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Adjoint connection (reminder)

DEFINITION: Given a connection ∇ on a vector bundle B equipped with a
scalar product (·, ·), define ∇∗ by the formula

d(b, b′) = (∇(b), b′) + (b,∇∗(b′)). (∗∗)
Here, b, b′ are sections of B, d(b, b′) is a differential of a function, and (∇(b), b′)
is the 1-form obtained from the bilinear pairing B ⊗ (B ⊗ Λ1M)−→ Λ1M .

CLAIM: The map ∇∗ : B −→B⊗Λ1M is well defined by (**). Moreover,
it is also a connection.

Proof: The first statement is clear, because any linear map B −→ Λ1M can
be represented by b−→ (b, A) for some A ∈ B ⊗ Λ1M . To check the second
statement, we take f ∈ C∞M , and write

(b, b′)df + fd(b, b′) = d(b, fb′) = f(∇(b), b′) + (b,∇∗(fb′)).(∗∗)
which gives

(
b,∇∗(fb′)− f∇∗(b′)

)
= (b, b′)df , hence ∇∗(fb′)− f∇∗(b′) = b′⊗ df .

DEFINITION: The connection ∇∗ is called adjoint connection to ∇. Rela-
tion ∇ = ∇∗ happens precisely when ∇ preserves the metric tensor, considered
as a section of B∗⊗B∗, and in this case ∇ is called an orthogonal connection.
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Adjoint connection and L2-product

DEFINITION: Fix a volume form Vol on a manifold M Consider a C∞M-

linear scalar product on a vector bundle B. Then the space of sections of

B is also equipped with a scalar product: (b, b′)L2 =
∫
M(b, b′)Vol. It is

called the standard L2-scalar product on the space of sections.

LEMMA: (integration by parts)

Let B be a bundle on M with scalar product and connection ∇, and b, b′ ∈ B

its sections. Then, for any vector fields X ∈ TM, one has∫
M
(∇Xb, b′) +

∫
M
(b,∇∗

Xb′) =
∫
M
(b, b′)LieX Vol (∗ ∗ ∗)

Proof: By definition, one has∫
M
((∇X)∗(b), b′)Vol =

∫
M
(b,∇Xb′)Vol = −

∫
M
(∇∗

Xb, b′)Vol−
∫
M

LieX(b, b′)Vol,

where LieX(b, b′) is differential of the function (b, b′) along X ∈ TM . However,

for any top form η, one has LieX(η) = d(ixη) by Cartan’s formula, giving∫
M LieX(η) = 0, hence

0 =
∫
M

LieX((b, b′)Vol) =
∫
M

LieX(b, b′)Vol+
∫
M
(b, b′)LieX Vol,

giving the last term in (***).
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Adjoint operators

REMARK: Operators A : F −→G and A∗ : G−→ F on spaces with a scalar
product are called orthogonal adjoint, or adjoint, if (A(f), g) = (f,A∗(g))
for each f ∈ F , g ∈ G.

CLAIM: An orthogonal adjoint D∗ to a differential operator D is a differen-
tial operator again.

Proof. Step 1: This is clear for C∞M-linear operators (just take the point-
wise adjoint map). If we prove it for first order operators, we are done,
because (XY )∗ = Y ∗X∗.

Step 2: First order operators are expressed as linear combination of linear
maps and derivatives ∇X : F −→ F combined with linear maps. Therefore, it
would suffice to show that (∇X)∗ is a differential operator.

Step 3: The map (∇X)∗ is a differential operator: (∇X)∗(b) = −∇∗
X −

LieX(Vol)
Vol b, because∫

M
((∇X)∗(b), b′)Vol = −

∫
M
(∇∗

Xb, b′)Vol−
∫
(b, b′)LieX(Vol)

by “integration by parts”, as shown above.
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric g on V induces a natural
metric on each of its tensor spaces: g(x1⊗x2⊗ ...⊗xk, x

′
1⊗x′2⊗ ...⊗x′k) =

g(x1, x
′
1)g(x2, x

′
2)...g(xk, x

′
k).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(α, β) :=

∫
M g(α, β)VolM .

DEFINITION: Let M be a Riemannian manifold. Laplacian on differential
forms is ∆ := dd∗ + d∗d.

REMARK: Laplacian is self-adjoint and positive semi-definite: (∆x, x) =
(dx, dx) + (d∗x, d∗x). Also, ∆ commutes with d and d∗.
THEOREM: (The main theorem of Hodge theory)
Let ∆ be the Laplacian on differential forms on a compact Riemannian mani-
fold (or any other self-adjoint elliptic operator). Then there is an orthonor-
mal basis in the Hilbert space L2(Λ∗(M)) consisting of eigenvectors of
∆, and its eigenvalues have finite multiplicities and converge to infinity.

THEOREM: (“Elliptic regularity for ∆”) Let α ∈ L2(Λk(M)) be an eigen-
vector of ∆ (or any other self-adjoint elliptic operator). Then α is a smooth
k-form.
These two theorems are foundation of Hodge theory; throughout the course
we assume them without a proof.
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Hodge theory and the cohomology

THEOREM: The natural map Hi(M)−→Hi(M) is an isomorphism.

Proof. Step 1: Since d2 = 0 and (d∗)2 = 0, one has {d,∆} = 0. This means

that ∆ commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition Λ∗(M)=̃
⊕

αH∗
α(M), where α

runs through all eigenvalues of ∆, and H∗
α(M) is the corresponding eigenspace.

For each α, de Rham differential defines a complex

H0
α(M)

d−→ H1
α(M)

d−→ H2
α(M)

d−→ ...

Step 3: On H∗
α(M), one has dd∗ + d∗d = α. When α ̸= 0, and η closed, this

implies dd∗(η) + d∗d(η) = dd∗η = αη, hence η = dξ, with ξ := α−1d∗η. This

implies that the complexes (H∗
α(M), d) don’t contribute to cohomology.

Step 4: We have proven that

H∗(Λ∗M,d) =
⊕
α

H∗(H∗
α(M), d) = H∗(H∗

0(M), d) = H∗(M).
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