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Differential operators

DEFINITION: Let M be a smooth manifold The ring of differential oper-
ators Diff(M) is the ring of maps C*°M — C°°M generated by vector fields
and maps L¢(a) := fa for all f € CCM.

DEFINITION: Clearly, Lng — Lfg, hence such map generate a ring isomor-
phic to C°°M. It is called the ring of differential operators of order O.
Differential operators of order d are operators obtained by composition of
at most

REMARK: Vector fields on M are the same as derivations of the ring
C>°M, hence Diff(M) is an associative ring generated by C°°M and deriva-
tions.

REMARK: Locally, an order d differential operator can be written as a sum
of differential monomials:

i G, Zn: 52 Zn: 53
D=fo+ ) fiz—+ fij + fiik + ...
=1 Zaxi i,j=1 " 8337,855] ij k=1 “J 8x28x]8$k
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Associated graded rings

REMARK: Algebra is an associative ring over a field. Rings in this lecture
are not necessarily commutative, but always associative.

DEFINITION: Let R be an associative ring. Filtration on R is a collection
of subspaces Ryo C Ry C Ry C ... such that R;R; C R,y ;.

REMARK: Let z € Ry,y € R;. Then the product xy modulo Ry, 1 depends
only on the class of x modulo Ry_1. Indeed, Ry_1R; C Riy4;_1. This defines
the product map (R;/Ry_1) ® (R;/R;—1) — Rp4+;/Rp+;—1- Ve obtained
the associative product structure on the space ©2  R;/R;_1.

DEFINITION: Let Ry C R; C Ry C ... be afiltered ring. Thering &2y R;/R;_1
is called the associated graded ring of this filtration.

EXAMPLE: Consider the filtration Diffo(M) ¢ Diffl(M) ¢ Diff(M) C ... on
the ring of differential operators. The associated graded ring is called the
ring of symbols of differential operators.
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The ring of symbols

THEOREM: Consider the filtration Diffo(M) ¢ Diffl(M) c Diff2(M) C ...
on the ring of differential operators. Then its associated graded ring is
isomorphic to the ring @, Sym*(TM).

Proof. Step 1: Let f be a function with zero of order > k in z, and

m the maximal ideal of z. Then Diff*~1(f) vanishes at z. This gives

Diffk (M) mk . : :
DIffF L (A1) ® %1 >R, mapping D® f to Df(0). Since

(m?)/(mF—1) = Sym*(T,M)*, this pairing, applied to all z € M, gives a natural
map Diff*(M)/ Difff~1(m) %5 Sym*(TM). It remains to prove that o is
an isomorphism. Since this pairing is local, it suffices to prove that it is an
isomorphism for M = R".

Step 2: Let z1,...,zn be coordinates in M = R", and D € Diff*(M). Then
Sym*(TM) = C’OOM[da31 de ,dx] Consider a homogeneous differential

a bilinear pairing

k
monomial D = fé’a:il(?--axik' Then o(D) = fdfgl'éldgigmdgik' Therefore, o is
surjective.
Step 3: Let D € Diff*(R™) be a differential operator a(D) = 0. Expressmg

D as a sum of differential monomials D = fo + >¢ 1fz5>aj + 7= 1fzgax o +

o3 : :
> k=1 fijkoz; Oz, 02, + ..., we obtain that o(D) is the sum of those monomials

which have of degree k. Therefore, o(D) = 0 implies D € Diff*"1(R"). =
4
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Elliptic operators

COROLLARY: Consider the filtration DiffO(M) c Diffl(M) c Diff2(M) C
. Then its associated graded ring is isomorphic to §; Symi(TM), iden-
tified with the ring if fiberwise polynomial functions on T*M. =

DEFINITION: Let D be a differential operator of order k. Its symbol is the

Diff* (M) k
image of D in = o = = Sym~(TM).

DEFINITION: Let D be a differential operator of order k, and symb(D) €
Sym*(TM) its symbol. Consider symb(D) as a degree k polynomial function on
T*M. We say that D is elliptic if symb(D) is positive or negative everywhere
on T*M\O.

REMARK: Let D = fo+>.1" 4 fzaa; —I—Z’,']j 1 fzyax ;x be an elliptic operator of
second order. Then its symbol is a positive defmlte or negative definite
scalar product on T*M. For second order elliptic operators, we always
assume that the symbol >_; ; f;;dz;dz; 1s positive definite.

