# **Complex surfaces**

lecture 10: Gauduchon metrics

Misha Verbitsky

IMPA, sala 236

January 29, 2024, 17:00

#### Hermitian structures and positive forms

Let (V, I) be a vector space with complex structure,  $\dim_{\mathbb{R}} V = 2n$  and g a Hermitian metric, that is, *I*-invariant scalar product. Then  $\omega(\cdot, \cdot) := g(I \cdot, \cdot)$  is skew-symmetric:  $g(Ix, y) = g(I^2x, Iy) = -g(x, Iy) = g(Iy, x)$ . This 2-form is called **the Hermitian form**.

**Theorem 1:** Let  $\omega$  be a Hermitian form, and  $\omega_1$  be any (1,1)-form. Then there exist orthonormal coordinates  $x_1, ..., x_n, y_1, ..., y_n, y_i = I(x_i)$  such that  $\omega = \sum_i x_i \wedge y_i$  and  $\omega_1 = \sum_i \alpha_i x_i \wedge y_i$ . Moreover,  $\omega_i$  has signature (p,q) if and only if p numbers  $\alpha_i$  are positive, and q are negative.

Proof: See, for example, http://verbit.ru/ULB/Alg-2016/slides-alg-10.pdf.

**DEFINITION:** A (1,1)-form  $\eta \in \Lambda_{\mathbb{R}}^{1,1}(V^*)$  is called **positive** if  $\eta(x, Ix) \ge 0$  for all x, and **strictly positive** if the inequality is strict for all  $x \neq 0$ .

**REMARK:** From the previous theorem, we obtain that a positive form  $\eta$  can be represented as  $\sum_i \alpha_i x_i \wedge y_i$ ,  $\alpha_i \ge 0$  in some orthonormal basis.

## **Positive** (n-1, n-1)-forms

**REMARK:** The pairing  $\Lambda^{1,1}(V) \otimes \Lambda^{n-1,n-1}(V) \longrightarrow \Lambda^{n,n}(V) = \text{Vol}(V)$  is clearly non-degenerate. Choosing a volume form Vol, we might identify  $\Lambda^{n-1,n-1}(V^*)$ and  $\Lambda^{1,1}(V)$ , using the formula  $\Psi(z) = i_z$  Vol, where  $i_z$  is a contraction of the volume form with a bivector.

**CLAIM:** Let  $P \in \Lambda^{n-1,n-1}(V^*)$  be a real (n-1,n-1)-form. Then the following are equivalent:

(i) Let  $z \in \Lambda^{1,1}(V)$  be a bivector such that  $i_z \operatorname{Vol} = P$ . Then z is positive as a (1,1)-form on  $V^*$ .

(ii) For any Hermitian metric on V there exists an orthonormal basis  $x_1, ..., x_n, y_1, ..., y_n \in V^*$  such that  $I(x_i) = y_i$  and  $z = \sum_{k=1}^n \alpha_k u_k$ , where  $\alpha_k \ge 0$  and  $u_k = x_1 \land y_1 \land ... \land x_{k-1} \land y_{k-1} \land x_{k+1} \land y_{k+1} \land ... \land x_n \land y_n$  is the monomial obtained as the exterior product of all  $x_i \land y_i$  except  $x_k \land y_k$ .

(iii) for any real 1-form  $\lambda \in \Lambda^1(V^*)$ , the volume form  $\lambda \wedge I(\lambda) \wedge P$  is non-negative.

**Proof. Step 1: We prove (i)**  $\Rightarrow$  (ii). Choose a Hermitian form on V, and, therefore, on  $V^*$ . Assume that Vol is the corresponding Riemannian volume

form. Then there exists an orthonormal basis  $x_1, ..., x_n, y_1, ..., y_n$ ,  $I(x_i) = y_i$ in  $V^*$  such that  $z = \sum_k \alpha_k x_k^* \wedge y_k^*$  and  $\alpha_i \ge 0$ . Then  $\eta = \sum_{k=1}^n \alpha_k u_k$ , because  $\text{Vol} = x_1 \wedge y_1 \wedge ... \wedge x_n \wedge y_n$  and  $i_{\alpha_k x_k^* \wedge y_k^*}(\text{Vol}) = u_k$ .

