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Hermitian structures and positive forms

Let (V,I) be a vector space with complex structure, dimpV = 2n and g a
Hermitian metric, that is, I-invariant scalar product. Then w(-,:) :=g(I-,-) is
skew-symmetric: g(Iz,y) = g(I%z,Iy) = —g(x, Iy) = g(Iy,z). This 2-form is
called the Hermitian form.

Theorem 1: Let w be a Hermitian form, and wy be any (1,1)-form. Then
there exist orthonormal coordinates x4, ...,xn,y1,...,yn,y; = I(x;) such that
w=>,x; Ny; and wy = >, a;x; \y;. Moreover, w; has signature (p,q) if and
only if p numbers «; are positive, and g are negative.

Proof: See, for example, http://verbit.ru/ULB/Alg-2016/slides-alg-10.pdf.
m

DEFINITION: A (1,1)-form n € Ag'(V*) is called positive if n(z, Iz) > O
for all z, and strictly positive if the inequality is strict for all x % O.

REMARK: From the previous theorem, we obtain that a positive form n
can be represented as ) ; o;z; Ny;, a; = 0 in some orthonormal basis.
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Positive (n — 1,n — 1)-forms

REMARK: The pairing ALL(V)@Ar=1n=1(y) — A2(V) = Vol(V) is clearly
non-degenerate. Choosing a volume form Vol, we might identify A?—1Ln=1(y*)
and ALL(V), using the formula W(z) = i, Vol, where i, is a contraction of the
volume form with a bivector.

CLAIM: Let P € A Ln=1(yv*) pe a real (n — 1,n — 1)-form. Then the
following are equivalent:

(i) Let z € ALL(V) be a bivector such that i, Vol = P. Then z is positive
as a (1,1)-form on V*.

(ii) For any Hermitian metric on V there exists an orthonormal basis
T1,. Tn,y Y1, -, Yn € VF such that I(x;) = y; and z = 374 agug, where o > 0
and up =1 AY1 N oo ANZTp_ 1 NYp_1 N Tht-1 NYk4+1 N - NTn AYn is the monomial
obtained as the exterior product of all x; A y; except xp A yz..

(iii) for any real 1-form XA € AL(V*), the volume form A A I(A\) A P is
non-negative.

Proof. Step 1: We prove (i) = (ii). Choose a Hermitian form on V, and,
therefore, on V*. Assume that Vol is the corresponding Riemannian volume
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form. Then there exists an orthonormal basis x1,...,Tn,y1,...,yn, 1(x;) = y;
in V* such that 2 = Y p o) Ayp and o; > 0. Then n = Y7, aguy, because
Vol=x1 Ay1 N ... Nxn A yn and ’iakxz/\yz(\/oo = UL.

Step 2: We prove (ii) = (iii). Clearly, it suffices to show that AAI(A)Au; > 0.
Let M;: V* — (x;,I(x;)) be the orthogonal projection. Then AAT(A) ANu; =
(M) AI(M(AN)) Au;, and this form is proportional to Vol with coefficient which
IS equal to H(A)a/j\;\(y:m)). This coefficient is > 0 because the volume form
aAI(a) on (R3,1) is >0 for all a.

Step 3: It remains to prove (iii) = (i). Consider the 2-form taking a,b € V*

to £048b  Since P = i; Vol, this form is equal to a,b — iz{v‘f)gf‘”\b, which is

the same as a,b+— z(a,b), hence P satisfies (iii) whenever z is positive. m

DEFINITION: An (n—1,n— 1)-form P € A»~1n=1(y*) is called positive if
one of these conditions hold, and strictly positive if the inequalities in (i)-(iii)
are strict (in other words, the strictly positive forms lie in the interior of
the cone of positive forms).
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Positive (n — 1,n — 1)-forms as products of (1,1)-forms

CLAIM: An (n—1)-th power of a positive (1,1)-form is positive. Conversely,
any strictly positive (n — 1,n — 1)-form P is an (n — 1)-th power of a positive
(1,1)-form w, which is uniquely determined by P.

Proof. Step 1: A positive form is w := Y oz Ay, and w1 = ¥, By,
where 3 = [[;«; ;. This proves (i).

