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Hermitian structures and positive forms

Let (V, I) be a vector space with complex structure, dimR V = 2n and g a

Hermitian metric, that is, I-invariant scalar product. Then ω(·, ·) := g(I·, ·) is

skew-symmetric: g(Ix, y) = g(I2x, Iy) = −g(x, Iy) = g(Iy, x). This 2-form is

called the Hermitian form.

Theorem 1: Let ω be a Hermitian form, and ω1 be any (1,1)-form. Then

there exist orthonormal coordinates x1, ..., xn, y1, ..., yn, yi = I(xi) such that

ω =
∑
i xi ∧ yi and ω1 =

∑
iαixi ∧ yi. Moreover, ωi has signature (p, q) if and

only if p numbers αi are positive, and q are negative.

Proof: See, for example, http://verbit.ru/ULB/Alg-2016/slides-alg-10.pdf.

DEFINITION: A (1,1)-form η ∈ Λ1,1
R (V ∗) is called positive if η(x, Ix) ⩾ 0

for all x, and strictly positive if the inequality is strict for all x ̸= 0.

REMARK: From the previous theorem, we obtain that a positive form η

can be represented as
∑
iαixi ∧ yi, αi ⩾ 0 in some orthonormal basis.
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Positive (n− 1, n− 1)-forms

REMARK: The pairing Λ1,1(V )⊗Λn−1,n−1(V )−→ Λn,n(V ) = Vol(V ) is clearly

non-degenerate. Choosing a volume form Vol, we might identify Λn−1,n−1(V ∗)
and Λ1,1(V ), using the formula Ψ(z) = izVol, where iz is a contraction of the

volume form with a bivector.

CLAIM: Let P ∈ Λn−1,n−1(V ∗) be a real (n − 1, n − 1)-form. Then the

following are equivalent:

(i) Let z ∈ Λ1,1(V ) be a bivector such that izVol = P . Then z is positive

as a (1,1)-form on V ∗.
(ii) For any Hermitian metric on V there exists an orthonormal basis

x1, ..., xn, y1, ..., yn ∈ V ∗ such that I(xi) = yi and z =
∑n
k=1αkuk, where αk ⩾ 0

and uk = x1 ∧ y1 ∧ ...∧ xk−1 ∧ yk−1 ∧ xk+1 ∧ yk+1 ∧ ...∧ xn ∧ yn is the monomial

obtained as the exterior product of all xi ∧ yi except xk ∧ yk.
(iii) for any real 1-form λ ∈ Λ1(V ∗), the volume form λ ∧ I(λ) ∧ P is

non-negative.

Proof. Step 1: We prove (i) ⇒ (ii). Choose a Hermitian form on V , and,

therefore, on V ∗. Assume that Vol is the corresponding Riemannian volume
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form. Then there exists an orthonormal basis x1, ..., xn, y1, ..., yn, I(xi) = yi
in V ∗ such that z =

∑
k αkx

∗
k ∧ y

∗
k and αi ⩾ 0. Then η =

∑n
k=1αkuk, because

Vol = x1 ∧ y1 ∧ ... ∧ xn ∧ yn and iαkx∗k∧y
∗
k
(Vol) = uk.

Step 2: We prove (ii) ⇒ (iii). Clearly, it suffices to show that λ∧I(λ)∧ui ⩾ 0.

Let Πi : V
∗ −→ ⟨xi, I(xi)⟩ be the orthogonal projection. Then λ ∧ I(λ) ∧ ui =

Π(λ)∧I(Π(λ))∧ui, and this form is proportional to Vol with coefficient which

is equal to Π(λ)∧I(Π(λ))
xi∧yi . This coefficient is ⩾ 0 because the volume form

a ∧ I(a) on (R2, I) is ⩾ 0 for all a.

Step 3: It remains to prove (iii) ⇒ (i). Consider the 2-form taking a, b ∈ V ∗

to P∧a∧b
Vol . Since P = izVol, this form is equal to a, b 7→ iz(Vol)∧a∧b

Vol , which is

the same as a, b 7→ z(a, b), hence P satisfies (iii) whenever z is positive.

DEFINITION: An (n− 1, n− 1)-form P ∈ Λn−1,n−1(V ∗) is called positive if

one of these conditions hold, and strictly positive if the inequalities in (i)-(iii)

are strict (in other words, the strictly positive forms lie in the interior of

the cone of positive forms).
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Positive (n− 1, n− 1)-forms as products of (1,1)-forms

CLAIM: An (n−1)-th power of a positive (1,1)-form is positive. Conversely,

any strictly positive (n− 1, n− 1)-form P is an (n− 1)-th power of a positive

(1,1)-form ω, which is uniquely determined by P .

