Complex surfaces

lecture 12: First cohomology of a complex surface

Misha Verbitsky

IMPA, sala 236

February 3, 2024, 17:00

Intersection form on $\operatorname{Re} \Lambda_{\operatorname{prim}}^{1,1}(V)$ (reminder)

Lemma 1: Let (V, I, g) be a 4-dimensional space equipped with a complex structure operator $I \in \text{End}(V)$, $I^2 = -\text{Id}$, $\omega \in \Lambda^{1,1}(V)$ a Hermitian form, and $\Lambda^{1,1}_{\text{prim}}(V) \subset \Lambda^{1,1}(V, I) \subset \Lambda^4(V)$ be the space of (1,1)-forms α such that $\alpha \wedge \omega = 0$. Then for any non-zero $\alpha \in W$, one has $\frac{\alpha \wedge \alpha}{\text{Vol}} < 0$. **Proof. Step 1:** Consider the Hodge star operator $* : \Lambda^2(V) \longrightarrow \Lambda^2(V)$. Clearly, $*^2 = \text{Id}$, hence all eigenvalues of * are ± 1 . If we invert the orientation, * becomes -*; this implies that * is conjugated to -*, hence the multiplicity of 1 and -1 is equal 3. **Denote the corresponding eigenspaces as** $\Lambda^2 V = \Lambda^+ V \oplus \Lambda^- V$. This decomposition is clearly orthogonal with respect to the pairing $\alpha, \beta \longrightarrow \frac{\alpha \wedge \beta}{\text{Vol}}$.

Step 2: Consider a quaternion action on *V* compatible with the scalar product *g*. Three symplectic forms $\omega_I, \omega_J, \omega_K$ are pairwise orthogonal, square to 0, hence generate $\Lambda^+ V$. However, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is of type (2,0) on (*V*, *I*). **Therefore,** $\langle \operatorname{Re} \Omega, \operatorname{Im} \Omega, \omega \rangle = \Lambda^+ V$.

Step 3: The space $\Lambda_{\text{prim}}^{1,1}(V)$ is 3-dimensional and orthogonal to the 3-dimensional space $\langle \text{Re}\,\Omega, \text{Im}\,\Omega, \omega \rangle$. The space $\langle \text{Re}\,\Omega, \text{Im}\,\Omega, \omega \rangle$ is equal to $\Lambda^+ V$, as follows from Step 2. Then $\Lambda_{\text{prim}}^{1,1}(V) = \langle \text{Re}\,\Omega, \text{Im}\,\Omega, \omega \rangle^{\perp} = \Lambda^- V$.

DEFINITION: A (1,1)-form on a complex Hermitian surface is **primitive** if it is orthogonal to ω pointwise. **Primitive forms satisfy** $\|\eta\|_{L^2}^2 = -\int_M \eta \wedge \eta$.

Bott-Chern cohomology (reminder)

DEFINITION: Let M be a complex manifold, and $H^{p,q}_{BC}(M)$ the space of closed (p,q)-forms modulo $dd^c(\Lambda^{p-1,q-1}(M))$. Then $H^{p,q}_{BC}(M)$ is called **the Bott-Chern cohomology** of M.

REMARK: There are natural (and functorial) maps from the Bott-Chern cohomology to the Dolbeault cohomology $H^*(\Lambda^{*,*}(M),\overline{\partial})$ and to the de Rham cohomology, but no morphisms between de Rham and Dolbeault cohomology.

REMARK: However, there is no multiplicative structure on the Bott-Chern cohomology.

THEOREM: Let *M* be a compact complex manifold. Then $H_{BC}^{p,q}(M)$ is finite-dimensional.

Proof: Lecture 11.

Complex surfaces, Bott-Chern cohomology and primitive forms (reminder)

Theorem 1: Let *M* be a compact surface. Then the kernel of the natural map $P: H^{1,1}_{BC}(M) \longrightarrow H^2(M)$ is at most 1-dimensional.

Proof. Step 1: Let ω be a Gauduchon metric on M. Consider the differential operator D: $f \mapsto dd^c(f) \wedge \omega$ mapping functions to 4-forms. Clearly, D is elliptic and its index is the same as the index of the Laplacian: ind D = ind $\Delta = 0$, hence dim ker D = dim coker D. The Hopf maximum principle implies that ker D only contains constants, hence by index theorem coker D is 1-dimensional. However, $\int_M D(f) = \int_M dd^c(f) \wedge \omega = \int_M f dd^c \omega = 0$. This implies that a 4-form κ belongs to im D if and only if $\int_M \kappa = 0$.

