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Bott-Chern cohomology

DEFINITION: Let M be a complex manifold, and H
p,q
BC(M) the space of

closed (p, q)-forms modulo ddc(Λp−1,q−1(M)). Then H
p,q
BC(M) is called the

Bott-Chern cohomology of M .

REMARK: There are natural (and functorial) maps from the Bott-Chern

cohomology to the Dolbeault cohomology H∗(Λ∗,∗(M), ∂) and to the

de Rham cohomology, but no morphisms between de Rham and Dolbeault

cohomology.

REMARK: However, there is no multiplicative structure on the Bott-

Chern cohomology.

THEOREM: Let M be a compact complex manifold. Then H
p,q
BC(M) is

finite-dimensional.

Proof: Later today.
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Elliptic complexes

DEFINITION: Let F , G, H be vector bundles, and F
D−→ G

D−→ H a com-

plex of differential operators (that is, D2 = 0). It is called elliptic complex

if its symbols F
σ(D)−→ G

σ(D)−→ H give an exact sequence at each non-zero

ξ ∈ T ∗M .

DEFINITION: Let A, B, C be topological vector spaces and A
D−→ B

D−→ C

a complex of continuous maps. It is called Fredholm complex if imD is

closed, and kerD
imD is finite-dimensional.

THEOREM: Let F
D1−→ G

D2−→ H be an elliptic complex of differential

operators, with D1 of order d1 and D2 of order d2. Then the complex

L2
p(F )

D1−→ L2
p−d1

(G)
D2−→ L2

p−d1−d2
(H) is Fredholm.

COROLLARY: Cohomology of any elliptic complex are finite-dimensional.
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Bott-Chern cohomology groups are finite-dimensional

Now we can prove

THEOREM: Let M be a compact complex manifold. Then H
p,q
BC(M) is

finite-dimensional.

Proof: It would suffice to show that the complex

Λp−1,q−1(M)
ddc−→ Λp,q(M)

∂+∂−→ Λp+1,q(M)⊕ Λp,q+1(M)

is elliptic. At ξ ∈ T ∗M, symbol of ddc is equal to the multiplication

of a form by ξ ∧ I(ξ), the symbol of ∂ is multiplication by ξ1,0 and

the symbol of ∂ is multiplication by ξ0,1. Therefore, ker σ(∂) = imσ(∂),

ker σ(∂) = imσ(∂) (this proves finite-dimensionality of Dolbeault cohomol-

ogy), and ker σ(∂) ∩ ker σ(∂) = imσ(∂∂).
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ddc-lemma

THEOREM: Let η be an exact (p, q)-form on a compact Kähler manifold,

Then η ∈ im ddc = im ∂∂.

Proof. Step 1: Notice immediately that η is closed and orthogonal to

the kernel of ∆, hence its cohomology class vanishes. Indeed, ker∆ is

orthogonal to the image of d. Since η is exact, it lies in the image of ∆.

Operator G∆ := ∆−1 is defined on im∆ = ker∆⊥ and commutes with d, dc.

Step 2: Then η = dα, where α := G∆d∗η. Since G∆ and d∗ commute with

dc, the form α is dc-closed; since it belongs to im∆ = imG∆, it is dc-exact,

α = dcβ which gives η = ddcβ.

REMARK: Let M be a manifold which satisfies the conclusion of ddc-lemma.

Then the natural map H∗
BC(M)−→H∗(M) is injective. The converse is

also true: if H
∗,∗
BC(M)−→H∗(M) is injective, any d-exact (p, q)-form is ddc-

exact, hence M satisfies the ddc-lemma.
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Intersection form on ReΛ1,1
prim(V )

Lemma 1: Let (V, I, g) be a 4-dimensional space equipped with a complex
structure operator I ∈ End(V ), I2 = − Id, ω ∈ Λ1,1(V ) a Hermitian form,
and Λ1,1

prim(V ) ⊂ Λ1,1(V, I) ⊂ Λ4(V ) be the space of (1,1)-forms α such that
α ∧ ω = 0. Then for any non-zero α ∈ W , one has α∧α

Vol < 0.
Proof. Step 1: Consider the Hodge star operator ∗ : Λ2(V )−→ Λ2(V ).
Clearly, ∗2 = Id, hence all eigenvalues of ∗ are ±1. If we invert the orientation,
∗ becomes −∗; this implies that ∗ is conjugated to −∗, hence the multiplicity
of 1 and −1 is equal 3. Denote the corresponding eigenspaces as Λ2V =
Λ+V ⊕ Λ−V . This decomposition is clearly orthogonal with respect to the
pairing α, β −→ α∧β

Vol .

