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Intersection form on Re /\prlm(V) (reminder)

Lemma 1: Let (V,I,g9) be a 4-dimensional space equipped with a complex

structure operator I € End(V), I? = —1Id, w € ALL(V) a Hermitian form,
and /\p’rlm(V) c ALL(V. ) ¢ A*(V) be the space of (1,1)-forms a such that
aAw=0. Then for any non-zero o € W, one has /¢ < 0.

Proof. Step 1: Consider the Hodge star operator x : A2(V) — A2(V).
Clearly, $2 = Id, hence all eigenvalues of x are 1. If we invert the orientation,
x becomes —x; this implies that % is conjugated to —x, hence the multiplicity
of 1 and —1 is equal 3. Denote the corresponding eigenspaces as A2V =
ATV & A~V. This decomposition is clearly orthogonal with respect to the

alf
pairing o, 5 — ol -

Step 2: Consider a quaternion action on V compatible with the scalar product
g. Three symplectic forms wjy,wj,wg are pairwise orthogonal, square to O,
hence generate ATV. However, Q :=w;+ +/—1wg is of type (2,0) on (V,I).
Therefore, (ReQ,ImQ,w) = ATV,

Step 3: The space /\prlm(V) is 3-dimensional and orthogonal to the 3-

dimensional space (Re2,Im 2 w) The space (ReQ2,Im w) is equal to ATV,
as follows from Step 2. Then /\p”m(V) (Re2,Im Q,w> =A"V.nm

DEFINITION: A (1,1)-form on a complex Hermitian surface is primitive if
it is orthogonal to w pointwise. Primitive forms satisfy |7]2, = — [, 7 A 7.
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Bott-Chern cohomology (reminder)

DEFINITION: Let M be a complex manifold, and HzlL(M) the space of
closed (p,g)-forms modulo dd*(AP~14=1(a1)). Then HEL(M) is called the
Bott-Chern cohomology of M.

REMARK: There are natural (and functorial) maps from the Bott-Chern
cohomology to the Dolbeault cohomology H*(A**(M),d) and to the
de Rham cohomology, but no morphisms between de Rham and Dolbeault
cohomology.

REMARK: However, there is no multiplicative structure on the Bott-
Chern cohomology.

THEOREM: Let M be a compact complex manifold. Then HZL(M) is
finite-dimensional.

Proof: Lecture 11.
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Complex surfaces, Bott-Chern cohomology and primitive forms (re-
minder)

Theorem 1: Let M be a compact surface. Then the kernel of the natural
map P : Hé’é(M) — H?(M) is at most 1-dimensional.

Proof. Step 1: Let w be a Gauduchon metric on M. Consider the differential
operator D : f — dd°(f) AN w mapping functions to 4-forms. Clearly, D is
elliptic and its index is the same as the index of the Laplacian: indD =
ind A = 0, hence dimkerD = dimcokerD. The Hopf maximum principle
implies that ker D only contains constants, hence by index theorem coker D
is 1-dimensional. However, [y; D(f) = [3;dd°(f) Nw = [y fdd°w = 0. This
implies that a 4-form « belongs to im D if and only if [,;x = 0.

Step 2: Let a be a closed (1, 1)-form. Define the degree deg, a = [y wAa.
Since [y;dd°f ANw = 0, this defines a map deg,, : H}B’é(M,R) — R. Given a
closed (1,1)-form a of degree 0, the form o' ;= a — dd*(D~1(a A w)) satisfies
o/ ANw = 0, in other words, it is an w-primitive (1,1)-form. For w-primitive
forms, one has o/ A o/ = —|d/|?w A w, giving [ Ao = —|d/||2 which is
impossible when o' is a non-zero class in ker P, because then o/ is exact.
Therefore, any vector of zero degree in ker P C Hllg’é(M, R) vanishes. This

implies that any two vectors in ker P are proportional. m
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Defect of a complex surface (reminder)

COROLLARY: Let € H}B’é(M) be a non-zero d-exact class.
Then [nAw # 0.