Step 2: Let α be a closed (1,1)-form. Define **the degree** $\deg_{\omega} \alpha := \int_{M} \omega \wedge \alpha$. Since $\int_{M} dd^{c} f \wedge \omega = 0$, this defines a map $\deg_{\omega} : H^{1,1}_{BC}(M,\mathbb{R}) \longrightarrow \mathbb{R}$. Given a closed (1,1)-form α of degree 0, the form $\alpha' := \alpha - dd^{c}(D^{-1}(\alpha \wedge \omega))$ satisfies $\alpha' \wedge \omega = 0$, in other words, it is an ω -primitive (1,1)-form. For ω -primitive forms, one has $\alpha' \wedge \alpha' = -|\alpha'|^{2} \omega \wedge \omega$, giving $\int_{M} \alpha' \wedge \alpha' = -|\alpha'|^{2} \omega$ which is impossible when α' is a non-zero class in ker P, because then α' is exact. Therefore, **any vector of zero degree in** ker $P \subset H^{1,1}_{BC}(M,\mathbb{R})$ **vanishes.** This implies that any two vectors in ker P are proportional.

Defect of a complex surface (reminder)

COROLLARY: Let $\eta \in H^{1,1}_{BC}(M)$ be a non-zero *d*-exact class. **Then** $\int \eta \wedge \omega \neq 0$.

Proof: Follows from Step 2 of the previous theorem

COROLLARY: Let *M* be a complex surface and η be a non-zero vector in ker *P*, where *P* : $H_{BC}^{1,1}(M) \longrightarrow H^2(M)$ is the natural map morphism. Then $\int \eta \wedge \omega > 0$ for all Gauduchon forms ω , or $\int \eta \wedge \omega < 0$ for all ω .

Proof: Follows from the above corollary.

DEFINITION: The number dim ker *P* is called **the defect** of a surface, denoted $\delta(M)$; by the previous theorem it can be 1 or 0. In the course of the proof of Lamari's theorem, we will show that **the surface is Kähler if and only if** $\delta(M) = 1$.

Intersection form on $H^{1,1}_{BC}(M)$

PROPOSITION: Let *M* be a compact surface with $\delta(M) > 0$. Then the intersection form on the image of $H^{1,1}_{BC}(M,\mathbb{R})$ in $H^2(M,\mathbb{R})$ is negative definite.

Proof: Fix a Gauduchon metric ω on M. Consider the degree functional $\deg_{\omega} : H^{1,1}_{BC}(M,\mathbb{R}) \longrightarrow \mathbb{R}$ (Lecture 11) taking $\alpha \in H^{1,1}_{BC}(M,\mathbb{R})$ to $\int_{M} \alpha \wedge \omega$. Then $\deg_{\omega}(\Theta) \neq 0$ for any non-zero d-exact class $\Theta \in \ker P : H^{1,1}_{BC}(M) \longrightarrow H^2(M)$ (Lecture 11). Therefore, any class in $\frac{H^{1,1}_{BC}(M,\mathbb{R})}{\ker P}$ can be represented by a closed (1,1)-form α with $\deg_{\omega} \alpha = 0$. Acting as in the proof of Theorem 1, we find $f \in C^{\infty}(M)$ such that $\alpha - dd^c f$ is primitive. Replacing α by $\alpha' := \alpha - dd^c f$, we obtain $\int_{M} \alpha' \wedge \alpha' = -\|\alpha'\|^2_{\omega} < 0$.

Holomorphic 1-forms on a surface

LEMMA: All holomorphic 1-forms on a compact complex surface are closed.

Proof: Let $\alpha \in \Lambda^{1,0}(M)$ be a holomorphic 1-form. Then $\overline{\partial}\alpha = 0$, because it is holomorphic, and by the same reason $d\alpha$ is a holomorphic, exact (2,0)-form. Then $d\alpha \wedge d\overline{\alpha}$ is a positive (2,2)-form, giving $0 = \int_M d\alpha \wedge d\overline{\alpha} = ||d\alpha||^2$. Then $d\alpha = 0$, and α is closed.

Claim 1: Let M be a complex surface. Denote the space of holomorphic 1-forms on M by $\mathcal{H}^{1,0}(M)$, and let $\overline{\mathcal{H}^{1,0}(M)}$ be its complex conjugate. By the previous lemma, all elements of $\mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)}$ are closed. This defines a map $\mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)} \longrightarrow H^1(M,\mathbb{C})$. We claim that this map is injective.

