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Pullback and pushforward (reminder)

DEFINITION: Let f : X −→ Y be a proper holomorphic map of complex
manifolds, dimCX = dimC Y + k, and α a (p, q)-current on X. Define the
pushforward f∗α using ⟨f∗α, τ⟩ := ⟨α, f∗τ⟩, where τ is any test-form. Then
f∗α has bidimension (p − k, q − k). One should think of f∗ as of fiberwise
integration.
REMARK: Clearly, df∗α = f∗dα, ∂f∗α = f∗∂α, and so on.
REMARK: One defines pushforward for real manifolds in the same way.
REMARK: Pullback of currents is (generally speaking) not well-defined.
Pushforward of differential forms are often singular, that is, are given by a
current. However...

CLAIM: Let f : X −→ Y be a proper submersion of smooth manifolds. Then
a pushforward of a differential form is a differential form.
Proof: Indeed, the pushforward can be understood as a fiberwise integral.

Example 1: Let π1, π2,M×M −→M be projection maps, and δ∆ ∈ DdimM(M)
the integration current for the diagonal ∆ ⊂ M × M . Then (π2)∗(π∗

1(η) ∧
δ∆) = η for any differential form η on M. Indeed, for any τ ∈ Λk

cM ,
η ∈ ΛdimM−k(M) we have∫

M×M
π∗
1η ∧ δ∆ ∧ π∗

2τ =
∫
∆

π∗
1η ∧ π∗

2τ =
∫
M

η ∧ τ.
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Kernels of integration

DEFINITION: Let π1, π2, πΣ : Rn × Rn −→ Rn take (x, y) to: π1(x, y) = x,

π2(x, y) = y, πΣ(x, y) = x − y. Consider a differential form η on Rn, and let

V be a measure with compact support on Rn, called kernel of integration.

The convolution with the kernel V is

η ⋆ V := (π2)∗(π
∗
1(η) ∧ π∗

ΣV )

PROPOSITION: η ⋆ V =
∫
x∈Rn L∗

x(η)V , where Lx is a translation on x ∈ Rn.

Proof. Step 1: Let x1, ..., xn be coordinates on the first component, y1, ..., yn
the coordinates on the second component, and ρ = dxi1∧ ...∧dxik a coordinate

monomial on dxi. Without restricting the generality, we may assume η = fρ,

where f is a smooth function on Rn. Let V = gVol, where g is a function on

Rn with compact support. Then

π∗
1(η) ∧ π∗

Σ(V ) = f(x1, ..., xn)g(x1 − y1, ..., xn − yn)ρ ∧
n∏

i=1

dxi − dyi.
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Kernels of integration (2)

Proof. Step 1: Let x1, ..., xn be coordinates on the first component, y1, ..., yn
the coordinates on the second component, and ρ = dxi1∧ ...∧dxik a coordinate
monomial on dxi. Without restricting the generality, we may assume η = fρ,
where f is a smooth function on Rn. Let V = gVol, where g is a function on
Rn with compact support. Then

π∗
1(η) ∧ π∗

Σ(V ) = f(x1, ..., xn)g(x1 − y1, ..., xn − yn)ρ ∧
n∏

i=1

(dxi − dyi).

Step 2: To take a pushforward (π2)∗
(
hρ ∧

∏n
i=1 dxi − dyi

)
, we decompose this

form into a sum of monomials and drop all monomials which don’t have a form
hdyj1∧...∧dyjk∧

∏n
i=1 dxi and integrate h

∏n
i=1 dxi. However, the only monomial

component of dxi1 ∧ ...∧ dxik ∧
∏n
i=1(dxi− dyi) which has form dyj1 ∧ ...∧ dyjk ∧∏n

i=1 dxi is dyi1∧...∧dyik∧
∏n
i=1 dxi. Then (π2)∗

(
hρ ∧

∏n
i=1(dxi − dyi)

)
evaluated

at (y1, ..., yn) ∈ Rn is
∫
Rn f(x1, ..., xn)g(x1−y1, ..., xn−yn)dyi1∧...∧dyik∧

∏n
i=1 dxi.

This integral is equal to∫
Rn

f(x1 + y1, ..., xn + yn)g(x1, ..., xn)dyi1 ∧ ... ∧ dyik ∧
n∏

i=1

dxi =

=
∫
Rn

f(x1+y1, ..., xn+yn)g(x1, ..., xn)dyi1∧...∧dyik∧
n∏

i=1

dxi =
∫
Rn

L∗
(x1,...,xn)

(η)∧V.
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Smoothing kernels

DEFINITION: Let µi be a sequence of non-negative smooth functions on
Rn with support in an open ball Bri with center in 0, such that ri converges
to 0, and

∫ n
R µiVol = 1. The family µiVol is called the family of smoothing

kernels.
REMARK: Let π1, π2, πΣ : Rn × Rn −→ Rn take (x, y) to: π1(x, y) = x,
π2(x, y) = y, πΣ(x, y) = x − y. Consider a differential form η on Rn. Its
convolution with smoothing kernels is

η ⋆ µi := (π2)∗(π
∗
1(η) ∧ π∗

Σ(µiVol))

CLAIM: For any η with integrable coefficients, η ⋆µi is smooth, and limi(η ⋆
µi) = η. Also, the map η 7→ η ⋆ µi commutes with de Rham differential,
and (if we are operating over Cn) with dc and Dolbeault differentials,
Proof: The limit limi(η ⋆ µi) = η is clear, because limπ∗

Σ(µiVol) = δ∆, hence
limi(η ⋆ µi) = (π2)∗(π∗

1(η) ∧ δ∆) = η (Example 1). For smoothness of η ⋆ µi,
we notice that d

dxi
η ⋆ µi = η ⋆ d

dxi
µi. This operation commutes with de Rham

differential, because π∗
Σ(µiVol) is closed, hence (π2)∗(π∗

1(dη) ∧ π∗
Σ(µiVol)) =

(π2)∗(d(π∗
1(η)) ∧ π∗

Σ(µiVol)) = d((π2)∗(π∗
1(η) ∧ π∗

Σ(µiVol))).

