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Complex surfaces, 2025, lecture 16 M. Verbitsky
Pullback and pushforward (reminder)

DEFINITION: Let f: X —Y be a proper holomorphic map of complex
manifolds, dim¢ X = dim¢cY + &k, and a a (p,q)-current on X. Define the

pushforward f.a using (fva,7) := (o, f*7), where 7 is any test-form. Then
f+a has bidimension (p — k,q — k). One should think of fix as of fiberwise
integration.

REMARK: Clearly, dfsa = f«da, 0fxa = f«Oa, and so on.

REMARK: One defines pushforward for real manifolds in the same way.
REMARK: Pullback of currents is (generally speaking) not well-defined.
Pushforward of differential forms are often singular, that is, are given by a
current. However...

CLAIM: Let f: X — Y be a proper submersion of smooth manifolds. Then
a pushforward of a differential form is a differential form.

Proof: Indeed, the pushforward can be understood as a fiberwise integral.
[ |

Example 1: Let w1, 7, M x M —s M be projection maps, and 65 € DIMM ()
the integration current for the diagonal A C M x M. Then (mp)«(m7(n) A
on) = n for any differential form n on M. Indeed, for any 7 € /\’C‘“M,
n e NIMM=Ek(pr) we have

% *k *k %k
min A0 /\7r7'——/7r /\7T7'——/ N T.
/]WXM 17 A 2 JAN 17 2 ]\477
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Kernels of integration

DEFINITION: Let w1,7m, 7y : R"” x R®" — R" take (z,y) to: m1(z,y) = x,
m(x,y) = vy, s (x,y) = 2 —y. Consider a differential form n on R", and let
V be a measure with compact support on R", called kernel of integration.
The convolution with the kernel V is

nxV = (m2)«(71(n) AmsV)
PROPOSITION: nxV = [ .cgrn L3:(n)V, where L is a translation on x € R".

Proof. Step 1: Let x1,...,zn, be coordinates on the first component, y1,...,yn
the coordinates on the second component, and p = dx;; A...Adz;, a coordinate
monomial on dx;. Without restricting the generality, we may assume n = fp,
where f is a smooth function on R". Let V = gVol, where g is a function on
R™ with compact support. Then

n
1 A (V) = f(@1, - 2n)g(@1 — Y1, 20 — yn)p A ]| doi — dy;.
i=1
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Kernels of integration (2)

Proof. Step 1: Let zq,...,zn be coordinates on the first component, y1,...,yn
the coordinates on the second component, and p = dz;; A...Adz;, a coordinate
monomial on dx;. Without restricting the generality, we may assume n = fp,
where f is a smooth function on R™. Let V = gVol, where g is a function on
R™ with compact support. Then

n

i) Ay (V) = f(z1, ..., zn)g(x1 — y1, s tn — yn)p A ] (dz; — dy;).
i=1
Step 2: To take a pushforward (7o)« (hp NIy dx; — dyi>, we decompose this
form into a sum of monomials and drop all monomials which don’t have a form
hdyjl/\---/\dyjk/\r[?:1 dr; and integrate h [, dz;. However, the only monomial
component of dx;, A... Adx;, NI (dz; —dy;) which has form dy;, A... Ady;, A
[T da; is dyi; A...Ady;, AT dz;. Then (m2)« (hp AT (da; — dyi)) evaluated
at (y1,--,yn) ER™Is [pn f(21, ., 2n)g(T1—Y1, s Tn—Yn)dy;; A... Ady;, NI dz;.
This integral is equal to

mn
/Rn fx1+y1, - on+yn)g(x1, ...y on)dy;; Ao Ady;, A .Hl dx; =
1=

n
— /IR{TL f(x14vy1, ..., zn+tyn)g(xq, ..., xn)dyil/\.../\dyik/\.Hl dx; = . L?xl,...,xn) (n)AV.m

1=
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Smoothing kernels

DEFINITION: Let u; be a sequence of non-negative smooth functions on
R™ with support in an open ball By, with center in O, such that r; converges
to 0, and g pu; Vol = 1. The family p; Vol is called the family of smoothing
kernels.

REMARK: Let m1,m, 7y : R™ x R®" — R" take (x,y) to: mi(z,y) = =z,
mo(x,y) = vy, nsy(x,y) = x —y. Consider a differential form n on R". Its
convolution with smoothing kernels is

n* pi 1= (m2)«(w1(n) A 75 (p; Vol))

CLAIM: For any n with integrable coefficients, nxu; iIs smooth, and lim;(n*
uw;) = n. Also, the map n — nxu; commutes with de Rham differential,
and (if we are operating over C") with d¢ and Dolbeault differentials,

Proof: The limit lim;(n* ;) = n is clear, because lim m5-(u; Vol) = éa, hence
lim;(n x p;) = (m2)«(w3(n) ANda) = n (Example 1). For smoothness of n x pu;,
we notice that dd N pp = 1% L de-ui- This operation commutes with de Rham
differential, because s (pi Vol) is closed, hence ()« (71 (dn) A ws-(u; Vol)) =

(m2)«(d(71 (1)) A 75-(pi Vol)) = d((m2)« (7] (1) A 7s-(p; VoI))).