Proof: Let α, β be holomorphic forms such that $\alpha + \overline{\beta}$ is exact, $\alpha + \overline{\beta} = df$. Then $dd^c f = 0$, hence f = const by maximum principle. Indeed, $f \mapsto \frac{dd^c f \wedge \omega}{\omega^2}$ is an elliptic operator, vanishing on constants, hence all dd^c -closed functions are constant.

$H^{0,1}_{\overline{\partial}}(M)$ for a complex surface

Claim 2: Consider the natural map $R : \overline{\mathcal{H}^{1,0}(M)} \longrightarrow H^{0,1}_{\overline{\partial}}(M)$. Then R is injective.

Proof: For any α in its kernel, $\alpha = \overline{\partial}u$, but α is ∂ -closed, hence $\partial\overline{\partial}u = 0$, implying u = const by maximum principle. Therefore, R is injective.

Claim 3: Assume that $P : H^{1,1}_{BC}(M) \longrightarrow H^2(M)$ is injective, that is, $\delta(M) = 0$. **Then** $R : \overline{\mathcal{H}^{1,0}(M)} \longrightarrow H^{0,1}_{\overline{\partial}}(M)$ **is surjective.**

Proof: If *R* is not surjective, there is a class represented by a $\overline{\partial}$ -closed (0,1)-form α , but not by a closed (0,1)-form. Then $\partial(\alpha + \overline{\partial}\varphi) \neq 0$ for any function φ on *M*, which implies that $d\alpha$ generates ker *P*.

Proposition 4: The following sequence is exact:

$$0 \longrightarrow \overline{\mathcal{H}^{1,0}(M)} \xrightarrow{R} H^{0,1}_{\overline{\partial}}(M) \xrightarrow{\partial} H^{1,1}_{BC}(M,\mathbb{R}) \xrightarrow{P} H^2(M)$$

In particular, P is injective if and only if R is surjective.

Proof: Exactness in the $H^{1,1}_{BC}(M,\mathbb{R})$ -term follows from Claim 3. Exactness in $H^{0,1}_{\overline{\partial}}(M)$ -term follows from the definition. Exactness in the first term follows from Claim 2.

$H^1(M)$ for a complex surface with $\delta(M) = 0$

PROPOSITION: Let *M* be a compact complex manifold. Then the map $H^1(M, \mathbb{R}) \xrightarrow{\tau} H^{0,1}_{\overline{\partial}}(M)$, taking a closed form η to $[\eta^{0,1}]$, is injective.

Proof: Let η be a real form such that $\eta^{0,1}$ is $\overline{\partial}$ -exact, $\eta^{0,1} = \overline{\partial}\varphi$, where $\varphi = a + \sqrt{-1} b$, where a, b are real functions. Then $\eta = 2 \operatorname{Re} \overline{\partial}\varphi = (da - d^c b)$. We obtain that η is cohomologous to a form $d^c b$ which is d-closed and d^c -closed. This gives $dd^c b = 0$, hence b is constant, by maximum principle, and $\eta = da$ is exact.

CLAIM: Let M be a complex surface, such that $H^{1,1}_{BC}(M,\mathbb{R}) \xrightarrow{P} H^2(M)$ is injective, that is, $\delta(M) = 0$. Then $H^1(M,\mathbb{C}) = \mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)}$.

Proof: If $\delta(M) = 0$, then $R : \overline{\mathcal{H}^{1,0}(M)} \longrightarrow H^{0,1}_{\overline{\partial}}(M)$ is an isomorphism by Proposition 4. Since all elements of $\overline{\mathcal{H}^{1,0}(M)}$ are closed, the natural map τ : $H^1(M,\mathbb{R}) \longrightarrow H^{0,1}_{\overline{\partial}}(M)$ is surjective. It is injective by the previous proposition. Passing to its complexification, we obtain $H^1(M,\mathbb{C}) = \mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)}$.

$H^1(M)$ for a complex surface with $\delta(M) = 1$

Proposition 5: Let *M* be a complex surface such that $H_{BC}^{1,1}(M,\mathbb{R}) \xrightarrow{P} H^2(M)$ has nonzero kernel, that is, $\delta(M) = 1$. Then ker *P* can be generated by a class $d^c[\theta]$, where $\theta \in H^1(M,\mathbb{R})$, and $H^1(M,\mathbb{C}) = \mathcal{H}^{1,0}(M) \oplus \mathcal{H}^{1,0}(M) \oplus \langle \theta \rangle$. **Proof. Step 1:** The generator *u* of ker *P* is a differential of a real 1-form α , which satisfies $\overline{\partial}\alpha^{0,1} = \partial\alpha^{1,0} = 0$, hence $d\alpha^{0,1} = d\alpha^{1,0} = u$. Since *u* is a real form, the imaginary part of $d\alpha^{0,1}$ vanishes. Then $\theta := I\alpha$ is closed, and $u = d^c\theta$, hence the cohomology class $[\theta] \in H^1(M,\mathbb{R})$ is non-exact and linearly independent from $\mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)}$.

