Complex surfaces

lecture 7: Elliptic operators of second order

Misha Verbitsky

IMPA, sala 236

January 22, 2024, 17:00

Differential operators

DEFINITION: Let M be a smooth manifold **The ring of differential operators** Diff(M) is the ring of maps $C^{\infty}M \longrightarrow C^{\infty}M$ generated by vector fields and maps $L_f(\alpha) := f\alpha$ for all $f \in C^{\infty}M$.

DEFINITION: Clearly, $L_f L_g = L_{fg}$, hence such map generate a ring isomorphic to $C^{\infty}M$. It is called **the ring of differential operators of order 0**. **Differential operators of order** *d* are operators obtained by composition of at most

REMARK: Vector fields on M are the same as derivations of the ring $C^{\infty}M$, hence Diff(M) is an associative ring generated by $C^{\infty}M$ and derivations.

REMARK: Locally, an order d differential operator can be written as a sum of **differential monomials**:

$$D = f_0 + \sum_{i=1}^d f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i,j,k=1}^n f_{ijk} \frac{\partial^3}{\partial x_i \partial x_j \partial x_k} + \dots$$

Associated graded rings

REMARK: Algebra is an associative ring over a field. Rings in this lecture are not necessarily commutative, but always associative.

DEFINITION: Let *R* be an associative ring. Filtration on *R* is a collection of subspaces $R_0 \subset R_1 \subset R_2 \subset ...$ such that $R_i R_j \subset R_{i+j}$.

REMARK: Let $x \in R_k, y \in R_l$. Then the product xy modulo R_{k+l-1} depends only on the class of x modulo R_{k-1} . Indeed, $R_{k-1}R_l \subset R_{k+l-1}$. This defines the product map $(R_k/R_{k-1}) \otimes (R_l/R_{l-1}) \longrightarrow R_{k+l}/R_{k+l-1}$. We obtained the associative product structure on the space $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$.

DEFINITION: Let $R_0 \subset R_1 \subset R_2 \subset ...$ be a filtered ring. The ring $\bigoplus_{i=0}^{\infty} R_i/R_{i-1}$ is called **the associated graded ring** of this filtration.

EXAMPLE: Consider the filtration $\text{Diff}^0(M) \subset \text{Diff}^1(M) \subset \text{Diff}^2(M) \subset \dots$ on the ring of differential operators. The associated graded ring is called **the** ring of symbols of differential operators.

The ring of symbols

THEOREM: Consider the filtration $\text{Diff}^0(M) \subset \text{Diff}^1(M) \subset \text{Diff}^2(M) \subset \dots$ on the ring of differential operators. Then **its associated graded ring is isomorphic to the ring** $\bigoplus_i \text{Sym}^i(TM)$.

Proof. Step 1: Let f be a function with zero of order $\geq k$ in z, and \mathfrak{m} the maximal ideal of z. Then $\operatorname{Diff}^{k-1}(f)$ vanishes at z. This gives a bilinear pairing $\frac{\operatorname{Diff}^k(M)}{\operatorname{Diff}^{k-1}(M)} \otimes \frac{\mathfrak{m}^k}{\mathfrak{m}^{k-1}} \longrightarrow \mathbb{R}$, mapping $D \otimes f$ to Df(0). Since $(\mathfrak{m}^k)/(\mathfrak{m}^{k-1}) = \operatorname{Sym}^i(T_zM)^*$, this pairing, applied to all $z \in M$, gives a natural map $\operatorname{Diff}^k(M)/\operatorname{Diff}^{k-1}(M) \xrightarrow{\sigma} \operatorname{Sym}^k(TM)$. It remains to prove that σ is an isomorphism. Since this pairing is local, it suffices to prove that it is an isomorphism for $M = \mathbb{R}^n$.

Step 2: Let $x_1, ..., x_n$ be coordinates in $M = \mathbb{R}^n$, and $D \in \text{Diff}^k(M)$. Then $\text{Sym}^*(TM) = C^{\infty}M[\frac{d}{dx_1}, \frac{d}{dx_2}, ..., \frac{d}{dx_n}]$. Consider a homogeneous differential monomial $D = f \frac{\partial^k}{\partial x_{i_1} ... \partial x_{i_k}}$. Then $\sigma(D) = f \frac{d}{dx_{i_1}} \frac{d}{dx_{i_2}} ... \frac{d}{dx_{i_k}}$. Therefore, σ is **surjective**.

