Complex surfaces

lecture 8: Adjoint operators in Hodge theory

Misha Verbitsky

IMPA, sala 236

January 24, 2024, 17:00

M. Verbitsky

Adjoint connection (reminder)

DEFINITION: Given a connection ∇ on a vector bundle *B* equipped with a scalar product (\cdot, \cdot) , define ∇^* by the formula

$$d(b, b') = (\nabla(b), b') + (b, \nabla^*(b')). \quad (**)$$

Here, b, b' are sections of B, d(b, b') is a differential of a function, and $(\nabla(b), b')$ is the 1-form obtained from the bilinear pairing $B \otimes (B \otimes \Lambda^1 M) \longrightarrow \Lambda^1 M$.

CLAIM: The map $\nabla^* : B \longrightarrow B \otimes \Lambda^1 M$ is well defined by (**). Moreover, it is also a connection.

Proof: The first statement is clear, because any linear map $B \longrightarrow \Lambda^1 M$ can be represented by $b \longrightarrow (b, A)$ for some $A \in B \otimes \Lambda^1 M$. To check the second statement, we take $f \in C^{\infty}M$, and write

$$(b,b')df + fd(b,b') = d(b,fb') = f(\nabla(b),b') + (b,\nabla^*(fb')).(**)$$

which gives $(b,\nabla^*(fb') - f\nabla^*(b')) = (b,b')df$, hence $\nabla^*(fb') - f\nabla^*(b') = b' \otimes df$.

DEFINITION: The connection ∇^* is called **adjoint connection** to ∇ . Relation $\nabla = \nabla^*$ happens precisely when ∇ preserves the metric tensor, considered as a section of $B^* \otimes B^*$, and in this case ∇ is called **an orthogonal connection**.

Adjoint connection and L^2 -product

DEFINITION: Fix a volume form Vol on a manifold M Consider a $C^{\infty}M$ linear scalar product on a vector bundle B. Then **the space of sections of** B is also equipped with a scalar product: $(b,b')_{L^2} = \int_M (b,b')$ Vol. It is called **the standard** L^2 -scalar product on the space of sections.

LEMMA: (integration by parts)

Let *B* be a bundle on *M* with scalar product and connection ∇ , and $b, b' \in B$ its sections. Then, for any vector fields $X \in TM$, one has

$$\int_{M} (\nabla_X b, b') + \int_{M} (b, \nabla_X^* b') = \int_{M} (b, b') \operatorname{Lie}_X \operatorname{Vol} \quad (* * *)$$

Proof: By definition, one has

$$\int_{M} ((\nabla_X)^*(b), b') \operatorname{Vol} = \int_{M} (b, \nabla_X b') \operatorname{Vol} = -\int_{M} (\nabla_X^* b, b') \operatorname{Vol} - \int_{M} \operatorname{Lie}_X(b, b') \operatorname{Vol},$$

where $\operatorname{Lie}_X(b,b')$ is differential of the function (b,b') along $X \in TM$. However, for any top form η , one has $\operatorname{Lie}_X(\eta) = d(i_x\eta)$ by Cartan's formula, giving $\int_M \operatorname{Lie}_X(\eta) = 0$, hence

$$0 = \int_M \operatorname{Lie}_X((b,b')\operatorname{Vol}) = \int_M \operatorname{Lie}_X(b,b')\operatorname{Vol} + \int_M (b,b')\operatorname{Lie}_X\operatorname{Vol},$$

giving the last term in (***). \blacksquare

Adjoint operators

REMARK: Operators $A : F \longrightarrow G$ and $A^* : G \longrightarrow F$ on spaces with a scalar product are called **orthogonal adjoint**, or **adjoint**, if $(A(f),g) = (f,A^*(g))$ for each $f \in F$, $g \in G$.

CLAIM: An orthogonal adjoint D^* to a differential operator D is a differential operator again.

Proof. Step 1: This is clear for $C^{\infty}M$ -linear operators (just take the pointwise adjoint map). If we prove it for first order operators, we are done, because $(XY)^* = Y^*X^*$.