REMARK: For any elliptic operator D, its symbol o(D) € Sym2(T M) defines

a Riemannian metric on M.
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Strong maximum principle

THEOREM:

(strong maximum principle for second order elliptic equations; Eber-
hard Hopf, 1927) Let M be a manifold, not necessarily compact, and
D : (C°M — C°°M an elliptic operator of second order, which satisfies
D(const) = 0. Consider a function u € C°°M such that D(u) > 0. Assume
that v has a local maximum somewhere on M. Then v is a constant.
..Hopf’s great paper on the maximum principle... has the beauty and elegance of a Mozart
symphony, the light of a Vermeer painting. Only a fraction more than five pages in length,
it contains seminal ideas which are still fresh after 75 years. — James Serrin, 2002

We start with a special case.

Proof of maximum principle, for the case D(u) > 0: In coordinates, D
is written as Du = }; ; A" ui; + D B'u;,, where u is the matrix of second
derivatives of u, u; = g;ji, and AY a function taking values in positive definite
matrices. Let z be the point where v reaches a relative maximum. In this
point the first derivatives of w vanish, and the matrix of second derivatives is
negative semi-definite, hence Du|, = ¥; ; A%u;;|» < 0, contradicting Du > 0.
|

I will first prove the weak maximum principle, and then deduce the strong
maximum principle.
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Eberhard Hopf (1902-1983)

For a biography of E. Hopf, see “Eberhard Hopf between Germany and the US”, https:
//pure.mpg.de/rest/items/item_3010413_2/component/file_3015364/content.
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Weak maximum principle

THEOREM: (The weak maximum principle)

Let D : C°°R" — C'°°R"™ be an elliptic operator of second order, which satis-
fies D(const) = 0. Consider a relatively compact open subset 2 € R". Then
any solution u of the inequality D(u) > 0 reaches its maximum supo u
on the boundary 0f2.

Proof. Step 1: Let 2 € Q be a point where u reaches maximum, and z;
coordinates in its neighbourhood U, with origin in z. Rescaling the coordinates
if necessary, we can always assume that €2 is relatively compact in the unit
ball By. It would suffice to show that u(z) = u(v) for some z € 912.

Step 2: Adding to u a solution ¢ of the inequality Dy > 0, we obtain a
function u 4+ ¢ which reaches its maximum on 90U, because of the strong
maximum principle for solutions of Du > 0.

Step 3: The function ¢ := ce“*1 satisfies Dy > 0 if ¢ iIs chosen such that
Able > B, Indeed, e 1D(p) = c2Al:1e®1 4 ¢Blec1 > 0.

Step 4: Since the maximum of u + e“*1 is reached on 0L2 for any € > 0, we
obtain that supou = Ilim supgo(u+ce®1) = lim supgo(u+ce*1) = supgo u. =
e—0 3 e—0
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Hopf lemma

LEMMA: (Hopf lemma)

Let D(u) =Y ; ; AYu;; +; B'u; be an elliptic operator on a unit ball B C R",
and u € C°°B a function which satisfies D(u) > 0. Assume that u reaches
maximum u(zg) = 0 in zg € 0B, and inside B we have u < 0. Denote by 7 the
radial vector field, 7 = ind%i. Then the derivative Liepu|,, in the radial
direction is positive.

Proof. Ste2p 1: Consider a non-negative function v € C°°B, defined by
v(z) = e %" — e= where a > 0 is a real number. Then

D)z = a2e—ar(@)? > Aijxq;iffj + G_ar(x)Q(OéC + &),

where (, £ € C°°B are bounded functions on B, independent from «. Therefore
for sufficiently big o > 0, we have D(v) > 0 in the set 2 = B\B’, where
B’ C B is an open ball with center in 0 and radius rg < 1.

Step 2: For a sufficiently small € > 0, we have v+ cv < 0 in B/, because
u< —86 <0on B forsomed§ > 0. Sincev=0and u < 0on 8B, weak maximum
principle implies that u 4+ ev < 0 in €2, and u + ev reaches its maximum in zq.
This implies that Liez(u 4 ev)|;, = O.

Step 3: An easy computation gives Liegzv|;,; < 0, hence Step 2 implies
O]
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Strong maximum principle (proof)

THEOREM:

(strong maximum principle for second order elliptic equations; Eber-
hard Hopf, 1927) Let M be a manifold, not necessarily compact, and
D : (C°M — C°°M an elliptic operator of second order, which satisfies
D(const) = 0. Consider a function u € C°°M such that D(u) > 0. Assume
that v has a local maximum somewhere on M. Then v is a constant.

Proof. Step 1: Suppose that the local maximum is reached in an interior
point ze M, and Z :={m e M | u(m) =u(z)}. If u # const, there exists
an open ball B C M with interior not intersecting 7, and boundary
intersecting Z. Replacing M by an open subset, we may assume that u(z)
is its maximum on all M. Then B can be chosen in such a way that u < u(z)
inside B, and 9B N B is a local maximum of w.

Step 2: Since the derivative of z in zg is non-zero (by Hopf lemma), this
point cannot be a local maximum of u, giving a contradiction. =
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