Step 2: Using the exact sequence

$$0 \longrightarrow \overline{\mathcal{H}^{1,0}(M)} \xrightarrow{R} H^{0,1}_{\overline{\partial}}(M) \xrightarrow{\partial} H^{1,1}_{BC}(M,\mathbb{R}) \xrightarrow{P} H^2(M)$$

we obtain that $\langle \theta^{0,1} \rangle \oplus \overline{\mathcal{H}^{1,0}(M)} = H^{0,1}_{\overline{\partial}}(M).$

Step 3: Since the natural map τ : $H^1(M, \mathbb{R}) \longrightarrow H^{0,1}_{\overline{\partial}}(M)$ is injective, and $H^{0,1}_{\overline{\partial}}(M) = \langle \theta^{0,1} \rangle \oplus \overline{\mathcal{H}^{1,0}(M)}$, we obtain that τ is surjective and $H^1(M, \mathbb{R})$ is generated by the real parts of $\overline{\mathcal{H}^{1,0}(M)}$ and $\langle \theta \rangle$.

COROLLARY: Let *M* be a complex surface. Then $b_1(M)$ is odd when $\delta(M) = 1$ and $b_1(M)$ is even when $\delta(M) = 0$. **Proof:** When $\delta(M) = 0$, we have $H^1(M, \mathbb{C}) = \mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)}$, and when $\delta(M) = 0$, we have $H^1(M, \mathbb{C}) = \mathcal{H}^{1,0}(M) \oplus \overline{\mathcal{H}^{1,0}(M)} \oplus \langle \theta \rangle$. $H^{0,1}_{\overline{\partial}}(M)$ for a complex surface

COROLLARY: Let *M* be a complex surface. Then $H_{\overline{\partial}}^{0,1}(M) = \overline{\mathcal{H}}^{1,0}(M)$ when $\delta(M) = 0$ and $H_{\overline{\partial}}^{0,1}(M) = \overline{\mathcal{H}}^{1,0}(M) \oplus \langle \theta^{0,1} \rangle$, where θ is the closed 1-form defined in Proposition 5, and $\theta^{0,1}$ the Dolbeault class of its (0,1)-part.

Proof: See Step 2 in the proof of Proposition 5. ■

Degeneration of the Hodge-de Rham-Frölicher spectral sequence

DEFINITION: Let M be a compact complex manifold. We say that the Hodge-de Rham-Frölicher spectral sequence degenerates in the term $E_1^{p,q}$ if any class in $H_{\overline{\partial}}^{p,q}(M)$ can be represented by a $\overline{\partial}$ -closed (p,q)-form α which satisfies $\partial \alpha \in \operatorname{im} \overline{\partial}$. It degenerates on the page $E_1^{*,*}$ if it degenerates for all terms $E_1^{p,q}$.

REMARK: The degeneration in E_1 is equivalent to $E_1^{p,q} = E_{\infty}^{p,q}$, where $E_*^{*,*}$ is the Hodge-de Rham-Frölicher spectral sequence. Indeed, $E_1^{p,q} = H_{\overline{\partial}}^{p,q}$, and the differential d_1 takes the Dolbeault class $\alpha \in E_1^{p,q} = H_{\overline{\partial}}^{p,q}(M)$ to an element of $H_{\overline{\partial}}^{p+1,q}(M)$ represented by $(d\alpha)^{p+1,q}$. The same argument also implies that all differentials $d_i, i \ge 1$ vanish. However, if all d_i vanish, the spectral sequence degenerates, giving $E_1^{p,q} = E_{\infty}^{p,q}$; conversely, this equivalence implies that all differentials vanish, and any class in $H_{\overline{\partial}}^{p,q}(M)$ can be represented by a form in ker d_1 , that is, by a closed form.

COROLLARY: Let *M* be a complex surface. Then the Hodge-de Rham-Frölicher spectral sequence degenerates in $E_1^{0,1}$ and in $E_1^{1,0}$.

Proof: Indeed, all forms in $\mathcal{H}^{1,0}(M) = E_1^{1,0}$ are closed, and $E_1^{0,1} = \overline{\mathcal{H}^{1,0}(M)} \oplus \langle \theta^{0,1} \rangle$; all forms in $\overline{\mathcal{H}^{1,0}(M)}$ are closed, and $\partial(\theta^{0,1}) = \overline{\partial}(\theta^{1,0})$.