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Plurisubharmonic functions

DEFINITION: A function f on a complex manifold is called plurisubhar-
monic (or psh) if dd¢f is a positive (1,1)-form, and strictly plurisubharmonic
if dd°f is a positive definite (and ipso facto Kahler) form.

REMARK: For any plurisubharmonic function f, and any Hermitian form
w, we have A(f) = 0, where A is an elliptic operator. Applying the strong
maximum principle, we obtain

COROLLARY: A plurisubharmonic function on a manifold cannot have a
local maximum, unless it is constant. =

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic.
EXAMPLE: Let f be a holomorphic function. Then dd¢|f|? = 2v/—190ff =
2v/—1 (8f A Of), hence |f|? is plurisubharmonic.

COROLLARY: Let fq,...,fn be a collection of holomorphic functions on
a complex manifold. Then Y, |f;|? is plurisubharmonic, hence it cannot
have a maximum.

EXAMPLE: Let € C°°R. Then

dd“(p(f))m = @' (f(2))°ddf + 1" (£ (2))df A d°F.
Therefore, for any psh function f, the composition u(f) is psh when

u’ >0 and /> 0.
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Kahler potential
I will use the following difficult theorem without a proof.

LEMMA: (“Poincaré-Dolbeault-Grothendieck lemma”) B
Let n be a -closed (p, g)-form, ¢ > 0, on an open ball BC C*. Then n € ima.

DEFINITION: A closed Hermitian (1,1)-form w is called a Kahler form. A
function f is called its Kahler potential when w = dd°f.

CLAIM: Any Kahler form on an open ball B C C" admits a Kahler potential.
Moreover, for any closed (1,1)-form n on B there exists a function f € C°°B
such that n = dd°f.

Proof. Step 1: Poincaré-Dolbeault-Grothendieck lemma implies that
w = 0n, for some n € AL.OB. Then 80n = dw = 0, which implies 89n = 0.

Step 2: We obtain that 9n is a holomorphic (2,0)-form, which is closed,
because §2n = d8n = 0. Applying the Poincaré lemma as above, we obtain
that 9n = da, where « is a holomorphic (1,0)-form.

Step 3: Now, 9(n — a) = 0, which implies that n» — a« € im9 by Poincaré-
Dolbeault-Grothendieck lemma again. Take f such that 0f = n — a. Since «
is holomorphic, we have 8(n —a) = dn = w. This brings w = 900f. m
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Subharmonic functions

DEFINITION: (René Baire, 1899)
A function f: M — R on a topological space is called upper semicontinu-

ous if limsup._,., f(2) < f(20).

DEFINITION: An upper semicontinuous measurable function f on an open
set (“domain”) @ C R" is called subharmonic if for any ball B C Q with
center in zg, we have f(zg) < Av,.cp f(2).

REMARK: From the exercises in the handout 3, we obtain that this is
equivalent to A(f) > 0, where A is the Laplacian on generalized functions.

EXERCISE: Prove directly that a subharmonic function which attains a
local maximum on a connected domain €2 C R" is constant.

CLAIM: For any decreasing sequence {uj} of subharmonic functions, the
Iimit v = limu 1S also subharmonic.

Proof: The decreasing limit is upper semicontinuous, and the inequality
f(z0) < Av,cp f(2) remains true by Lebesgue’s monotone convergence theo-

rem. =
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Composing subharmonic functions and convex functions

THEOREM: Let ug,...up be subharmonic functions on €2 C R", and x :
RP — R a convex function which is monotonously non-decreasing in each
variable. Then x(uq,...,up) is also subharmonic.

Proof: Every convex function is continuous, hence x(u1,...,up) is upped semi-
continuous. Clearly, x(t) = supgep A;(t), where A is the set of affine functions
A(t1,...,tp) = > a;t; + b such that A(x) < x(x). Since x is non-decreasing in
each variable, we have a; > 0 for : = 1,...,p, which gives

> aui(20) +b < AVaep (Y aui(2) +b) < Av.ep x(u1(2), .. up(2)).

|

COROLLARY: This implies that > u;, max(uq,...,up), l0g(> e") are sub-
harmonic, if uv; are subharmonic.

Proof: For the last assertion, we need to check that the function tq1,...,tp —

log(T eti) is convex. Let Ey := (e'/2%1,..,e'2%), E, := (e'2V1,... '2%). The
Cauchy-Schwarz inequality |Ez||Ey| > (Ex, Ey) gives

() (z2) = (£)

[aking logarithms, obtain
1 1 ;+y;
_ Z; _ Yi S
2Iog%e —|—2Iog§ie >Iog§ie ,

which is the same as x(w)é—x(y) >y (%) this is equivalent to convexity. m
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Pullback and pushforward

DEFINITION: Let f: X —Y be a proper holomorphic map of complex
manifolds, dim¢ X = dim¢cY + &k, and a a (p,q)-current on X. Define the

pushforward f.a using (fva,7) := (o, f*7), where 7 is any test-form. Then
f+a has bidimension (p — k,q — k). One should think of fix as of fiberwise
integration.

REMARK: Clearly, dfsa = f«da, 0fxa = f«Oa, and so on.

REMARK: One defines pushforward for real manifolds in the same way.
REMARK: Pullback of currents is (generally speaking) not well-defined.
Pushforward of differential forms are often singular, that is, are given by a
current. However...

CLAIM: Let f: X — Y be a proper submersion of smooth manifolds. Then
a pushforward of a differential form is a differential form.

Proof: Indeed, the pushforward can be understood as a fiberwise integral.
[ |

Example 1: Let w1, 7, M x M —s M be projection maps, and 65 € DIMM ()
the integration current for the diagonal A C M x M. Then (mp)«(m7(n) A
on) = n for any differential form n on M. Indeed, for any 7 € /\’C‘“M,
n e NIMM=Ek(pr) we have

% *k *k %k
min A0 /\7r7'——/7r /\7T7'——/ N T.
/]WXM 17 A 2 JAN 17 2 ]\477
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