Step 2: Consider a quaternion action on V compatible with the scalar product
g. Three symplectic forms ωI , ωJ , ωK are pairwise orthogonal, square to 0,
hence generate Λ+V . However, Ω := ωJ +

√
−1 ωK is of type (2,0) on (V, I).

Therefore, ⟨ReΩ, ImΩ, ω⟩ = Λ+V .

Step 3: The space Λ1,1
prim(V ) is 3-dimensional and orthogonal to the 3-

dimensional space ⟨ReΩ, ImΩ, ω⟩. The space ⟨ReΩ, ImΩ, ω⟩ is equal to Λ+V ,
as follows from Step 2. Then Λ1,1

prim(V ) = ⟨ReΩ, ImΩ, ω⟩⊥ = Λ−V.

DEFINITION: A (1,1)-form on a complex Hermitian surface is primitive if
it is orthogonal to ω pointwise. Primitive forms satisfy ∥η∥2

L2 = −
∫
M η ∧ η.
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Bott-Chern cohomology of a surface

THEOREM: Let M be a compact surface. Then the kernel of the natural

map P : H
1,1
BC(M)−→H2(M) is at most 1-dimensional.

Proof. Step 1: Let ω be a Gauduchon metric on M . Consider the differential

operator D : f 7→ ddc(f) ∧ ω mapping functions to 4-forms. Clearly, D is

elliptic and its index is the same as the index of the Laplacian: indD =

ind∆ = 0, hence dimkerD = dimcokerD. The Hopf maximum principle

implies that kerD only contains constants, hence by index theorem cokerD

is 1-dimensional. However,
∫
M D(f) =

∫
M ddc(f) ∧ ω =

∫
M fddcω = 0. This

implies that a 4-form κ belongs to imD if and only if
∫
M κ = 0.

Step 2: Let α be a closed (1,1)-form. Define the degree degω α :=
∫
M ω∧α.

Since
∫
M ddcf ∧ ω = 0, this defines a map degω : H

1,1
BC(M,R)−→ R. Given a

closed (1,1)-form α of degree 0, the form α′ := α− ddc(D−1(α ∧ ω)) satisfies

α′ ∧ ω = 0, in other words, it is an ω-primitive (1,1)-form. For ω-primitive

forms, one has α′ ∧ α′ = −|α′|2ω ∧ ω, giving
∫
M α′ ∧ α′ = −∥α′∥2ω which is

impossible when α′ is a non-zero class in kerP , because then α′ is exact.

Therefore, any vector of zero degree in kerP ⊂ H
1,1
BC(M,R) vanishes. This

implies that any two vectors in kerP are proportional.
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Defect of a complex surface

COROLLARY: Let M be a complex surface and η be a non-zero vector in

kerP , where P : H
1,1
BC(M)−→H2(M) is the natural map morphism. Then∫

η ∧ ω > 0 for all Gauduchon forms ω, or
∫
η ∧ ω < 0 for all ω.

Proof: Consider two Gauduchon forms ω1, ω2 such that
∫
η ∧1 ω < 0 and∫

η ∧2 ω < 0. Then there is a Gauduchon form ω := aω1 + bω2, a, b > 0

such that
∫
η ∧ ω = 0, giving a contradiction.

REMARK: A Bott-Chern class which satisfies
∫
η ∧ ω > 0 for all Gauduchon

forms is represented by a positive current (A. Lamari).

DEFINITION: The number dimkerP is called the defect of a surface,

denoted δ(M); by the previous theorem it can be 1 or 0. In the course of the

proof of Lamari’s theorem, we will show that the surface is Kähler if and

only if δ(M) = 1.
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