Complex surfaces

lecture 11: Bott-Chern cohomology and the defect of a complex surface

Misha Verbitsky

IMPA, sala 236

January 31, 2024, 17:00

Bott-Chern cohomology

DEFINITION: Let M be a complex manifold, and $H^{p,q}_{BC}(M)$ the space of closed (p,q)-forms modulo $dd^c(\Lambda^{p-1,q-1}(M))$. Then $H^{p,q}_{BC}(M)$ is called **the Bott-Chern cohomology** of M.

REMARK: There are natural (and functorial) maps from the Bott-Chern cohomology to the Dolbeault cohomology $H^*(\Lambda^{*,*}(M),\overline{\partial})$ and to the de Rham cohomology, but no morphisms between de Rham and Dolbeault cohomology.

REMARK: However, there is no multiplicative structure on the Bott-Chern cohomology.

THEOREM: Let *M* be a compact complex manifold. Then $H_{BC}^{p,q}(M)$ is finite-dimensional.

Proof: Later today.

Elliptic complexes

DEFINITION: Let F, G, H be vector bundles, and $F \xrightarrow{D} G \xrightarrow{D} H$ a complex of differential operators (that is, $D^2 = 0$). It is called **elliptic complex** if its symbols $F \xrightarrow{\sigma(D)} G \xrightarrow{\sigma(D)} H$ give an exact sequence at each non-zero $\xi \in T^*M$.

DEFINITION: Let A, B, C be topological vector spaces and $A \xrightarrow{D} B \xrightarrow{D} C$ a complex of continuous maps. It is called **Fredholm complex** if im D is closed, and $\frac{\ker D}{\operatorname{im} D}$ is finite-dimensional.

THEOREM: Let $F \xrightarrow{D_1} G \xrightarrow{D_2} H$ be an elliptic complex of differential operators, with D_1 of order d_1 and D_2 of order d_2 . Then the complex $L_p^2(F) \xrightarrow{D_1} L_{p-d_1}^2(G) \xrightarrow{D_2} L_{p-d_1-d_2}^2(H)$ is Fredholm.

COROLLARY: Cohomology of any elliptic complex are finite-dimensional.

Bott-Chern cohomology groups are finite-dimensional

Now we can prove

THEOREM: Let *M* be a compact complex manifold. Then $H_{BC}^{p,q}(M)$ is finite-dimensional.

Proof: It would suffice to show that the complex

$$\Lambda^{p-1,q-1}(M) \xrightarrow{dd^c} \Lambda^{p,q}(M) \xrightarrow{\partial +\overline{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M)$$

is elliptic. At $\xi \in T^*M$, symbol of dd^c is equal to the multiplication of a form by $\xi \wedge I(\xi)$, the symbol of ∂ is multiplication by $\xi^{1,0}$ and the symbol of $\overline{\partial}$ is multiplication by $\xi^{0,1}$. Therefore, ker $\sigma(\partial) = \operatorname{im} \sigma(\partial)$, ker $\sigma(\overline{\partial}) = \operatorname{im} \sigma(\overline{\partial})$ (this proves finite-dimensionality of Dolbeault cohomology), and ker $\sigma(\overline{\partial}) \cap \ker \sigma(\partial) = \operatorname{im} \sigma(\partial\overline{\partial})$.

dd^c-lemma

THEOREM: Let η be an exact (p,q)-form on a compact Kähler manifold, **Then** $\eta \in \operatorname{im} dd^c = \operatorname{im} \partial\overline{\partial}$.

Proof. Step 1: Notice immediately that η is closed and orthogonal to the kernel of Δ , hence its cohomology class vanishes. Indeed, ker Δ is orthogonal to the image of d. Since η is exact, it lies in the image of Δ . Operator $G_{\Delta} := \Delta^{-1}$ is defined on im $\Delta = \ker \Delta^{\perp}$ and commutes with d, d^c .

Step 2: Then $\eta = d\alpha$, where $\alpha := G_{\Delta}d^*\eta$. Since G_{Δ} and d^* commute with d^c , the form α is d^c -closed; since it belongs to im $\Delta = \operatorname{im} G_{\Delta}$, it is d^c -exact, $\alpha = d^c\beta$ which gives $\eta = dd^c\beta$.

REMARK: Let M be a manifold which satisfies the conclusion of dd^c -lemma. **Then the natural map** $H^*_{BC}(M) \longrightarrow H^*(M)$ is injective. The converse is also true: if $H^{*,*}_{BC}(M) \longrightarrow H^*(M)$ is injective, any d-exact (p,q)-form is dd^c exact, hence M satisfies the dd^c -lemma.

