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Zorn lemma

DEFINITION: Partial order is a relation x ≺ y, which is transitive (if x ≺ y

and y ≺ z then x ≺ z) and non-reflexive (z ≺ z does not hold for any z). A

set with partial order is called partially ordered set, or poset.

DEFINITION: Let (S,≺) be a poset. An element x ∈ S is called maximal

if there is no y ∈ S such that x ≺ y. For a subset S1 ⊂ S and x ∈ S, we write

S1 ≺ x if ξ ≺ x for all ξ ∈ S1.

DEFINITION: A partial order on S is called linear order, or total order if

for all x ̸= y either x ≺ y or y ≺ x.

Zorn lemma: Let (S,≺) be a poset such that for any linearly ordered subset

S1 ⊂ S there exists x ∈ S1 such that S1\{x} ≺ x. Then S has a maximal

element.
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Hahn-Banach separation theorem

DEFINITION: We say that a hyperplane in a topological vector space V

is a closed codimension 1 subspace H ⊂ V .

THEOREM: (Hahn-Banach separation theorem)

Let V be a locally convex topological vector space, A ⊂ V an open convex

subset, and W ⊂ V a closed subspace. Assume that W ∩A = ∅. Then there

exists a continuous functional ξ ∈ V ∗ such that ξ(W ) = 0 and ξ(A) > 0.

Proof. Step 1: We will prove existence of a hyperplane H ⊂ V not

intersecting A. We call this “the absolute version of Hahn-Banach”. We

will also prove a stronger statement: for any closed subspace W ⊂ V not

intersecting A, the hyperplane H ⊂ V can be chosen in such a way that

H ⊃ W . We call this “the relative version of Hahn-Banach theorem”. The

statement of the theorem immediately follows from the “relative version”,

because there exists a functional vanishing on H, and hence on W .
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Hahn-Banach separation theorem (2)

Proof. Step 1: We will prove existence of a hyperplane H ⊂ V not
intersecting A. We call this “the absolute version of Hahn-Banach”. We
will also prove a stronger statement: for any closed subspace W ⊂ V not
intersecting A, the hyperplane H ⊂ V can be chosen in such a way that
H ⊃ W . We call this “the relative version of Hahn-Banach theorem”. The
statement of the theorem immediately follows from the “relative version”,
because there exists a functional vanishing on H, and hence on W .
Step 2: We prove now that the “absolute” case of Hahn-Banach theorem
implies the “relative” case. Let V ′ := V/W and A′, W ′ the image of A, W

in V ′. Clearly, A ̸∋ 0; indeed, if A′ ∋ 0, this would imply that A ∩W ̸= ∅. The
“absolute” case of Hahn-Banach applied to V ′, A′ gives a closed hyperplane
H ′ not intersecting A′; its preimage in V is a hyperplane H, H ∩A = ∅.
Step 3: Prove the Hahn-Banach theorem when V = R2 and W = 0 as
an exercise (you need to find a line in R2 not intersecting a given convex
cone A ⊂ R2, A ̸∋ 0.)
Step 4: Let V0 ⊂ V be a hyperplane, and A ⊂ V an open convex cone,
A ̸∋ 0. Suppose that in V0 Hahn-Banach theorem is already proven, and V0
contains a hyperplane H0 not intersecting A. Then V/H0 is 2-dimensional,
and the image of A in V/H0 is an open cone not containing 0, hence (the
absolute) Hahn-Banach theorem for (V,A) follows from the absolute
Hahn-Banach theorem for (V0, A ∩ V0).
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Hahn-Banach separation theorem (3)

Step 5: We can now prove (the absolute) Hahn-Banach theorem using the

Zorn lemma. Fix (V,A). Consider the following poset S: its elements are

closed subspaces V1 ⊂ V together with a hyperplane H1 ⊂ V1 such that

A∩H1 = 0. The order is defined in a natural way, (V1, H1) ≻ (V2, H2) if V1 ⊃ V2
and H2 = H1 ∩ V2. Consider a linear ordered chain {(Vα, Hα)} of elements in

S. Clearly, H0 :=
⋃
Hα is a closed hyperplane in V0 :=

⋃
Vα, not intersecting

A. Since A is open, the closure of H0 is a hyperplane of V0 not intersecting

A. Therefore, any linear ordered chain in S has a maximal element. Applying

the Zorn lemma, we obtain a maximal element (Vmax, Hmax) ∈ S. It remains

to show that Vmax = V .

