Complex surfaces

lecture 9: Atiyah-Singer' index theorem

Misha Verbitsky

IMPA, sala 236

January 27, 2024, 17:00

Fredholm operators

REMARK: All operators today are considered continuous ("bounded"). **DEFINITION:** A continuous operator $F : H_1 \longrightarrow H_2$ of Hilbert spaces is called **Fredholm** if its image is closed and kernel and cokernel are finite-dimensional.

REMARK: An injective operator with closed image is invertible by Banach-Schauder theorem.

DEFINITION: An operator $F : H_1 \longrightarrow H_2$ has finite rank if its image is finite-dimensional.

CLAIM: An operator $F : H_1 \longrightarrow H_2$ is Fredholm if and only if there exists $F_1 : H_2 \longrightarrow H_1$ such that **the operators** $Id - FF_1$ **and** $Id - F_1F$ **have finite rank.**

Proof: Indeed, *F* defines an isomorphism $F : H_1 / \ker F \longrightarrow \operatorname{im} F$ (Banach-Schauder).

DEFINITION: Index ind(F) of a Fredholm map F is the number dim ker F – dim coker F.

EXERCISE: Prove that the index of a Fredholm operator is compatible with the composition, ind(FG) = ind F + ind G.

EXERCISE: Let *F* be Fredholm, and *K* a finite rank operator. **Prove that** ind(F) = ind(F + K).

Small deformations of Fredholm operators are Fredholm

THEOREM: The set of Fredholm operators is open in the operator norm topology.

Proof. Step 1: Let $F: U \longrightarrow V$ be a Fredholm operator, and $U_1 := (\ker F)^{\perp}$. Since F is invertible on U_1 , it satisfies $\inf_{x \in U_1} \frac{|F(x)|}{|x|} > 2\varepsilon$. Then, for any operator A with $||A|| < \varepsilon$, one has $\inf_{x \in U_1} \frac{|F+A(x)|}{|x|} > \varepsilon$. This implies that $F|_{U_1}$ is an invertible map to its image, which is closed. In particular, $\ker(F+A)$ is finite-dimensional.

Step 2: To obtain that coker(F + A) is finite-dimensional for ||A|| sufficiently small, we observe that $coker(F + A) = ker(F^* + A^*)$, and F^* is also Fredholm. Then Step 1 implies that $ker(F^* + A^*)$ is finite-dimensional for ||A|| sufficiently small.

Small deformations of Fredholm operators have the same index

THEOREM: The function $F \rightarrow inf(F)$ is locally constant in operator topology.

Proof: Let $F, G : H_1 \longrightarrow H_2$ be Fredholm operators on a Hilbert spaces. Take F_1 such that $FF_1 = \operatorname{Id}_H + K$ and K has finite rank. This gives $GF_1 = \operatorname{Id}_H + K + (G - F)F_1$. The operator $\operatorname{Id}_H + (G - F)F_1$ is invertible for $|(G - F)| < |F_1|^{-1}$, hence it has index 0, and $\operatorname{Id}_H + (G - F)F_1 + K$ has the same index, because index does not change if adding a finite rank operator. Therefore, $\operatorname{ind}(GF_1) = \operatorname{ind}(FF_1)$. Using $\operatorname{ind}(AB) = \operatorname{ind} A + \operatorname{ind} B$, for $B = F_1$ and A = F or G, we obtain $\operatorname{ind}(F) = \operatorname{ind} G$.

Sobolev's L^2 -norm on $C^{\infty}_c(\mathbb{R}^n)$

DEFINITION: Denote by $C_c^{\infty}(\mathbb{R}^n)$ the space of smooth functions with compact support. For each differential monomial

$$P_{\alpha} = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}}$$

consider the corresponding partial derivative

$$P_{\alpha}(f) = \frac{\partial^{k_1}}{\partial x_1^{k_1}} \frac{\partial^{k_2}}{\partial x_2^{k_2}} \dots \frac{\partial^{k_n}}{\partial x_1^{k_n}} f.$$

Given $f \in C_c^{\infty}(\mathbb{R}^n)$, one defines the L_p^2 Sobolev's norm $|f|_p$ as follows:

$$|f|_s^2 = \sum_{\deg P_{\alpha} \leqslant p} \int |P_{\alpha}(f)|^2 \operatorname{Vol}$$

where the sum is taken over all differential monomials P_{α} of degree $\leq p$, and $Vol = dx_1 \wedge dx_2 \wedge ... dx_n$ - the standard volume form.