Step 2: First order operators are expressed as linear combination of linear maps and derivatives $\nabla_X : F \longrightarrow F$ combined with linear maps. Therefore, it would suffice to show that $(\nabla_X)^*$ is a differential operator.

Step 3: The map $(\nabla_X)^*$ is a differential operator: $(\nabla_X)^*(b) = -\nabla_X^* - \frac{\operatorname{Lie}_X(\operatorname{Vol})}{\operatorname{Vol}}b$, because $\int_M ((\nabla_X)^*(b), b') \operatorname{Vol} = -\int_M (\nabla_X^* b, b') \operatorname{Vol} - \int (b, b') \operatorname{Lie}_X(\operatorname{Vol})$

by "integration by parts", as shown above. ■

Laplacian on differential forms

DEFINITION: Let *V* be a vector space. **A metric** *g* **on** *V* **induces a natural metric on each of its tensor spaces:** $g(x_1 \otimes x_2 \otimes ... \otimes x_k, x'_1 \otimes x'_2 \otimes ... \otimes x'_k) =$ $g(x_1, x'_1)g(x_2, x'_2)...g(x_k, x'_k).$ **This gives a natural positive definite scalar product on differential forms over a Riemannian manifold** (M, g): $g(\alpha, \beta) := \int_M g(\alpha, \beta) \operatorname{Vol}_M.$ **DEFINITION:** Let *M* be a Riemannian manifold. Laplacian on differential

forms is $\Delta := dd^* + d^*d$.

REMARK: Laplacian is self-adjoint and positive semi-definite: $(\Delta x, x) = (dx, dx) + (d^*x, d^*x)$. Also, Δ commutes with d and d^* .

THEOREM: (The main theorem of Hodge theory)

Let Δ be the Laplacian on differential forms on a compact Riemannian manifold (or any other self-adjoint elliptic operator). Then there is an orthonormal basis in the Hilbert space $L^2(\Lambda^*(M))$ consisting of eigenvectors of Δ , and its eigenvalues have finite multiplicities and converge to infinity.

THEOREM: ("Elliptic regularity for Δ ") Let $\alpha \in L^2(\Lambda^k(M))$ be an eigenvector of Δ (or any other self-adjoint elliptic operator). Then α is a smooth k-form.

These two theorems are foundation of Hodge theory; **throughout the course** we assume them without a proof.

Hodge theory and the cohomology

THEOREM: The natural map $\mathcal{H}^i(M) \longrightarrow H^i(M)$ is an isomorphism.

Proof. Step 1: Since $d^2 = 0$ and $(d^*)^2 = 0$, one has $\{d, \Delta\} = 0$. This means that Δ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition $\Lambda^*(M) \cong \bigoplus_{\alpha} \mathcal{H}^*_{\alpha}(M)$, where α runs through all eigenvalues of Δ , and $\mathcal{H}^*_{\alpha}(M)$ is the corresponding eigenspace. **For each** α , **de Rham differential defines a complex**

$$\mathcal{H}^{0}_{\alpha}(M) \xrightarrow{d} \mathcal{H}^{1}_{\alpha}(M) \xrightarrow{d} \mathcal{H}^{2}_{\alpha}(M) \xrightarrow{d} \dots$$

Step 3: On $\mathcal{H}^*_{\alpha}(M)$, one has $dd^* + d^*d = \alpha$. When $\alpha \neq 0$, and η closed, this implies $dd^*(\eta) + d^*d(\eta) = dd^*\eta = \alpha\eta$, hence $\eta = d\xi$, with $\xi := \alpha^{-1}d^*\eta$. This implies that **the complexes** $(\mathcal{H}^*_{\alpha}(M), d)$ **don't contribute to cohomology.**

Step 4: We have proven that

$$H^*(\Lambda^*M,d) = \bigoplus_{\alpha} H^*(\mathcal{H}^*_{\alpha}(M),d) = H^*(\mathcal{H}^*_{0}(M),d) = \mathcal{H}^*(M).$$