REMARK: To see that n — nx u; commutes with the de Rham differential,
we can also note that nxp; = [,.cpn pi(x)Lzn, Where L is a translation on
x € R™.
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Subharmonic functions (reminder)

DEFINITION: (René Baire, 1899)
A function f: M — R on a topological space is called upper semicontinu-

ous if limsup._,., f(2) < f(20).

DEFINITION: An upper semicontinuous measurable function f on an open
set (“domain”) @ C R" is called subharmonic if for any ball B C Q with
center in zg, we have f(zg) < Av,.cp f(2).

REMARK: From the exercises in the handout 3, we obtain that this is
equivalent to A(f) > 0, where A is the Laplacian on generalized functions.

EXERCISE: Prove directly that a subharmonic function which attains a
local maximum on a connected domain €2 C R" is constant.

CLAIM: For any decreasing sequence {uj} of subharmonic functions, the
Iimit v = limu 1S also subharmonic.

Proof: The decreasing limit is upper semicontinuous, and the inequality
f(z0) < Av,cp f(2) remains true by Lebesgue’s monotone convergence theo-

rem. m
6
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Average of a subharmonic function over a ball

THEOREM: Let v be a subharmonic function on a ball By C R"™ centered
in 0. Then the average Avp v monotonously decreases to v(0) as r
decreases to O.

Proof: From Assignment 3:
Sr

where B, is a ball of radius r, S, its boundary, and v is a unit radial vector
(normal to the sphere S,). Applied to u = 1, this gives

/ uAvVolg — / vAuVolg = (ulLieyv —wvlLieyu)Volg,

AvVolg, = Lie, v Volg, > 0.
B?“ Sr

However, %Avsr(v) = Avg Liey(v), hence Avg (v) is monotonous as a func-
tion of . On the other hand,

5t Avg, (v)dt [ Avg, (v)d(E)
jgen=tat - jgd@m)
Since Avg,(v) monotonously decreases to v(0) as t decreases to O, this implies
that Avp v also monotonously decreases to v(0) as t decreases to 0. m
v’

Avp, (v) =
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Smoothing kernels and subharmonic functions

REMARK: Let 41 be a non-negative smooth function on R"™ which satisgies
Jg n1 Vol = 1, has support on a unit ball, and satisfies p1(z) = p(|z]), where r is
monotonous. Define ue(2) := e "u1(e~12). Clearly, we have lim._g ue Vol =
do, hence e is a family of smoothing kernels.

THEOREM: Let u be a subharmonic function. Then u x u. decreases
monotonously as a function of ¢, and converges to u. In particular, all
subharmonic functions are obtained as monotonous limits of smooth
subharmonic functions.

Proof: The value of uxue in x is obtained by averaging u in concentric spheres
around z and summing it up with coefficients determined by pu,

19
wkpe(a) = [ dt-p(=" 1O Avg,(u),

where S, is the sphere of radius r centered in . Since all monotonous func-
tions © can be obtained by summing up the step functions, it would suffice
to show monotonicity when p is a characteristic function of an interval [0, r].
In this case, u * us(x) is the average of w in a ball of radius er, which is
monotonous as a function of € by the Theorem 1 above. =

REMARK: This can be used to show that any generalized function f which
satisfies A(f) > 0 is a limit of a monotonous sequence of smooth sub-
harmonic functions; in particular, such function is upper semicontinuous
and locally integrable, unless f = —oo identically.

3
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Plurisubharmonic functions: singular case

DEFINITION: (Lelong, Oka, 1942)

A function f: M — [—o0, 00[ on a complex manifold M is called plurisubhar-
monic (psh) if u is upper semicontinuous, and its restriction to any complex
line is subharmonic.

From the results on subharmonic functions obtained above, we obtain the
following assertions.

CLAIM: For any decreasing sequence {u;} of plurisubharmonic functions,
the limit v :=limu, Is also subharmonic.

CLAIM: Let ug,...up be plurisubharmonic functions on €2 C R"™, and x :
RP — R a convex function which is monotonously non-decreasing in each
variable. Then x(uq,...,up) is also plurisubharmonic. This implies that
> ui, max(uy,...,up), 10g (3 e%) are plurisubharmonic, if u; are plurisubhar-
monic.

CLAIM: Let f be a plurisubharmonic function on a ball B C C", and f % ue
its convolution with the smoothing kernel defined above. Then f xpu- is a
monotonous sequence of smooth plurisubharmonic functions, converg-
ing to f. This implies that f is locally integrable, unless f = —oo identically.

REMARK: This argument also can be applies to generalized functions f such
that dd°f is positive; a posteriori, f is upper semicontinuous, because f
IS a monotonous limit of smooth functions.

9



