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Plurisubharmonic functions

DEFINITION: A function f on a complex manifold is called plurisubhar-
monic (or psh) if ddcf is a positive (1,1)-form, and strictly plurisubharmonic
if ddcf is a positive definite (and ipso facto Kähler) form.

REMARK: For any plurisubharmonic function f , and any Hermitian form
ω, we have ∆(f) ⩾ 0, where ∆ is an elliptic operator. Applying the strong
maximum principle, we obtain
COROLLARY: A plurisubharmonic function on a manifold cannot have a
local maximum, unless it is constant.

EXAMPLE: A sum of plurisubharmonic functions is plurisubharmonic.
EXAMPLE: Let f be a holomorphic function. Then ddc|f |2 = 2

√
−1 ∂∂ff =

2
√
−1 (∂f ∧ ∂f), hence |f |2 is plurisubharmonic.

COROLLARY: Let f1, ..., fn be a collection of holomorphic functions on
a complex manifold. Then

∑
i |fi|2 is plurisubharmonic, hence it cannot

have a maximum.
EXAMPLE: Let µ ∈ C∞R. Then

ddc(µ(f))|m = µ′(f(z))2ddcf + µ′′(f(z))df ∧ dcf.

Therefore, for any psh function f, the composition µ(f) is psh when
µ′′ ⩾ 0 and µ′ > 0.
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Kähler potential

I will use the following difficult theorem without a proof.

LEMMA: (“Poincaré-Dolbeault-Grothendieck lemma”)
Let η be a ∂-closed (p, q)-form, q > 0, on an open ball B ⊂ Cn. Then η ∈ im ∂.

DEFINITION: A closed Hermitian (1,1)-form ω is called a Kähler form. A
function f is called its Kähler potential when ω = ddcf .

CLAIM: Any Kähler form on an open ball B ⊂ Cn admits a Kähler potential.
Moreover, for any closed (1,1)-form η on B there exists a function f ∈ C∞B
such that η = ddcf.

Proof. Step 1: Poincaré-Dolbeault-Grothendieck lemma implies that
ω = ∂η, for some η ∈ Λ1,0B. Then ∂∂η = ∂ω = 0, which implies ∂∂η = 0.

Step 2: We obtain that ∂η is a holomorphic (2,0)-form, which is closed,
because ∂2η = ∂∂η = 0. Applying the Poincaré lemma as above, we obtain
that ∂η = dα, where α is a holomorphic (1,0)-form.

Step 3: Now, ∂(η − α) = 0, which implies that η − α ∈ im ∂ by Poincaré-
Dolbeault-Grothendieck lemma again. Take f such that ∂f = η − α. Since α
is holomorphic, we have ∂(η − α) = ∂η = ω. This brings ω = ∂∂f.
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Subharmonic functions

DEFINITION: (René Baire, 1899)
A function f : M −→ R on a topological space is called upper semicontinu-
ous if lim supz→z0 f(z) ⩽ f(z0).

DEFINITION: An upper semicontinuous measurable function f on an open
set (“domain”) Ω ⊂ Rn is called subharmonic if for any ball B ⊂ Ω with
center in z0, we have f(z0) ⩽ Avz∈B f(z).

REMARK: From the exercises in the handout 3, we obtain that this is
equivalent to ∆(f) ⩾ 0, where ∆ is the Laplacian on generalized functions.

EXERCISE: Prove directly that a subharmonic function which attains a
local maximum on a connected domain Ω ⊂ Rn is constant.

CLAIM: For any decreasing sequence {uk} of subharmonic functions, the
limit u := limuk is also subharmonic.

Proof: The decreasing limit is upper semicontinuous, and the inequality
f(z0) ⩽ Avz∈B f(z) remains true by Lebesgue’s monotone convergence theo-
rem.
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Composing subharmonic functions and convex functions

THEOREM: Let u1, ...up be subharmonic functions on Ω ⊂ Rn, and χ :
Rp −→ R a convex function which is monotonously non-decreasing in each
variable. Then χ(u1, ..., up) is also subharmonic.
Proof: Every convex function is continuous, hence χ(u1, ..., up) is upped semi-
continuous. Clearly, χ(t) = supA∈AAi(t), where A is the set of affine functions
A(t1, ..., tp) =

∑
aiti + b such that A(x) ⩽ χ(x). Since χ is non-decreasing in

each variable, we have ai ⩾ 0 for i = 1, ..., p, which gives∑
aiui(z0) + b ⩽ Avz∈B

(∑
aiui(z) + b

)
⩽ Avz∈B χ(u1(z), ..., up(z)).

COROLLARY: This implies that
∑

ui, max(u1, ..., up), log(
∑

eui) are sub-
harmonic, if ui are subharmonic.
Proof: For the last assertion, we need to check that the function t1, ..., tp 7→
log(

∑
eti) is convex. Let Ex := (e1/2 x1, ..., e

1/2 xp), Ey := (e1/2 y1, ..., e
1/2 yp). The

Cauchy-Schwarz inequality |Ex||Ey| ⩾ (Ex, Ey) gives(∑
i

exi

)1

2
(∑

i

eyi

)1

2

⩾

(∑
i

e
xi+yi

2

)
.

Taking logarithms, obtain
1

2
log

∑
i

exi +
1

2
log

∑
i

eyi ⩾ log
∑
i

e
xi+yi

2 ,

which is the same as χ(x)+χ(y)
2 ⩾ χ

(
x+y
2

)
; this is equivalent to convexity.
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Pullback and pushforward

DEFINITION: Let f : X −→ Y be a proper holomorphic map of complex
manifolds, dimCX = dimC Y + k, and α a (p, q)-current on X. Define the
pushforward f∗α using ⟨f∗α, τ⟩ := ⟨α, f∗τ⟩, where τ is any test-form. Then
f∗α has bidimension (p − k, q − k). One should think of f∗ as of fiberwise
integration.
REMARK: Clearly, df∗α = f∗dα, ∂f∗α = f∗∂α, and so on.
REMARK: One defines pushforward for real manifolds in the same way.
REMARK: Pullback of currents is (generally speaking) not well-defined.
Pushforward of differential forms are often singular, that is, are given by a
current. However...

CLAIM: Let f : X −→ Y be a proper submersion of smooth manifolds. Then
a pushforward of a differential form is a differential form.
Proof: Indeed, the pushforward can be understood as a fiberwise integral.

Example 1: Let π1, π2,M×M −→M be projection maps, and δ∆ ∈ DdimM(M)
the integration current for the diagonal ∆ ⊂ M × M . Then (π2)∗(π∗

1(η) ∧
δ∆) = η for any differential form η on M. Indeed, for any τ ∈ Λk

cM ,
η ∈ ΛdimM−k(M) we have∫

M×M
π∗
1η ∧ δ∆ ∧ π∗

2τ =
∫
∆

π∗
1η ∧ π∗

2τ =
∫
M

η ∧ τ.
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