Proof: Follows from Step 2 of the previous theorem

COROLLARY: Let M be a complex surface and n be a non-zero vector in
ker P, where P : Hé’é(M) — H2(M) is the natural map morphism. Then
[nAw>0 for all Gauduchon forms w, or [ Aw < 0 for all w.

Proof: Follows from the above corollary.

DEFINITION: The number dimker P is called the defect of a surface,
denoted 6(M); by the previous theorem it can be 1 or 0. In the course of the
proof of Lamari’'s theorem, we will show that the surface is Kahler if and
only if 6(M) = 1.
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: 1,1
Intersection form on Hy (M)

PROPOSITION: Let M be a compact surface with (M) > 0. Then the
intersection form on the image of Hé’é(M, R) in H2(M,R) is negative
definite.

Proof: Fix a Gauduchon metric w on M. Consider the degree functional
deg,, : Hys(M,R) — R (Lecture 11) taking a € Hy (M, R) to [y aAw. Then
deg,(®) # 0 for any non-zero d-exact class © € ker P : H}B’é(M) — H2(M)

1,1
: ~(M,R
(Lecture 11). Therefore, any class in HBfe(rP’ ) can be represented by a closed

(1,1)-form « with deg,a = 0. Acting as in the proof of Theorem 1, we find
f e C®(M) such that a —dd°f is primitive. Replacing a by o/ := o — dd®f, we
obtain [,/ Ad/ = —||d/|]2 < 0. =
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Holomorphic 1-forms on a surface

LEMMA: All holomorphic 1-forms on a compact complex surface are
closed.

Proof: Let o« € ALO(M) be a holomorphic 1-form. Then da = 0, because it is
holomorphic, and by the same reason da is a holomorphic, exact (2,0)-form.
Then da A da is a positive (2,2)-form, giving 0 = [;;da A da = ||da||?. Then
doa = 0, and « is closed. =

Claim 1: Let M be a complex surface. Denote the space of holomorphic
1-forms on M by #1.O9(M), and let #1.0(M) be its complex conjugate. By
the previous lemma, all elements of #1O(M) @ #1.0(M) are closed. This
defines a map #1.9(M) @ #1.0(M) — HY(M,C). We claim that this map
IS injective.

Proof: Let o, be holomorphic forms such that o + 3 is exact, a + 8 = df.
Then dd“f = 0, hence f = const by maximum principle. Indeed, f — ddifz\w
is an elliptic operator, vanishing on constants, hence all dd¢-closed functions

are constant. =
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Hg’l(M) for a complex surface

Claim 2: Consider the natural map R : #1L.0(M) —>H L(M). Then R is
injective.

Proof: For any « in its kernel, a« = Ou, but « is 9d-closed, hence 90u = 0,
implying v = const by maximum principle. Therefore, R is injective. =

Claim 3: Assume that P : HBC(M) — H2(M) is injective, that is, §(M) = 0.
Then R: #1.0(M) —>H5 L(M) is surjective.

Proof: If R is not surjective, there is a class represented by a d-closed (0,1)-
form «, but not by a closed (0,1)-form. Then 8(a+ 0¢) # 0 for any function
@ on M, which implies that da generates ker P. =

Proposition 4: The following sequence is exact:
0 — #LO(M) 5 HOY (M) 2 HEL (M R) £ H2(M)
In particular, P is injective if and only if R is SUI’JeCtIVG.

Proof Exactness in the HBC(M R)-term follows from Claim 3. Exactness in

(M) term follows from the definition. Exactness in the first term follows

from Claim 2. =m
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H1(M) for a complex surface with 6(M) =0

PROPOSITION: Let M be a compact complex manifold. Then the map
HY(M,R) - Hg’l(M), taking a closed form n to [7%1], is injective.