**Step 2: We prove (ii)**  $\Rightarrow$  (iii). Clearly, it suffices to show that  $\lambda \wedge I(\lambda) \wedge u_i \geq 0$ . Let  $\Pi_i : V^* \longrightarrow \langle x_i, I(x_i) \rangle$  be the orthogonal projection. Then  $\lambda \wedge I(\lambda) \wedge u_i = \Pi(\lambda) \wedge I(\Pi(\lambda)) \wedge u_i$ , and this form is proportional to Vol with coefficient which is equal to  $\frac{\Pi(\lambda) \wedge I(\Pi(\lambda))}{x_i \wedge y_i}$ . This coefficient is  $\geq 0$  because the volume form  $a \wedge I(a)$  on  $(R^2, I)$  is  $\geq 0$  for all a.

**Step 3: It remains to prove (iii)**  $\Rightarrow$  (i). Consider the 2-form taking  $a, b \in V^*$  to  $\frac{P \wedge a \wedge b}{\text{Vol}}$ . Since  $P = i_z$  Vol, this form is equal to  $a, b \mapsto \frac{i_z(\text{Vol}) \wedge a \wedge b}{\text{Vol}}$ , which is the same as  $a, b \mapsto z(a, b)$ , hence P satisfies (iii) whenever z is positive.

**DEFINITION:** An (n - 1, n - 1)-form  $P \in \Lambda^{n-1,n-1}(V^*)$  is called **positive** if one of these conditions hold, and **strictly positive** if the inequalities in (i)-(iii) are strict (in other words, **the strictly positive forms lie in the interior of the cone of positive forms)**.

M. Verbitsky

#### Positive (n-1, n-1)-forms as products of (1,1)-forms

**CLAIM:** An (n-1)-th power of a positive (1,1)-form **is positive**. Conversely, any strictly positive (n-1, n-1)-form P is an (n-1)-th power of a positive (1,1)-form  $\omega$ , which is uniquely determined by P.

**Proof.** Step 1: A positive form is  $\omega := \sum_k \alpha_k x_k \wedge y_k$ , and  $\omega^{n-1} = \sum_l \beta_l u_l$ , where  $\beta_l = \prod_{i \neq l} \alpha_i$ . This proves (i).

**Step 2:** Any positive (n-1, n-1)-form  $P = \sum_k \beta_k u_k$  is a sum of monomials  $u_k = x_1 \wedge y_1 \wedge \ldots \wedge x_{k-1} \wedge y_{k-1} \wedge x_{k+1} \wedge y_{k+1} \wedge \ldots \wedge x_n \wedge y_n$ . Strict positivity means that all  $\beta_i$  are positive. If  $P = \omega^{n-1}$ , where  $\omega = \sum_k \alpha_k x_k \wedge y_k$ , we have  $\beta_l = \prod_{i \neq l} \alpha_i$ . This gives  $\prod_i \alpha_l = \sqrt[n-1]{\prod_i \beta_i}$ , hence  $\alpha_k = \beta_k^{-1} \sqrt[n-1]{\prod_i \beta_i}$ . This proves (iii).

**Step 3:** Conversely, let  $\omega := \sum_k \alpha_k x_k \wedge y_k$ , where  $\alpha_k = \beta_k^{-1} \sqrt[n-1]{\prod_i \beta_i}$  Then  $omega^{n-1} = \sum_l \beta_l u_l = P$  by the same formula.

**REMARK:** We have just proved that the map  $\omega \mapsto \omega^{n-1}$  defines a homeomorphism from the cone of strictly positive (1,1)-forms to the cone of strictly positive (n-1, n-1)-forms.

## Harnack inequality

**DEFINITION:** Let  $U \subset V$  be two sets in a topological space. We say that U is relatively compact in V, denoted  $U \Subset V$  if the closure of U is compact and belongs to V.

