Complex surfaces

lecture 15: Plurisubharmonic and subharmonic functions

Misha Verbitsky

IMPA, sala 236

February 10, 2024, 17:00

Plurisubharmonic functions

DEFINITION: A function f on a complex manifold is called **plurisubharmonic** (or **psh**) if $dd^c f$ is a positive (1,1)-form, and **strictly plurisubharmonic** if $dd^c f$ is a positive definite (and ipso facto Kähler) form.

REMARK: For any plurisubharmonic function f, and any Hermitian form ω , we have $\Delta(f) \ge 0$, where Δ is an elliptic operator. Applying the strong maximum principle, we obtain

COROLLARY: A plurisubharmonic function on a manifold **cannot have a local maximum, unless it is constant.**

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic. **EXAMPLE:** Let f be a holomorphic function. Then $dd^c |f|^2 = 2\sqrt{-1} \partial \overline{\partial} f \overline{f} = 2\sqrt{-1} (\partial f \wedge \overline{\partial f})$, hence $|f|^2$ is plurisubharmonic.

COROLLARY: Let $f_1, ..., f_n$ be a collection of holomorphic functions on a complex manifold. Then $\sum_i |f_i|^2$ is plurisubharmonic, hence it cannot have a maximum.

EXAMPLE: Let $\mu \in C^{\infty}\mathbb{R}$. Then

$$dd^{c}(\mu(f))|_{m} = \mu'(f(z))^{2}dd^{c}f + \mu''(f(z))df \wedge d^{c}f.$$

Therefore, for any psh function f, the composition $\mu(f)$ is psh when $\mu'' \ge 0$ and $\mu' > 0$.

Kähler potential

I will use the following difficult theorem without a proof.

LEMMA: ("Poincaré-Dolbeault-Grothendieck lemma") Let η be a $\overline{\partial}$ -closed (p,q)-form, q > 0, on an open ball $B \subset \mathbb{C}^n$. Then $\eta \in \operatorname{im} \overline{\partial}$.

DEFINITION: A closed Hermitian (1,1)-form ω is called a Kähler form. A function f is called its Kähler potential when $\omega = dd^c f$.

CLAIM: Any Kähler form on an open ball $B \subset \mathbb{C}^n$ admits a Kähler potential. Moreover, for any closed (1,1)-form η on B there exists a function $f \in C^{\infty}B$ such that $\eta = dd^c f$.

Proof. Step 1: Poincaré-Dolbeault-Grothendieck lemma implies that $\omega = \overline{\partial}\eta$, for some $\eta \in \Lambda^{1,0}B$. Then $\partial\overline{\partial}\eta = \partial\omega = 0$, which implies $\overline{\partial}\partial\eta = 0$.

Step 2: We obtain that $\partial \eta$ is a holomorphic (2,0)-form, which is closed, because $\partial^2 \eta = \overline{\partial} \partial \eta = 0$. Applying the Poincaré lemma as above, we obtain that $\partial \eta = d\alpha$, where α is a holomorphic (1,0)-form.

Step 3: Now, $\partial(\eta - \alpha) = 0$, which implies that $\eta - \alpha \in \operatorname{im} \partial$ by Poincaré-Dolbeault-Grothendieck lemma again. Take f such that $\partial f = \eta - \alpha$. Since α is holomorphic, we have $\overline{\partial}(\eta - \alpha) = \overline{\partial}\eta = \omega$. This brings $\omega = \overline{\partial}\partial f$.

Subharmonic functions

DEFINITION: (René Baire, 1899)

A function $f: M \longrightarrow \mathbb{R}$ on a topological space is called **upper semicontinuous** if $\limsup_{z \to z_0} f(z) \leq f(z_0)$.

DEFINITION: An upper semicontinuous measurable function f on an open set ("domain") $\Omega \subset \mathbb{R}^n$ is called **subharmonic** if for any ball $B \subset \Omega$ with center in z_0 , we have $f(z_0) \leq Av_{z \in B} f(z)$.

REMARK: From the exercises in the handout 3, we obtain that this is equivalent to $\Delta(f) \ge 0$, where Δ is the Laplacian on generalized functions.

EXERCISE: Prove directly that a subharmonic function which attains a local maximum on a connected domain $\Omega \subset \mathbb{R}^n$ is constant.

CLAIM: For any decreasing sequence $\{u_k\}$ of subharmonic functions, the limit $u := \lim u_k$ is also subharmonic.