Proof: Let n be a real form such that n%! is d-exact, n%1 = 9y, where
¢ = a+ +/—1b, where a,b are real functions. Then n = 2Redy = (da — d°b).
We obtain that n is cohomologous to a form d° which is d-closed and d°-
closed. This gives dd‘b = 0, hence b is constant, by maximum principle,
and n =da IS exact. =

CLAIM: Let M be a complex surface, such that Hé’é(M, R) £, H2(M) is

injective, that is, §(M) = 0. Then H1(M,C) = #10(M) @ #1.0(M).

Proof: If §(M) = 0, then R : #1.0(M) —>H§’1(M) is an isomorphism by

Proposition 4. Since all elements of #1.0(M) are closed, the natural map 7 :
HI(M,R) — Hg’l(M) is surjective. It is injective by the previous proposition.

Passing to its complexification, we obtain HY(M,C) = #1.0(M) @ #1.0(M). =
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H1(M) for a complex surface with §(M) =1

Proposition 5: Let M be a complex surface such that HBC(M R) 25 H2(M)
has nonzero kernel, that is, §(M) = 1. Then ker P can be generated by a
class d¢[f], where 0 € Hl(M, R), and HY(M,C) = #1.O0(M) @ #1.0(M) & (6).
Proof. Step 1: The generator u of ker P is a differential of a real 1-form
o, which satisfies 9a%! = 9al:® = 0, hence da®! = dal® = u. Since u is a
real form, the imaginary part of da®! vanishes. Then 0 := I« is closed, and
v = d°9, hence the cohomology class [0] € H}(M,R) is non-exact and
linearly independent from #1.9(M) @ #1.0(M).

Step 2: Using the exact sequence

0 — #LO(M) 5 HOY (M) % HEA(M,R) 25 H2(M)

we obtain that (091) @ #1.0(M) = Hg’l(M).

Step 3: Since the natural map = : HI(M,R) —>H§’1(M) is injective, and
Hg’l(M) = (091 @ #1.0(M), we obtain that 7 is surjective and HL(M,R) is
generated by the real parts of #1.0(M) and (6). m

COROLLARY: Let M be a complex surface. Then b1(M) is odd when
(M) =1 and b1 (M) is even when §(M) = 0.
Proof: When §(M) = 0, we have HY(M,C) = #1.0(M) @ #1.0(M), and when
§(M) =0, we have HI(M,C) = #1O0(M) @ #1O0(M) & (). m
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Hg’l(M) for a complex surface

COROLLARY: Let M be a complex surface. Then Hg’l(M) = #1.0(M)
when §(M) = 0 and Hg’l(M) = #1.0(M) ¢ (091), where 0 is the closed
1-form defined in Proposition 5, and 691 the Dolbeault class of its (0,1)-part.

Proof: See Step 2 in the proof of Proposition 5. =
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Degeneration of the Hodge-de Rham-Frolicher spectral sequence

DEFINITION: Let M be a compact complex manifold. We say that the
Hodge-de Rham-Frolicher spectral sequence degenerates in the term
EY? if any class in Hg’q(M) can be represented by a O-closed (p,q)-form o

which satisfies 0a € im 0. It degenerates on the page EI* if it degenerates
for all terms E}'.

REMARK: The degeneration in E; is equivalent to E}? = EZ, where
E." is the Hodge-de Rham-Frolicher spectral sequence. Indeed, EJ'? =
Hg’q, and the differential d; takes the Dolbeault class o € E}? = Hg’q(M)

to an element of Hg"H’q(M) represented by (da)Pt1:4. The same argument
also implies that all differentials d;,2 > 1 vanish. However, if all d; vanish,
the spectral sequence degenerates, giving E}? = E&I; conversely, this equiv-
alence implies that all differentials vanish, and any class in Hg’q(M) can be
represented by a form in kerdq, that is, by a closed form.

COROLLARY: Let M be a complex surface. Then the Hodge-de Rham-
Frolicher spectral sequence degenerates in E?’l and in E%’O.

Proof: Indeed, all forms in #1.0(M) = E%’O are closed, and E?’l = #1.O(M) @

(69:1y: all forms in #1.0(M) are closed, and 9(6%1) = 9(61:9). m
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