⃗ u|z0 > 0.
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Strong maximum principle (proof)

THEOREM:

(strong maximum principle for second order elliptic equations; Eber-

hard Hopf, 1927) Let M be a manifold, not necessarily compact, and

D : C∞M −→ C∞M an elliptic operator of second order, which satisfies

D(const) = 0. Consider a function u ∈ C∞M such that D(u) ⩾ 0. Assume

that u has a local maximum somewhere on M. Then u is a constant.

Proof. Step 1: Suppose that the local maximum is reached in an interior

point z ∈ M , and Z := {m ∈ M | u(m) = u(z)}. If u ̸= const, there exists

an open ball B ⊂ M with interior not intersecting Z, and boundary

intersecting Z. Replacing M by an open subset, we may assume that u(z)

is its maximum on all M . Then B can be chosen in such a way that u < u(z)

inside B, and ∂B ∩B is a local maximum of u.

Step 2: Since the derivative of z in z0 is non-zero (by Hopf lemma), this

point cannot be a local maximum of u, giving a contradiction.
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