Step 6: Consider the quotient V ′ := V/Vmax, and let A′ be the image of A in

V ′. Since A ̸⊃ Vmax, the cone A′ does not contain 0, hence there exists a line l ⊂
V ′ such that l∩A′ is a ray in l. Take V1 := Vmax+⟨l⟩ and apply the 2-dimensional

(absolute) Hahn-Banach theorem to V2 := V1/Hmax = R2, and A2 the image

of A ∩ V1 in V2. The set A2 does not contain zero, because A ∩ Hmax = ∅.
The finite-dimensional Hahn-Banach theorem gives us a hyperplane H2 ⊂ V2
not intersecting A2. Let H1 ⊂ V1 be its preimage. Then H1 ∩ A = 0 and

(V1, H1) ≻ (Vmax, Hmax), giving a contradiction.
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Currents and generalized functions (reminder)

DEFINITION: Let F be a Hermitian bundle with connection ∇, on a Rie-

mannian manifold M with Levi-Civita connection, and

∥f∥Ck := sup
x∈M

(
|f |+ |∇f |+ ...+ |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

DEFINITION: A generalized function, or a distribution is a functional on

functions with compact support, which is continuous in one of Ci-topologies.

DEFINITION: A k-current is a functional on (dimM − k)-forms with com-

pact support, which is continuous in one of Ci-topologies. The space of

k-currents is denoted Dk(M). For any current ξ and a function τ with com-

pact support, the pairing ⟨ξ, τ⟩ is often (usually) denoted
∫
M ξ ∧ τ . In this

situation, τ is called a test-form.
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Currents are differential forms with coefficients in generalized functions

(reminder)

REMARK: The pairing between forms and currents is denoted as α, τ 7→∫
M α ∧ τ . Using this notation, we interpret k-forms on n-manifold as k-

currents, that is, as functionals on n− k-forms with compact support.

CLAIM: Currents are the same as differential forms with coefficients

in generalized functions: the natural map D0(M)⊗C∞M Λk(M) = Dk(M) is

an isomorphism.

Proof: Locally, we can trivialize Λn−k(M), obtaining Λn−k(M) ∼= (C∞M)⊗RV ,

where V is finite-dimensional. The functionals on (C∞M)n = (C∞M) ⊗R V

are identified with the direct sum of dimV copies of the space of general-

ized functions, hence the natural map D0(M) ⊗C∞M Λk(M)−→Dk(M) is an

isomorphism.
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Currents on complex manifolds (reminder)

CLAIM: De Rham differential is continuous on currents, and the Poincaré

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions.

REMARK: In the literature, this is sometimes called (n − p, n − q)-

currents.

CLAIM: The Poincare and Poincare Dolbeault-Grothendieck lemma hold on

(p, q)-currents, and the d- and ∂-cohomology are the same as for forms.

DEFINITION: A positive (1,1)-form on a complex manifold is a form

η ∈ Λ1,1
R (M) which satisfies η(x, Ix) ⩾ 0 for any x ∈ TM .

CLAIM: Let α be a positive function, and u a (1,0)-form. Then −
√
−1αu∧u

is a positive (1,1)-form. Moreover, any positive form is obtained as a

linear combination of such (1,1)-forms.
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Positive currents

REMARK: From now on, we assume that dimCM = 2: we will operate
with currents on a complex surface. The general definitions are slightly
more complicated.

REMARK: A positive generalized function multiplied by a positive volume
form gives a measure on a manifold. By Riesz representation theorem,
positive generalized functions are all C0-continuous as functionals on C∞M .

CLAIM: The following definitions are equivalent.