**THEOREM:** Let  $\Omega \subseteq \Omega_1$  be open sets, and  $L : C^{\infty}\Omega_1 \longrightarrow C^{\infty}\Omega_1$  an elliptic operator. Then there exists a number C > 1 depending on L,  $\Omega$  and  $\Omega_1$  such that for any function  $u \in \ker L$  such that  $u \ge 0$ , we have  $\sup_{\Omega} u \le C \inf_{\Omega} u$ .

**Proof:** Gilbarg-Trudinger, Corollary 8.21. ■

**COROLLARY:** In assumptions of previous theorem, u > 0 on  $\Omega$  unless u = 0 identically.

## **Gauduchon metrics**

**DEFINITION:** Let  $(M, I, \omega)$  be a Hermitian complex *n* manifold. The Hermitian metric  $\omega$  is called **Gauduchon** if  $dd^c(\omega^{n-1}) = 0$ .

The following theorem is the most fundamental and important result in theory of complex manifolds; this is the only known result which works for all compact complex manifolds, and not for some special classes.

**THEOREM:** (Paul Gauduchon, 1977) Let  $(M, I, \omega)$  be a compact complex Hermitian *n*-manifold. Then there exists a unique (up to a constant multiplier) positive smooth function  $\psi$  such that  $\psi\omega$  is Gauduchon.



Paul Gauduchon (born March 22, 1945)

#### Gauduchon theorem

**Proof. Step 1:** It would suffice find a function  $\varphi > 0$  such that  $\partial \overline{\partial}(\varphi \omega^{n-1}) = 0$ . Then  $\varphi = \psi^{1/(n-1)}$ .

**Step 2:** Consider a differential operator  $L(\varphi) = \frac{\partial \overline{\partial}(\varphi \omega^{n-1})}{\omega^n}$  It is easy to see that *L* is elliptic with the same symbol as the Laplacian (prove it).

**Step 3:** Consider an  $L^2$ -metric on the space  $C^{\infty}M$ , defined by  $(x,y)_{L^2} = \int_M xy\omega^n$ . Its adjoint operator can be written explicitly, as follows. Let  $\alpha \in C^{\infty}M$ . Stokes' formula gives

$$\begin{split} (L(\varphi),\alpha)_{L^2} &= \int_M L(\varphi)\alpha\omega^n = \int_M \partial\overline{\partial}(\varphi\omega^{n-1})\alpha = \int_M \varphi\omega^{n-1} \wedge \partial\overline{\partial}\alpha = (\varphi,L^*(\alpha))_{L^2}, \\ \text{hence } L^*\alpha &= \frac{\omega^{n-1} \wedge \partial\overline{\partial}\alpha}{\omega^n}. \end{split}$$

**Step 4:** Since  $L^*$  vanishes on constants, its kernel is 1-dimensional by the strong maximum principle. Index formula for elliptic operators on functions (Lecture 9) implies that coker  $L^*$  is also 1-dimensional. Then ker L is 1-dimensional as well. This implies that a non-zero solution of L(f) = 0 exists, and is unique up to a constant. To prove Gauduchon's theorem, it remains only to show that any non-zero function  $u \in \ker L$  is everywhere positive, or everywhere negative.

## Gauduchon theorem (2)

**Step 5:** Let  $f = L^*(h)$ . In any neighbourhood  $U \subset M$  of a maximum of h, there exist a point  $x \in U$  such that f(u) < 0, because otherwise h is a solution of  $L^*(h) \ge 0$ , and such solution cannot have a maximum by the strong maximum principle. This implies that **any**  $f \in \text{im } L^*$  **is strictly negative somewhere on** M.

**Step 6:** If ker *L* contains a function *u* which is strictly positive and strictly negative somewhere on *M*, we will construct a function  $\alpha \in C^{\infty}M$ , which is positive everywhere and satisfies  $(u, \alpha)_{L^2} = 0$ . Since im  $L^* = (\ker L)^{\perp}$ , this implies that  $\alpha \in \operatorname{im} L^*$ . This is impossible by Step 5: any  $\alpha \in \operatorname{im} L^*$  is strictly negative somewhere on *M*. Therefore,  $u \ge 0$  or  $u \le 0$  everywhere on *M*. This implies that u > 0 or u < 0 by Harnack inequality.