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Adjoint connection (reminder)

DEFINITION: Given a connection V on a vector bundle B equipped with a
scalar product (-,-), define V* by the formula

d(b,0") = (V(0),b') + (b, V*()). (¥%)

Here, b, b’ are sections of B, d(b,b") is a differential of a function, and (V(b), d’)
is the 1-form obtained from the bilinear pairing B® (B ® A1M) — AL,

CLAIM: The map V*: B— B AIM is well defined by (**). Moreover,
it is also a connection.

Proof: The first statement is clear, because any linear map B — s ALM can
be represented by b — (b, A) for some A € B® ALM. To check the second
statement, we take f € C*°M, and write

(b,b")df + fd(b,b") = d(b, ft') = F(V(b),b) + (b, V*(fV')).(xx)
which gives (b, V*(FV) —fv*(b’)) = (b,b')df, hence V*(fV') — fV*(t') = V' @ df.
|

DEFINITION: The connection V* is called adjoint connection to V. Rela-

tion V = V* happens precisely when V preserves the metric tensor, considered

as a section of B*®B™, and in this case V is called an orthogonal connection.
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Adjoint connection and L2—product

DEFINITION: Fix a volume form Vol on a manifold M Consider a C°°M-
linear scalar product on a vector bundle B. Then the space of sections of
B is also equipped with a scalar product: (b,b');2 = [3,(b,b')Vol. It is
called the standard L2-scalar product on the space of sections.

LEMMA: (integration by parts)
Let B be a bundle on M with scalar product and connection V, and b,b' € B
its sections. Then, for any vector fields X € T'M, one has

Vv b, b / b, Vi :/ b.b') Lie y Vol
| (Txb )+ [ 0, VE) = [ (bb)Liex Vol (%)
Proof: By definition, one has
V) (b), 0 vm:/ b,V b VO|=—/ Vb, b VOI—/ Lie (b, ') Vol
| (V0 ®).8) (0, V) | (Vxb.¥) Vol [ Liex(s,b)

where Liey (b, b") is differential of the function (b,b') along X € TM. However,
for any top form n, one has Liex(n) = d(izn) by Cartan’s formula, giving
[y Liex(n) = 0, hence

— : / _ . / / .
o_/M Liex ((b, ') Vol) _/M LleX(b,b)VoI—I—/M(b,b)LleXVoI,

giving the last term in (¥***). =
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Adjoint operators

REMARK: Operators A: F— G and A*: G — F on spaces with a scalar
product are called orthogonal adjoint, or adjoint, if (A(f),q9) = (f,A*(g))
foreach f e F, geG.

CLAIM: An orthogonal adjoint D* to a differential operator D is a differen-
tial operator again.

Proof. Step 1: This is clear for C*°M-linear operators (just take the point-
wise adjoint map). If we prove it for first order operators, we are done,
because (XY)* = Y*X*.

Step 2: First order operators are expressed as linear combination of linear
maps and derivatives Vx : F— F combined with linear maps. Therefore, it
would suffice to show that (Vy)* is a differential operator.

Step 3: The map (Vx)* is a differential operator: (Vx)*(b) = —V% —
L'e)\f/g\l/o')b, because
/M((VX)*(b),b’) Vol = —/M(ngfb, b) VOI—/(b, ¥ Lie x (Vol)

by “integration by parts’, as shown above. m
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Laplacian on differential forms

DEFINITION: Let V be a vector space. A metric g on V induces a natural
metric on each of its tensor spaces: g(r1®z2® .. 7, ) RT5Q...Qx)) =
g(x1,27)g(x2,25)...9(xk, x1.).

This gives a natural positive definite scalar product on differential forms
over a Riemannian manifold (M, g): g(o,B) = [y 9(a, 8) Vol,.
DEFINITION: Let M be a Riemannian manifold. Laplacian on differential
forms is A = dd* + d*d.

REMARK: Laplacian is self-adjoint and positive semi-definite: (Az,z) =
(dx,dx) 4+ (d*z,d*x). Also, A commutes with d and d*.

THEOREM: (The main theorem of Hodge theory)

Let A be the Laplacian on differential forms on a compact Riemannian mani-
fold (or any other self-adjoint elliptic operator). Then there is an orthonor-
mal basis in the Hilbert space L2(A*(M)) consisting of eigenvectors of
A, and its eigenvalues have finite multiplicities and converge to infinity.

THEOREM: (“Elliptic regularity for A”) Let a € L2(A¥(M)) be an eigen-
vector of A (or any other self-adjoint elliptic operator). Then « is a smooth
k-form.
T hese two theorems are foundation of Hodge theory; throughout the course
we assume them without a proof.
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Hodge theory and the cohomology
THEOREM: The natural map #‘(M) — H*(M) is an isomorphism.

Proof. Step 1: Since d2 =0 and (d*)2 = 0, one has {d, A} = 0. This means
that A commutes with the de Rham differential.

Step 2: Consider the eigenspace decomposition A*(M)=&, #: (M), where «
runs through all eigenvalues of A, and #} (M) is the corresponding eigenspace.
For each o, de Rham differential defines a complex

#O(M) % wlv) % w2 L

Step 3: On #} (M), one has dd* + d*d = a. When «a # 0, and 5 closed, this
implies dd*(n) + d*d(n) = dd*n = an, hence n = d¢, with &€ := a~1d*n. This
implies that the complexes (#)(M),d) don’t contribute to cohomology.

Step 4: We have proven that

H*(N*M,d) = EQ H*(#;(M),d) = H*(#HE(M),d) = #*(M).