Proof. Step 1: A positive form is ω :=
∑
k αkxk ∧ yk, and ωn−1 =

∑
l βlul,

where βl =
∏
i ̸=l αi. This proves (i).

Step 2: Any positive (n− 1, n− 1)-form P =
∑
k βkuk is a sum of monomials

uk = x1 ∧ y1 ∧ ... ∧ xk−1 ∧ yk−1 ∧ xk+1 ∧ yk+1 ∧ ... ∧ xn ∧ yn. Strict positivity

means that all βi are positive. If P = ωn−1, where ω =
∑
k αkxk ∧ yk, we have

βl =
∏
i ̸=l αi. This gives

∏
iαl =

n−1
√∏

i βi, hence αk = β−1
k

n−1
√∏

i βi. This

proves (iii).

Step 3: Conversely, let ω :=
∑
k αkxk ∧ yk, where αk = β−1

k
n−1
√∏

i βi Then

omegan−1 =
∑
l βlul = P by the same formula.

REMARK: We have just proved that the map ω 7→ ωn−1 defines a home-

omorphism from the cone of strictly positive (1,1)-forms to the cone of

strictly positive (n− 1, n− 1)-forms.
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Harnack inequality

DEFINITION: Let U ⊂ V be two sets in a topological space. We say that

U is relatively compact in V , denoted U ⋐ V if the closure of U is compact

and belongs to V .

THEOREM: Let Ω ⋐ Ω1 be open sets, and L : C∞Ω1 −→ C∞Ω1 an elliptic

operator. Then there exists a number C > 1 depending on L, Ω and Ω1 such

that for any function u ∈ kerL such that u ⩾ 0, we have supΩ u ⩽ C infΩ u.

Proof: Gilbarg-Trudinger, Corollary 8.21.

COROLLARY: In assumptions of previous theorem, u > 0 on Ω unless

u = 0 identically.
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Gauduchon metrics

DEFINITION: Let (M, I, ω) be a Hermitian complex n manifold. The Her-
mitian metric ω is called Gauduchon if ddc(ωn−1) = 0.

The following theorem is the most fundamental and important result in theory
of complex manifolds; this is the only known result which works for all compact
complex manifolds, and not for some special classes.

THEOREM: (Paul Gauduchon, 1977) Let (M, I, ω) be a compact complex
Hermitian n-manifold. Then there exists a unique (up to a constant
multiplier) positive smooth function ψ such that ψω is Gauduchon.

Paul Gauduchon (born March 22, 1945)
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Gauduchon theorem

Proof. Step 1: It would suffice find a function φ > 0 such that ∂∂(φωn−1) =
0. Then φ = ψ1/(n−1).

Step 2: Consider a differential operator L(φ) = ∂∂(φωn−1)
ωn It is easy to see

that L is elliptic with the same symbol as the Laplacian (prove it).

Step 3: Consider an L2-metric on the space C∞M , defined by (x, y)L2 =∫
M xyωn. Its adjoint operator can be written explicitly, as follows. Let α ∈
C∞M . Stokes’ formula gives

(L(φ), α)L2 =
∫
M
L(φ)αωn =

∫
M
∂∂(φωn−1)α =

∫
M
φωn−1∧∂∂α = (φ,L∗(α))L2,

hence L∗α = ωn−1∧∂∂α
ωn .

Step 4: Since L∗ vanishes on constants, its kernel is 1-dimensional by the
strong maximum principle. Index formula for elliptic operators on functions
(Lecture 9) implies that cokerL∗ is also 1-dimensional. Then kerL is 1-
dimensional as well. This implies that a non-zero solution of L(f) = 0 exists,
and is unique up to a constant. To prove Gauduchon’s theorem, it remains
only to show that any non-zero function u ∈ kerL is everywhere positive,
or everywhere negative.
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Gauduchon theorem (2)

Step 5: Let f = L∗(h). In any neighbourhood U ⊂ M of a maximum

of h, there exist a point x ∈ U such that f(u) < 0, because otherwise h

is a solution of L∗(h) ⩾ 0, and such solution cannot have a maximum by

the strong maximum principle. This implies that any f ∈ imL∗ is strictly

negative somewhere on M.

Step 6: If kerL contains a function u which is strictly positive and strictly

negative somewhere on M , we will construct a function α ∈ C∞M , which is

positive everywhere and satisfies (u, α)L2 = 0. Since imL∗ = (kerL)⊥, this

implies that α ∈ imL∗. This is impossible by Step 5: any α ∈ imL∗ is strictly

negative somewhere on M . Therefore, u ⩾ 0 or u ⩽ 0 everywhere on M.

This implies that u > 0 or u < 0 by Harnack inequality.
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