Step 3: Let $D \in \text{Diff}^k(\mathbb{R}^n)$ be a differential operator $\sigma(D) = 0$. Expressing D as a sum of differential monomials $D = f_0 + \sum_{i=1}^d f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i,j=1}^n f_{ijk} \frac{\partial^3}{\partial x_i \partial x_j \partial x_k} + \dots$, we obtain that $\sigma(D)$ is the sum of those monomials which have of degree k. Therefore, $\sigma(D) = 0$ implies $D \in \text{Diff}^{k-1}(\mathbb{R}^n)$.

Elliptic operators

COROLLARY: Consider the filtration $\text{Diff}^0(M) \subset \text{Diff}^1(M) \subset \text{Diff}^2(M) \subset$ Then **its associated graded ring is isomorphic to** $\bigoplus_i \text{Sym}^i(TM)$, identified with the ring if fiberwise polynomial functions on T^*M .

DEFINITION: Let *D* be a differential operator of order *k*. Its symbol is the image of *D* in $\frac{\text{Diff}^k(M)}{\text{Diff}^{k-1}(M)} = \text{Sym}^k(TM)$.

DEFINITION: Let D be a differential operator of order k, and $symb(D) \in$ $Sym^k(TM)$ its symbol. Consider symb(D) as a degree k polynomial function on T^*M . We say that D is elliptic if symb(D) is positive or negative everywhere on $T^*M\setminus 0$.

REMARK: Let $D = f_0 + \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} + \sum_{i,j=1}^n f_{ij} \frac{\partial^2}{\partial x_i \partial x_j}$ be an elliptic operator of second order. Then **its symbol is a positive definite or negative definite scalar product on** T^*M . For second order elliptic operators, we always assume that the symbol $\sum_{i,j} f_{ij} dx_i dx_j$ is positive definite.

REMARK: For any elliptic operator D, its symbol $\sigma(D) \in \text{Sym}^2(TM)$ defines a Riemannian metric on M.

Strong maximum principle

THEOREM:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Let M be a manifold, not necessarily compact, and $D : C^{\infty}M \longrightarrow C^{\infty}M$ an elliptic operator of second order, which satisfies D(const) = 0. Consider a function $u \in C^{\infty}M$ such that $D(u) \ge 0$. Assume that u has a local maximum somewhere on M. Then u is a constant. ...Hopf's great paper on the maximum principle... has the beauty and elegance of a Mozart symphony, the light of a Vermeer painting. Only a fraction more than five pages in length, it contains seminal ideas which are still fresh after 75 years. – James Serrin, 2002

We start with a special case.

Proof of maximum principle, for the case D(u) > 0: In coordinates, D is written as $Du = \sum_{i,j} A^{ij} u_{ij} + \sum_i B^i u_i$, where u is the matrix of second derivatives of u, $u_i = \frac{\partial u}{\partial x_i}$, and A^{ij} a function taking values in positive definite matrices. Let z be the point where u reaches a relative maximum. In this point the first derivatives of u vanish, and the matrix of second derivatives is negative semi-definite, hence $Du|_z = \sum_{i,j} A^{ij} u_{ij}|_z \leq 0$, contradicting Du > 0.

I will first prove the weak maximum principle, and then deduce the strong maximum principle.

M. Verbitsky

Eberhard Hopf (1902-1983)

For a biography of E. Hopf, see "Eberhard Hopf between Germany and the US", https: //pure.mpg.de/rest/items/item_3010413_2/component/file_3015364/content.

Weak maximum principle

THEOREM: (The weak maximum principle)

Let $D: C^{\infty}\mathbb{R}^n \longrightarrow C^{\infty}\mathbb{R}^n$ be an elliptic operator of second order, which satisfies D(const) = 0. Consider a relatively compact open subset $\Omega \Subset \mathbb{R}^n$. Then any solution u of the inequality $D(u) \ge 0$ reaches its maximum $\sup_{\Omega} u$ on the boundary $\partial \Omega$.

Proof. Step 1: Let $z \in \overline{\Omega}$ be a point where u reaches maximum, and x_i coordinates in its neighbourhood U, with origin in z. Rescaling the coordinates if necessary, we can always assume that Ω is relatively compact in the unit ball B_1 . It would suffice to show that u(z) = u(v) for some $z \in \partial \Omega$.