REMARK: To see that η 7→ η ⋆ µi commutes with the de Rham differential,
we can also note that η ⋆ µi =

∫
x∈Rn µi(x)Lxη, where Lx is a translation on

x ∈ Rn.
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Subharmonic functions (reminder)

DEFINITION: (René Baire, 1899)
A function f : M −→ R on a topological space is called upper semicontinu-
ous if lim supz→z0 f(z) ⩽ f(z0).

DEFINITION: An upper semicontinuous measurable function f on an open
set (“domain”) Ω ⊂ Rn is called subharmonic if for any ball B ⊂ Ω with
center in z0, we have f(z0) ⩽ Avz∈B f(z).

REMARK: From the exercises in the handout 3, we obtain that this is
equivalent to ∆(f) ⩾ 0, where ∆ is the Laplacian on generalized functions.

EXERCISE: Prove directly that a subharmonic function which attains a
local maximum on a connected domain Ω ⊂ Rn is constant.

CLAIM: For any decreasing sequence {uk} of subharmonic functions, the
limit u := limuk is also subharmonic.

Proof: The decreasing limit is upper semicontinuous, and the inequality
f(z0) ⩽ Avz∈B f(z) remains true by Lebesgue’s monotone convergence theo-
rem.
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Average of a subharmonic function over a ball

THEOREM: Let v be a subharmonic function on a ball B1 ⊂ Rn centered

in 0. Then the average AvBr v monotonously decreases to v(0) as r

decreases to 0.

Proof: From Assignment 3:∫
Br

u∆vVolBr −
∫
Br

v∆uVolBr =
∫
Sr

(uLieν v − v Lieν u)VolSr

where Br is a ball of radius r, Sr its boundary, and ν is a unit radial vector

(normal to the sphere Sr). Applied to u = 1, this gives∫
Br

∆vVolBr =
∫
Sr

Lieν vVolSr ⩾ 0.

However, d
dr AvSr(v) = AvSr Lieν(v), hence AvSr(v) is monotonous as a func-

tion of r. On the other hand,

AvBr(v) =

∫ r
0 tn−1AvSt

(v)dt∫ r
0 tn−1dt

=

∫ r
0 AvSt

(v)d(tn)∫ r
0 d(tn)

;

Since AvSt
(v) monotonously decreases to v(0) as t decreases to 0, this implies

that AvBr v also monotonously decreases to v(0) as t decreases to 0.
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Smoothing kernels and subharmonic functions

REMARK: Let µ1 be a non-negative smooth function on Rn which satisgies∫ n
R µ1Vol = 1, has support on a unit ball, and satisfies µ1(z) = µ(|z|), where r is
monotonous. Define µε(z) := ε−nµ1(ε

−1z). Clearly, we have limε→0 µεVol =
δ0, hence µε is a family of smoothing kernels.
THEOREM: Let u be a subharmonic function. Then u ⋆ µε decreases
monotonously as a function of ε, and converges to u. In particular, all
subharmonic functions are obtained as monotonous limits of smooth
subharmonic functions.
Proof: The value of u⋆µε in x is obtained by averaging u in concentric spheres
around x and summing it up with coefficients determined by µ,

u ⋆ µε(x) =
∫ ε

t=0
dt · µ(ε−1t)tn−1AvSεt

(u),

where Sr is the sphere of radius r centered in x. Since all monotonous func-
tions µ can be obtained by summing up the step functions, it would suffice
to show monotonicity when µ is a characteristic function of an interval [0, r].
In this case, u ⋆ µε(x) is the average of u in a ball of radius εr, which is
monotonous as a function of ε by the Theorem 1 above.
REMARK: This can be used to show that any generalized function f which
satisfies ∆(f) ⩾ 0 is a limit of a monotonous sequence of smooth sub-
harmonic functions; in particular, such function is upper semicontinuous
and locally integrable, unless f = −∞ identically.
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Plurisubharmonic functions: singular case

DEFINITION: (Lelong, Oka, 1942)
A function f : M −→ [−∞,∞[ on a complex manifold M is called plurisubhar-
monic (psh) if u is upper semicontinuous, and its restriction to any complex
line is subharmonic.

From the results on subharmonic functions obtained above, we obtain the
following assertions.
CLAIM: For any decreasing sequence {uk} of plurisubharmonic functions,
the limit u := limuk is also subharmonic.
CLAIM: Let u1, ...up be plurisubharmonic functions on Ω ⊂ Rn, and χ :
Rp −→ R a convex function which is monotonously non-decreasing in each
variable. Then χ(u1, ..., up) is also plurisubharmonic. This implies that∑

ui, max(u1, ..., up), log (
∑

eui) are plurisubharmonic, if ui are plurisubhar-
monic.
CLAIM: Let f be a plurisubharmonic function on a ball B ⊂ Cn, and f ⋆ µε
its convolution with the smoothing kernel defined above. Then f ⋆ µε is a
monotonous sequence of smooth plurisubharmonic functions, converg-
ing to f. This implies that f is locally integrable, unless f = −∞ identically.

REMARK: This argument also can be applies to generalized functions f such
that ddcf is positive; a posteriori, f is upper semicontinuous, because f
is a monotonous limit of smooth functions.
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