Step 2: Any positive (n —1,n— 1)-form P = > i Brui is @ sum of monomials
U = T3 ANYIN o ANZp 1 NYp1 NZpt1 N Yg+1 N oo AT A\ Yn. Strict positivity
means that all §; are positive. If P = w" 1, where w = Y, oz Ay, We have
By = Mg oy. This gives [[;oq = "YTI; B;, hence o = Bt " YT; B;. This

proves (iii).

Step 3: Conversely, let w = > oz N yi, Where ap = Bk_l "=YTI; B; Then
omega™ 1 = Y, Bju; = P by the same formula. =

REMARK: We have just proved that the map w — w™ 1 defines a home-
omorphism from the cone of strictly positive (1,1)-forms to the cone of
strictly positive (n — 1,n — 1)-forms.
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Harnack inequality

DEFINITION: Let U C V be two sets in a topological space. We say that
U is relatively compact in V, denoted U € V if the closure of U is compact
and belongs to V.

THEOREM: Let Q2 € Q21 be open sets, and L : C°°Q1 — C°°Q21 an elliptic

operator. Then there exists a number C > 1 depending on L, €2 and €27 such
that for any function v € ker L such that « > 0, we have supgu < Cinfg .

Proof: Gilbarg-Trudinger, Corollary 8.21. m

COROLLARY: In assumptions of previous theorem, v > 0 on <2 unless
u = 0 1dentically.
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Gauduchon metrics

DEFINITION: Let (M,I,w) be a Hermitian complex n manifold. The Her-
mitian metric w is called Gauduchon if dd¢(w"~1) = 0.

T he following theorem is the most fundamental and important result in theory
of complex manifolds; this is the only known result which works for all compact
complex manifolds, and not for some special classes.

THEOREM: (Paul Gauduchon, 1977) Let (M, I,w) be a compact complex
Hermitian n-manifold. Then there exists a unique (up to a constant
multiplier) positive smooth function ) such that yw is Gauduchon.

Paul Gauduchon (born March 22, 1945)
’



Complex surfaces, 2025, lecture 10 M. Verbitsky

Gauduchon theorem

Proof. Step 1: It would suffice find a function ¢ > 0 such that 99(pw" 1) =
0. Then ¢ = 1/(n-1)

. . . . _ 85(@(,()”_1) .
Step 2: Consider a differential operator L(p) = — It is easy to see
that L is elliptic with the same symbol as the Laplacian (prove it).

Step 3: Consider an L2-metric on the space C*M, defined by (z,y);2 =
Ja xyw™. Its adjoint operator can be written explicitly, as follows. Let a €
C°°M. Stokes’ formula gives

(L)) = [ L@aw" = [ 08(pu" Da= [ pw"1Ad8a = (¢, L"(a)) 2,

w100
wm )

hence L*a =

Step 4: Since L* vanishes on constants, its kernel is 1-dimensional by the
strong maximum principle. Index formula for elliptic operators on functions
(Lecture 9) implies that coker L* is also 1-dimensional. Then kerL is 1-
dimensional as well. This implies that a non-zero solution of L(f) = O exists,
and is unique up to a constant. To prove Gauduchon’s theorem, it remains
only to show that any non-zero function u € ker L is everywhere positive,
or everywhere negative.
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Gauduchon theorem (2)

Step 5: Let f = L*(h). In any neighbourhood U C M of a maximum
of h, there exist a point x € U such that f(u) < 0, because otherwise h
is a solution of L*(h) > 0, and such solution cannot have a maximum by
the strong maximum principle. This implies that any f € im L* is strictly
negative somewhere on M.

Step 6: If ker L contains a function w which is strictly positive and strictly
negative somewhere on M, we will construct a function o € C°°M, which is
positive everywhere and satisfies (u,a);2 = 0. Since imL* = (ker L)+, this
implies that o € im L*. This is impossible by Step 5: any o« € im L* is strictly
negative somewhere on M. Therefore, u > 0 or v < 0O everywhere on M.
This implies that v > 0 or v < O by Harnack inequality. m