Proof: The decreasing limit is upper semicontinuous, and the inequality $f(z_0) \leq \operatorname{Av}_{z \in B} f(z)$ remains true by Lebesgue's monotone convergence theorem.

Composing subharmonic functions and convex functions

THEOREM: Let $u_1, ... u_p$ be subharmonic functions on $\Omega \subset \mathbb{R}^n$, and $\chi : \mathbb{R}^p \longrightarrow \mathbb{R}$ a convex function which is monotonously non-decreasing in each variable. Then $\chi(u_1, ..., u_p)$ is also subharmonic.

Proof: Every convex function is continuous, hence $\chi(u_1, ..., u_p)$ is upped semicontinuous. Clearly, $\chi(t) = \sup_{A \in \mathbb{A}} A_i(t)$, where \mathbb{A} is the set of affine functions $A(t_1, ..., t_p) = \sum a_i t_i + b$ such that $A(x) \leq \chi(x)$. Since χ is non-decreasing in each variable, we have $a_i \geq 0$ for i = 1, ..., p, which gives

$$\sum a_i u_i(z_0) + b \leqslant \mathsf{Av}_{z \in B} \left(\sum a_i u_i(z) + b \right) \leqslant \mathsf{Av}_{z \in B} \chi(u_1(z), ..., u_p(z))$$

COROLLARY: This implies that $\sum u_i$, $\max(u_1, ..., u_p)$, $\log(\sum e^{u_i})$ are subharmonic, if u_i are subharmonic. Proof: For the last assertion, we need to check that the function $t_1, ..., t_p \mapsto$

Proof: For the last assertion, we need to check that the function $t_1, ..., t_p \mapsto \log(\sum e^{t_i})$ is convex. Let $E_x := (e^{1/2} x_1, ..., e^{1/2} x_p)$, $E_y := (e^{1/2} y_1, ..., e^{1/2} y_p)$. The Cauchy-Schwarz inequality $|E_x||E_y| \ge (E_x, E_y)$ gives

$$\left(\sum_{i}e^{x_{i}}
ight)^{rac{1}{2}}\left(\sum_{i}e^{y_{i}}
ight)^{rac{1}{2}}\geqslant\left(\sum_{i}e^{rac{x_{i}+y_{i}}{2}}
ight).$$

Taking logarithms, obtain

$$\frac{1}{2}\log\sum_{i}e^{x_{i}}+\frac{1}{2}\log\sum_{i}e^{y_{i}} \geqslant \log\sum_{i}e^{\frac{x_{i}+y_{i}}{2}},$$

which is the same as $\frac{\chi(x) + \chi(y)}{2} \ge \chi\left(\frac{x+y}{5}\right)$; this is equivalent to convexity.

Pullback and pushforward

DEFINITION: Let $f : X \longrightarrow Y$ be a proper holomorphic map of complex manifolds, $\dim_{\mathbb{C}} X = \dim_{\mathbb{C}} Y + k$, and α a (p,q)-current on X. Define the **pushforward** $f_*\alpha$ using $\langle f_*\alpha, \tau \rangle := \langle \alpha, f^*\tau \rangle$, where τ is any test-form. Then $f_*\alpha$ has bidimension (p - k, q - k). One should think of f_* as of fiberwise integration.

REMARK: Clearly, $df_*\alpha = f_*d\alpha$, $\partial f_*\alpha = f_*\partial\alpha$, and so on.

REMARK: One defines pushforward for real manifolds in the same way.

REMARK: Pullback of currents **is (generally speaking) not well-defined.** Pushforward of differential forms are often **singular**, that is, are given by a current. However...

CLAIM: Let $f: X \longrightarrow Y$ be a proper submersion of smooth manifolds. Then a pushforward of a differential form is a differential form. **Proof:** Indeed, the pushforward can be understood as a fiberwise integral.

Example 1: Let $\pi_1, \pi_2, M \times M \longrightarrow M$ be projection maps, and $\delta_\Delta \in D^{\dim M}(M)$ the integration current for the diagonal $\Delta \subset M \times M$. Then $(\pi_2)_*(\pi_1^*(\eta) \land \delta_\Delta) = \eta$ for any differential form η on M. Indeed, for any $\tau \in \Lambda_c^k M$, $\eta \in \Lambda^{\dim M-k}(M)$ we have

$$\int_{M \times M} \pi_1^* \eta \wedge \delta_{\Delta} \wedge \pi_2^* \tau = \int_{\Delta} \pi_1^* \eta \wedge \pi_2^* \tau = \int_M \eta \wedge \tau.$$