Intersection form on $\operatorname{Re} \Lambda_{\operatorname{prim}}^{1,1}(V)$

Lemma 1: Let (V, I, g) be a 4-dimensional space equipped with a complex structure operator $I \in \text{End}(V)$, $I^2 = -\text{Id}$, $\omega \in \Lambda^{1,1}(V)$ a Hermitian form, and $\Lambda^{1,1}_{\text{prim}}(V) \subset \Lambda^{1,1}(V, I) \subset \Lambda^4(V)$ be the space of (1,1)-forms α such that $\alpha \wedge \omega = 0$. Then for any non-zero $\alpha \in W$, one has $\frac{\alpha \wedge \alpha}{\text{Vol}} < 0$. **Proof. Step 1:** Consider the Hodge star operator $* : \Lambda^2(V) \longrightarrow \Lambda^2(V)$. Clearly, $*^2 = \text{Id}$, hence all eigenvalues of * are ± 1 . If we invert the orientation, * becomes -*; this implies that * is conjugated to -*, hence the multiplicity of 1 and -1 is equal 3. **Denote the corresponding eigenspaces as** $\Lambda^2 V = \Lambda^+ V \oplus \Lambda^- V$. This decomposition is clearly orthogonal with respect to the pairing $\alpha, \beta \longrightarrow \frac{\alpha \wedge \beta}{\text{Vol}}$.

Step 2: Consider a quaternion action on V compatible with the scalar product g. Three symplectic forms $\omega_I, \omega_J, \omega_K$ are pairwise orthogonal, square to 0, hence generate $\Lambda^+ V$. However, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is of type (2,0) on (V, I). **Therefore,** $\langle \operatorname{Re} \Omega, \operatorname{Im} \Omega, \omega \rangle = \Lambda^+ V$.

Step 3: The space $\Lambda_{\text{prim}}^{1,1}(V)$ is 3-dimensional and orthogonal to the 3-dimensional space $\langle \text{Re}\,\Omega, \text{Im}\,\Omega, \omega \rangle$. The space $\langle \text{Re}\,\Omega, \text{Im}\,\Omega, \omega \rangle$ is equal to $\Lambda^+ V$, as follows from Step 2. Then $\Lambda_{\text{prim}}^{1,1}(V) = \langle \text{Re}\,\Omega, \text{Im}\,\Omega, \omega \rangle^{\perp} = \Lambda^- V$.

DEFINITION: A (1,1)-form on a complex Hermitian surface is **primitive** if it is orthogonal to ω pointwise. **Primitive forms satisfy** $\|\eta\|_{L^2}^2 = -\int_M \eta \wedge \eta$.

Bott-Chern cohomology of a surface

THEOREM: Let *M* be a compact surface. Then the kernel of the natural map $P: H^{1,1}_{BC}(M) \longrightarrow H^2(M)$ is at most 1-dimensional.

Proof. Step 1: Let ω be a Gauduchon metric on M. Consider the differential operator D: $f \mapsto dd^c(f) \wedge \omega$ mapping functions to 4-forms. Clearly, D is elliptic and its index is the same as the index of the Laplacian: ind D = ind $\Delta = 0$, hence dim ker D = dim coker D. The Hopf maximum principle implies that ker D only contains constants, hence by index theorem coker D is 1-dimensional. However, $\int_M D(f) = \int_M dd^c(f) \wedge \omega = \int_M f dd^c \omega = 0$. This implies that a 4-form κ belongs to im D if and only if $\int_M \kappa = 0$.

Step 2: Let α be a closed (1, 1)-form. Define **the degree** $\deg_{\omega} \alpha := \int_{M} \omega \wedge \alpha$. Since $\int_{M} dd^{c} f \wedge \omega = 0$, this defines a map $\deg_{\omega} : H^{1,1}_{BC}(M, \mathbb{R}) \longrightarrow \mathbb{R}$. Given a closed (1, 1)-form α of degree 0, the form $\alpha' := \alpha - dd^{c}(D^{-1}(\alpha \wedge \omega))$ satisfies $\alpha' \wedge \omega = 0$, in other words, it is an ω -primitive (1,1)-form. For ω -primitive forms, one has $\alpha' \wedge \alpha' = -|\alpha'|^{2} \omega \wedge \omega$, giving $\int_{M} \alpha' \wedge \alpha' = -|\alpha'|^{2} \omega$ which is impossible when α' is a non-zero class in ker P, because then α' is exact. Therefore, **any vector of zero degree in** ker $P \subset H^{1,1}_{BC}(M, \mathbb{R})$ **vanishes.** This implies that any two vectors in ker P are proportional.

Defect of a complex surface

COROLLARY: Let *M* be a complex surface and η be a non-zero vector in ker *P*, where *P* : $H_{BC}^{1,1}(M) \longrightarrow H^2(M)$ is the natural map morphism. Then $\int \eta \wedge \omega > 0$ for all Gauduchon forms ω , or $\int \eta \wedge \omega < 0$ for all ω .

Proof: Consider two Gauduchon forms ω_1, ω_2 such that $\int \eta \wedge_1 \omega < 0$ and $\int \eta \wedge_2 \omega < 0$. Then there is a Gauduchon form $\omega := a\omega_1 + b\omega_2$, a, b > 0 such that $\int \eta \wedge \omega = 0$, giving a contradiction.

REMARK: A Bott-Chern class which satisfies $\int \eta \wedge \omega > 0$ for all Gauduchon forms is represented by a positive current (A. Lamari).

DEFINITION: The number dim ker *P* is called **the defect** of a surface, denoted $\delta(M)$; by the previous theorem it can be 1 or 0. In the course of the proof of Lamari's theorem, we will show that **the surface is Kähler if and only if** $\delta(M) = 1$.