L_p^2 -topology and elliptic operators

DEFINITION: Let *F* be a vector bundle on a compact manifold. The L_p^2 -**topology** on the space of sections of *F* is a topology defined by the norm $|f|_p$ with $|f|_p^2 = \sum_{i=0}^p \int_M |\nabla^i f|^2 \operatorname{Vol}_M$, for some connection and scalar product on *F* and $\Lambda^1 M$.

From now on, we write (x, y) instead of $\int_M (x, y) \operatorname{Vol}_M$. This metric is also denoted L^2 ; the space of sections of B with this metric (B, L^2) . **DEFINITION:** We define the **Sobolev's** L_p^2 -metric on vector bundles by $L_p^2(x, y) = \sum_{i=0}^p (\nabla^i(x), \nabla^i(y)).$

This result lies in foundation of the theory of elliptic operators; we won't prove it.

DEFINITION: Let B_1, B_2 be vector bundles, and $D : B_1 \rightarrow B_2$ a differential operator of order k. It is called **elliptic** if its symbol symb $(D) \in \text{Sym}^k TM \otimes \text{Hom}(B_1, B_2)$, considered as a section of End(B) over T^*M , homogeneous of degree k, is invertible outside of the zero section.

THEOREM: Let B_1, B_2 be vector bundles, and $D : B_1 \rightarrow B_2$ an elliptic differential operator of order p. Then $D : (B_1, L_p^2) \rightarrow (B_2, L^2)$ is Fredholm.

REMARK: We will use this result only when $B_1 = B_2 = C^{\infty}M$.

Index theorem

DEFINITION: Let B_1, B_2 be vector bundles, amd $D : B_1 \longrightarrow B_2$ an elliptic operator. Its index ind $(D) = \ker D - \ker D^*$.

REMARK: From elliptic regularity it follows that ind *D* is equal to the index of the corresponding Fredholm map $D : (B_1, L_p^2) \longrightarrow (B_2, L^2)$.

COROLLARY: Let D_t be a continuous family of elliptic operators. Then the map $t \mapsto ind(D_t)$ is constant.

Proof: All D_t are Fredholm, and the index is locally constant on the space of Fredholm operators.

REMARK: The symbol of a differential operator can be considered as a nowhere degenerate section of the bundle $\operatorname{Sym}^n TM$ for differential operators from $C^{\infty}M$ to $C^{\infty}M$, or of $\operatorname{Sym}^n TM \otimes \operatorname{End}(B)$ for differential operators on the vector bundle B. We have just proven that the index is the topological invariant of the section. Atiyah-Singer index theorem expresses this number through the appropriate K-theoretic invariants (Chern classes of a certain explicitly defined element in K-theory associated with the symbol).

Index theorem for elliptic operators on $C^{\infty}M$

THEOREM: Any elliptic operator on $C^{\infty}M$, dim M > 1, has index 0.

Proof. Step 1: A differential operator D from $C^{\infty}M$ to $C^{\infty}M$ is elliptic iff its index is strictly positive or strictly negative on T^*M , otherwise the symbol will vanish somewhere on $T^*M\setminus 0$ by continuity. Then the order of D is even, indeed, all homogeneous odd degree polynomials define odd functions.

Step 2: For *D* elliptic, symb(*D*) is positive or negative everywhere; fixing the sign, we may assume it is positive. Clearly, the set of such symbols is convex, hence connected. This implies that **all elliptic operators on** $C^{\infty}M$ **have the same index.**

Step 3: Clearly, a self-adjoint operator on a bundle *B* has index 0; indeed, dim ker $A = \dim \operatorname{coker} A^*$ for any linear map. It remains only to produce a self-adjoint operator on $C^{\infty}M$ for each even rank. Let $\Delta = d^*d$ be the Laplacian; clearly, it is self-adjoint, and its symbol is g^{-1} , where $g \in \operatorname{Sym}^2 T^*M$ is the Riemannian form. Therefore, Δ and Δ^k are elliptic and self-adjoint.

Fritz Alexander Ernst Noether (October 7, 1884 - September 10, 1941)



Emmy Noether und Fritz Noether, 1933