Step 2: Adding to u a solution φ of the inequality $D\varphi > 0$, we obtain a function $u + \varphi$ which reaches its maximum on ∂U , because of the strong maximum principle for solutions of Du > 0.

Step 3: The function $\varphi := \varepsilon e^{cx_1}$ satisfies $D\varphi > 0$ if c is chosen such that $A^{1,1}c > |B^1|$. Indeed, $\varepsilon^{-1}D(\varphi) = c^2A^{1,1}e^{cx_1} + cB^1e^{cx_1} > 0$.

Step 4: Since the maximum of $u + \varepsilon e^{cx_1}$ is reached on $\partial\Omega$ for any $\varepsilon > 0$, we obtain that $\sup_{\Omega} u = \lim_{\varepsilon \to 0} \sup_{\Omega} (u + \varepsilon e^{cx_1}) = \lim_{\varepsilon \to 0} \sup_{\partial\Omega} (u + \varepsilon e^{cx_1}) = \sup_{\partial\Omega} u$.

Hopf lemma

LEMMA: (Hopf lemma)

Let $D(u) = \sum_{i,j} A^{ij} u_{ij} + \sum_i B^i u_i$ be an elliptic operator on a unit ball $B \subset \mathbb{R}^n$, and $u \in C^{\infty}B$ a function which satisfies $D(u) \ge 0$. Assume that u reaches maximum $u(z_0) = 0$ in $z_0 \in \partial B$, and inside B we have u < 0. Denote by \vec{r} the radial vector field, $\vec{r} = \sum x_i \frac{d}{dx_i}$. Then the derivative $\operatorname{Lie}_{\vec{r}} u|_{z_0}$ in the radial direction is positive.

Proof. Step 1: Consider a non-negative function $v \in C^{\infty}B$, defined by $v(x) = e^{-\alpha|x|^2} - e^{-\alpha}$, where $\alpha > 0$ is a real number. Then

$$D(v)|_{x} = \alpha^{2} e^{-\alpha r(x)^{2}} \sum A^{ij} x_{i} x_{j} + e^{-\alpha r(x)^{2}} (\alpha \zeta + \xi),$$

where $\zeta, \xi \in \mathbb{C}^{\infty}B$ are bounded functions on B, independent from α . Therefore for sufficiently big $\alpha > 0$, we have D(v) > 0 in the set $\Omega = B \setminus B'$, where $B' \subset B$ is an open ball with center in 0 and radius $r_0 < 1$.

Step 2: For a sufficiently small $\varepsilon > 0$, we have $u + \varepsilon v < 0$ in B', because $u < -\delta < 0$ on B' for some $\delta > 0$. Since v = 0 and $u \leq 0$ on ∂B , weak maximum principle implies that $u + \varepsilon v < 0$ in Ω , and $u + \varepsilon v$ reaches its maximum in z_0 . **This implies that** $\text{Lie}_{\vec{r}}(u + \varepsilon v)|_{z_0} \ge 0$.

Step 3: An easy computation gives $\operatorname{Lie}_{\vec{r}} v|_{z_0} < 0$, hence Step 2 implies $\operatorname{Lie}_{\vec{r}} u|_{z_0} > 0$.

Strong maximum principle (proof)

THEOREM:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Let M be a manifold, not necessarily compact, and $D : C^{\infty}M \longrightarrow C^{\infty}M$ an elliptic operator of second order, which satisfies D(const) = 0. Consider a function $u \in C^{\infty}M$ such that $D(u) \ge 0$. Assume that u has a local maximum somewhere on M. Then u is a constant.

Proof. Step 1: Suppose that the local maximum is reached in an interior point $z \in M$, and $Z := \{m \in M \mid u(m) = u(z)\}$. If $u \neq const$, there exists an open ball $B \subset M$ with interior not intersecting Z, and boundary intersecting Z. Replacing M by an open subset, we may assume that u(z) is its maximum on all M. Then B can be chosen in such a way that u < u(z) inside B, and $\partial B \cap B$ is a local maximum of u.

Step 2: Since the derivative of z in z_0 is non-zero (by Hopf lemma), this point cannot be a local maximum of u, giving a contradiction.