DEFINITION: The cone of positive (1,1)-currents is generated by −
√
−1αu∧

u, where α is a positive generalized function (that is, a measure), and u a
(1,0)-form.

DEFINITION: A (1,1)-current α on a surface is called positive if
∫
M α∧τ ⩾ 0

for any positive (1,1)-form τ with compact support.

EXAMPLE: Let C be a compact complex curve on a surface M . Its current
of integration is α 7→

∫
Z α. It is not hard to see that this current is closed

and positive.
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Aeppli cohomology

DEFINITION: Let M be a complex manifold, and H
p,q
AE(M) the space of

ddc-closed (p, q)-forms modulo ∂(Λp−1,qM) + ∂(Λp,q−1M). Then H
p,q
AE(M) is

called the Aeppli cohomology of M .
THEOREM: (A. Aeppli)
Let M be a compact complex n-manifold. Then the Aeppli cohomology is
finite-dimensional. Moreover, the natural pairing

H
p,q
BC(M)×H

n−p,n−q
AE (M)−→H2n(M) = C,

taking x, y to
∫
M x ∧ y is non-degenerate and identifies H

p,q
BC(M) with the

dual H
n−p,n−q
AE (M)∗.

Proof: Use the same argument as used to prove Serre’s duality and Poincaré
duality.

REMARK: Math Genealogy knows 3 person called Aeppli: Alfred Aeppli
(ETH Zürich, 1924, student of George Pólya and Hermann Weyl), Alfred
Aeppli (ETH Zürich, 1956, student of Beno Eckmann and Heinz Hopf), and
Hans Aeppli (1980, student of Hans Storrer). The second Alfred Aeppli was
the one responsible for Aeppli cohomology.

DEFINITION: Let M be a compact complex n-manifold. Its Gauduchon
cone is the set of all Aeppli classes of ωn−1, where ω is a Gauduchon metric.
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Pseudo-effective cone

DEFINITION: A Bott-Chern cohomology class η ∈ H
1,1
BC(M,R). is called

pseudo-effective if it can be represented by a positive, closed current. The

pseudo-effective cone is the set of all pseudo-effective classes.

REMARK: Let ω be a Gauduchon metric on a complex n-manifold, and η

a closed (1,1)-form. We define the degree degω η :=
∫
M η ∧ ωn−1. Since∫

M ddcf ∧ ωn−1 = 0, this number depends only on the cohomology class [η] ∈
H

1,1
BC(M,R).

The next theorem claims that the Gauduchon cone is dual to the pseudo-

effective cone.
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Pseudo-effective cone

THEOREM: (Ahcène Lamari)

Let M be a compact complex manifold. A class η ∈ H
1,1
BC(M,R) is pseudo-

effective if and only if degω η > 0 for any Gauduchon metric ω.

Proof. Step 1: Let A be the set of strictly positive (n − 1, n − 1)-forms,

u ∈ H
n−1,n−1
AE (M,R), and V = u+V ′, where V ′ is the space of all (n−1, n−1)-

parts of 2n−2-forms. Clearly, V ∩A = ∅ if and only if u is not in the Gauduchon

cone. By Hahn-Banach, V ∩ A = ∅ if and only if there exists a functional

on Λn−1,n−1(M) (that is, a (1,1)-current) ξ such that ⟨ξ, A⟩ > 0 and

⟨ξ, V ⟩ = 0.

Step 2: The condition ⟨ξ, A⟩ > 0 means that ξ is a non-zero positive

current. The condition ⟨ξ, V ′⟩ = 0 is equivalent to
∫
ξ ∧ dw = 0 for all

(2n − 3)-forms w. Indeed, V ′ is the space of (n − 1, n − 1)-parts of exact

forms, and ξ is a (1,1)-current.

Step 3: However,
∫
ξ∧dw = 0 for all w is equivalent to ξ being closed. Then,

a class u ∈ H
n−1,n−1
AE (M,R) belongs to the Gauduchon cone if and only

if
∫
M ξ ∧ u > 0 for all positive, closed (1,1)-currents ξ.
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